Соединение аминокислот в днк. ДНК (дезоксирибонуклеиновая кислота)

ДНК - один из двух видов нуклеиновых кислот - дезоксирибонуклеиновые (ДНК) и рибонуклеиновые (РНК). Эти биополимеры состоят из мономеров, называемых нуклеотидами. Мономеры-нуклеотиды ДНК и РНК сходны в основных чертах строения. Каждый нуклеотид состоит из трех компонентов, соединенных прочными химическими связями

Нуклеотиды, входящие в состав ДНК, содержат пятиуглеродный сахар - дезоксирибозу, одно из четырех азотистых оснований: аденин, гуанин, цитозин, тимин (А, Г, Ц, Т) и остаток фосфорной кислоты.
В составе нуклеотидов к молекуле рибозы (или дезоксирибозы) с одной стороны присоединено азотистое основание, а с другой - остаток фосфорной кислоты. Нуклеотиды соединяются между собой в длинные цепи. Остов такой цепи образуют регулярно чередующиеся остатки сахара и органических фосфатов, а боковые группы этой цепи - четыре типа нерегулярно чередующихся азотистых оснований.
Молекула ДНК представляет собой структуру, состоящую из двух нитей, которые по всей длине соединены друг с другом водородными связями. Такую структуру, свойственную только молекулам ДНК, называют двойной спиралью. Особенностью структуры ДНК является то, что против одного азотистого основания в одной цепи лежит строго определенное азотистое основание в другой цепи - эти пары оснований называют комплиментарными основаниями (дополняющими друг друга): А=Т; Г Ц
Набор белков (ферментов, гормонов и др.) определяет свойства клетки и организма. Молекулы ДНК хранят сведения об этих свойствах и передают их в поколения потомков.

ДНК была открыта Иоганном Фридрихом Мишером в 1869 году. Вначале новое вещество получило название нуклеин , а позже, когда Мишер определил, что это вещество обладает кислотными свойствами, вещество получило название нуклеиновая кислота . Биологическая функция новооткрытого вещества была неясна, и долгое время ДНК считалась запасником фосфора в организме. Более того, даже в начале XX века многие биологи считали, что ДНК не имеет никакого отношения к передаче информации, поскольку строение молекулы, по их мнению, было слишком однообразным и не могло содержать закодированную информацию.

Постепенно было доказано, что именно ДНК, а не белки, как считалось раньше, является носителем генетической информации. Одно из первых решающих доказательств принесли эксперименты О. Эвери, Колина Мак-Леода и Маклин Мак-Карти (1944 г.) по трансформации бактерий. Им удалось показать, что за так называемую трансформацию (приобретение болезнетворных свойств безвредной культурой в результате добавления в неё мёртвых болезнетворных бактерий) отвечают выделенные из пневмококков ДНК. Эксперимент американских учёных Алфреда Херши и Марты Чейз (Эксперимент Херши-Чейз, 1952 г.) с помеченными радиоактивными изотопами белками и ДНК бактериофагов показали, что в заражённую клетку передаётся только нуклеиновая кислота фага, а новое поколение фага содержит такие же белки и нуклеиновую кислоту, как исходный фаг.

Вплоть до 50-х годов XX века точное строение ДНК, как и способ передачи наследственной информации, оставалось неизвестным. Хотя и было доподлинно известно, что ДНК состоит из нескольких цепочек, состоящих из нуклеотидов, никто не знал точно, сколько этих цепочек и как они соединены.

Структура двойной спирали ДНК была предложена Френсисом Криком и Джеймсом Уотсоном в 1953 году на основании рентгеноструктурных данных, полученных Морисом Уилкинсом и Розалинд Франклин, и «правил Чаргаффа», согласно которым в каждой молекуле ДНК соблюдаются строгие соотношения, связывающие между собой количество азотистых оснований разных типов. Позже предложенная Уотсоном и Криком модель строения ДНК была доказана, а их работа отмечена Нобелевской премией по физиологии и медицине 1962 г. Среди лауреатов не было скончавшейся к тому времени Розалинды Франклин, так как премия не присуждается посмертно

Все живое на планете состоит из множества клеток, поддерживающих упорядоченность своей организации за счет содержащейся в ядре генетической информации. Она сохраняется, реализуется и передается сложными высокомолекулярными соединениями - нуклеиновыми кислотами, состоящими из мономерных звеньев - нуклеотидов. Роль нуклеиновых кислот невозможно переоценить. Стабильностью их структуры определяется нормальная жизнедеятельность организма, а любые отклонения в строении неминуемо приводят к изменению клеточной организации, активности физиологических процессов и жизнеспособности клеток в целом.

Понятие нуклеотида и его свойства

Каждая или РНК собрана из более мелких мономерных соединений - нуклеотидов. Другими словами, нуклеотид - это строительный материал для нуклеиновых кислот, коферментов и многих других биологических соединений, которые крайне необходимы клетке в процессе ее жизнедеятельности.

К основным свойствам этих незаменимых веществ можно отнести:

Хранение информации о и наследуемых признаках;
. осуществление контроля над ростом и репродукцией;
. участие в метаболизме и многих других физиологических процессах, протекающих в клетке.

Говоря о нуклеотидах, нельзя не остановиться на таком важном вопросе, как их структура и состав.

Каждый нуклеотид состоит из:

Сахарного остатка;
. азотистого основания;
. фосфатной группы или остатка фосфорной кислоты.

Можно сказать, что нуклеотид - это сложное органическое соединение. В зависимости от видового состава азотистых оснований и типа пентозы в структуре нуклеотида нуклеиновые кислоты подразделяются на:

Дезоксирибонуклеиновую кислоту, или ДНК;
. рибонуклеиновую кислоту, или РНК.

Состав нуклеиновых кислот

В нуклеиновых кислотах сахар представлен пентозой. Это пятиуглеродный сахар, в ДНК его называют дезоксирибозой, в РНК - рибозой. Каждая молекула пентозы имеет пять атомов углерода, четыре из них вместе с атомом кислорода образуют пятичленное кольцо, а пятый входит в группу НО-СН2.

Положение каждого атома углерода в молекуле пентозы обозначается арабской цифрой со штрихом (1C´, 2C´, 3C´, 4C´, 5C´). Поскольку все процессы считывания с молекулы нуклеиновой кислоты имеют строгую направленность, нумерация атомов углерода и их расположение в кольце служат своего рода указателем правильного направления.

По гидроксильной группе к третьему и пятому углеродным атомам (3С´ и 5С´) присоединен остаток фосфорной кислоты. Он и определяет химическую принадлежность ДНК и РНК к группе кислот.

К первому углеродному атому (1С´) в молекуле сахара присоединено азотистое основание.

Видовой состав азотистых оснований

Нуклеотиды ДНК по азотистому основанию представлены четырьмя видами:

Аденином (А);
. гуанином (Г);
. цитозином (Ц);
. тимином (Т).

Первые два относятся к классу пуринов, два последних - пиримидинов. По молекулярной массе пуриновые всегда тяжелее пиримидиновых.

Нуклеотиды РНК по азотистому основанию представлены:

Аденином (А);
. гуанином (Г);
. цитозином (Ц);
. урацилом (У).

Урацил так же, как и тимин, является пиримидиновым основанием.

В научной литературе нередко можно встретить и другое обозначение азотистых оснований - латинскими буквами (A, T, C, G, U).

Подробнее остановимся на химической структуре пуринов и пиримидинов.

Пиримидины, а именно цитозин, тимин и урацил, в своем составе представлены двумя атомами азота и четырьмя атомами углерода, образующих шестичленное кольцо. Каждый атом имеет свой номер от 1 до 6.

Пурины (аденин и гуанин) состоят из пиримидина и имидазола или двух гетероциклов. Молекула пуриновых оснований представлена четырьмя атомами азота и пятью атомами углерода. Каждый атом пронумерован от 1 до 9.

В результате соединения азотистого основания и остатка пентозы образуется нуклеозид. Нуклеотид - это соединение нуклеозида и фосфатной группы.

Образование фосфодиэфирных связей

Важно разобраться в вопросе о том, как соединяются нуклеотиды в полипептидную цепь и образуют молекулу нуклеиновой кислоты. Происходит это за счет так называемых фосфодиэфирных связей.

Взаимодействие двух нуклеотидов дает динуклеотид. Образование нового соединения происходит путем конденсации, когда между фосфатным остатком одного мономера и гидроксигруппой пентозы другого возникает фосфодиэфирная связь.

Синтез полинуклеотида - неоднократное повторение этой реакции (несколько миллионов раз). Полинуклеотидная цепь строится посредством образования фосфодиэфирных связей между третьим и пятым углеродами сахаров (3С´ и 5С´).

Сборка полинуклеотида - сложный процесс, протекающий при участии фермента ДНК-полимеразы, которая обеспечивает рост цепи только с одного конца (3´) со свободной гидроксигруппой.

Структура молекулы ДНК

Молекула ДНК, так же как и белка, может иметь первичную, вторичную и третичную структуру.

Последовательность нуклеотидов в цепи ДНК определяет ее первичную формируется за счет водородных связей, в основе возникновения которых положен принцип комплементарности. Другими словами, при синтезе двойной действует определенная закономерность: аденин одной цепи соответствует тимину другой, гуанин - цитозину, и наоборот. Пары аденина и тимина или гуанина и цитозина образуются за счет двух в первом и трех в последнем случае водородных связей. Такое соединение нуклеотидов обеспечивает прочную связь цепей и равное расстояние между ними.

Зная последовательность нуклеотидов одной цепи ДНК, по принципу комплементарности или дополнения можно достроить вторую.

Третичная структура ДНК образована за счет сложных трехмерных связей, что делает ее молекулу более компактной и способной размещаться в малом объеме клетки. Так, например, длина ДНК кишечной палочки составляет более 1 мм, тогда как длина клетки - меньше 5 мкм.

Число нуклеотидов в ДНК, а именно их количественное соотношение, подчиняется правилу Чергаффа (число пуриновых оснований всегда равно количеству пиримидиновых). Расстояние между нуклеотидами - величина постоянная, равная 0,34 нм, как и их молекулярная масса.

Структура молекулы РНК

РНК представлена одной полинуклеотидной цепочкой, образованной через между пентозой (в данном случае рибозой) и фосфатным остатком. По длине она значительно короче ДНК. По видовому составу азотистых оснований в нуклеотиде также имеются различия. В РНК вместо пиримидинового основания тимина используется урацил. В зависимости от функций, выполняемых в организме, РНК может быть трех типов.

Рибосомальная (рРНК) - содержит обычно от 3000 до 5000 нуклеотидов. Как необходимый структурный компонент принимает участие в формировании активного центра рибосом, места осуществления одного из важнейших процессов в клетке — биосинтеза белка.
. Транспортная (тРНК) - состоит в среднем из 75 - 95 нуклеотидов, осуществляет перенос нужной аминокислоты к месту синтеза полипептида в рибосоме. Каждый вид тРНК (не менее 40) имеет свою, присущую только ему последовательность мономеров или нуклеотидов.
. Информационная (иРНК) - по нуклеотидному составу весьма разнообразна. Переносит генетическую информацию от ДНК к рибосомам, выступает в роли матрицы для синтеза белковой молекулы.

Роль нуклеотидов в организме

Нуклеотиды в клетке выполняют ряд важнейших функций:

Используются в качестве структурных блоков для нуклеиновых кислот (нуклеотиды пуринового и пиримидинового рядов);
. участвуют во многих обменных процессах в клетке;
. входят в состав АТФ - главного источника энергии в клетках;
. выступают в роли переносчиков восстановительных эквивалентов в клетках (НАД+, НАДФ+, ФАД, ФМН);
. выполняют функцию биорегуляторов;
. могут рассматриваться как вторые вестники внеклеточного регулярного синтеза (например, цАМФ или цГМФ).

Нуклеотид - это мономерная единица, образующая более сложные соединения - нуклеиновые кислоты, без которых невозможна передача генетической информации, ее хранение и воспроизведение. Свободные нуклеотиды являются главными компонентами, участвующими в сигнальных и энергетических процессах, поддерживающих нормальную жизнедеятельность клеток и организма в целом.

Справа крупнейшая спираль ДНК человека, выстроенная из людей на пляже в Варне (Болгария), вошедшая в книгу рекордов Гиннесса 23 апреля 2016 года

Дезоксирибонуклеиновая кислота. Общие сведения

ДНК (дезоксирибонуклеиновая кислота) - своеобразный чертеж жизни, сложный код, в котором заключены данные о наследственной информации. Эта сложная макромолекула способна хранить и передавать наследственную генетическую информацию из поколения в поколение. ДНК определяет такие свойства любого живого организма как наследственность и изменчивость. Закодированная в ней информация задает всю программу развития любого живого организма. Генетически заложенные факторы предопределяют весь ход жизни как человека, так и любого др. организхма. Искусственное или естественное воздействие внешней среды способны лишь в незначительной степени повлиять на общую выраженность отдельных генетических признаков или сказаться на развитии запрограммированных процессов.

Дезоксирибонуклеи́новая кислота (ДНК) — макромолекула (одна из трёх основных, две другие — РНК и белки), обеспечивающая хранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования живых организмов. ДНК содержит информацию о структуре различных видов РНК и белков.

В клетках эукариот (животных, растений и грибов) ДНК находится в ядре клетки в составе хромосом, а также в некоторых клеточных органоидах (митохондриях и пластидах). В клетках прокариотических организмов (бактерий и архей) кольцевая или линейная молекула ДНК, так называемый нуклеоид, прикреплена изнутри к клеточной мембране. У них и у низших эукариот (например, дрожжей) встречаются также небольшие автономные, преимущественно кольцевые молекулы ДНК, называемые плазмидами.

С химической точки зрения ДНК — это длинная полимерная молекула, состоящая из повторяющихся блоков — нуклеотидов. Каждый нуклеотид состоит из азотистого основания, сахара (дезоксирибозы) и фосфатной группы. Связи между нуклеотидами в цепи образуются за счёт дезоксирибозы (С ) и фосфатной (Ф ) группы (фосфодиэфирные связи).


Рис. 2. Нуклертид состоит из азотистого основания, сахара (дезоксирибозы) и фосфатной группы

В подавляющем большинстве случаев (кроме некоторых вирусов, содержащих одноцепочечную ДНК) макромолекула ДНК состоит из двух цепей, ориентированных азотистыми основаниями друг к другу. Эта двухцепочечная молекула закручена по винтовой линии.

В ДНК встречается четыре вида азотистых оснований (аденин, гуанин, тимин и цитозин). Азотистые основания одной из цепей соединены с азотистыми основаниями другой цепи водородными связями согласно принципу комплементарности: аденин соединяется только с тимином (А-Т ), гуанин — только с цитозином (Г-Ц ). Именно эти пары и составляют «перекладины» винтовой "лестницы" ДНК (см.: рис. 2, 3 и 4).


Рис. 2. Азотистые основания

Последовательность нуклеотидов позволяет «кодировать» информацию о различных типах РНК, наиболее важными из которых являются информационные, или матричные (мРНК), рибосомальные (рРНК) и транспортные (тРНК). Все эти типы РНК синтезируются на матрице ДНК за счёт копирования последовательности ДНК в последовательность РНК, синтезируемой в процессе транскрипции, и принимают участие в биосинтезе белков (процессе трансляции). Помимо кодирующих последовательностей, ДНК клеток содержит последовательности, выполняющие регуляторные и структурные функции.


Рис. 3. Репликация ДНК

Расположение базовых комбинаций химических соединений ДНК и количественные соотношения между этими комбинациями обеспечивают кодирование наследственной информации.

Образование новой ДНК (репликация)

  1. Процесс репликации: раскручивание двойной спирали ДНК — синтез комплементарных цепей ДНК-полимеразой — образование двух молекул ДНК из одной.
  2. Двойная спираль «расстегивается» на две ветви, когда ферменты разрушают связь между базовыми парами химических соединений.
  3. Каждая ветвь является элементом новой ДНК. Новые базовые пары соединяются в той же последовательности, что и в родительской ветви.

По завершении дупликации образуются две самостоятельные спирали, созданные из химических соединений родительской ДНК и имеющие с ней одинаковый генетический код. Таким путем ДНК способна перерывать информацию от клетки к клетке.

Более подробная информация:

СТРОЕНИЕ НУКЛЕИНОВЫХ КИСЛОТ


Рис. 4 . Азотистые основания: аденин, гуанин, цитозин, тимин

Дезоксирибонуклеиновая кислота (ДНК) относится к нуклеиновым кислотам. Нуклеиновые кислоты - это класс нерегулярных биополимеров, мономерами которых являются нуклеотиды.

НУКЛЕОТИДЫ состоят из азотистого основания , соединенного с пятиуглеродным углеводом (пентозой) - дезоксирибозой (в случае ДНК) или рибозой (в случае РНК), который соединяется с остатком фосфорной кислоты (H 2 PO 3 -).

Азотистые основания бывают двух типов: пиримидиновые основания - урацил (только в РНК), цитозин и тимин, пуриновые основания - аденин и гуанин.


Рис. 5. Структура нуклеотидов (слева), расположение нуклеотида в ДНК (снизу) и типы азотистых оснований (справа): пиримидиновые и пуриновые


Атомы углерода в молекуле пентозы нумеруются числами от 1 до 5. Фосфат соединяется с третьим и пятым атомами углерода. Так нуклеинотиды соединяются в цепь нуклеиновой кислоты. Таким образом, мы можем выделить 3’ и 5’-концы цепи ДНК:


Рис. 6. Выделение 3’ и 5’-концов цепи ДНК

Две цепи ДНК образуют двойную спираль . Эти цепи в спирали сориентированы в противоположных направлениях. В разных цепях ДНК азотистые основания соединены между собой с помощью водородных связей . Аденин всегда соединяется с тимином, а цитозин - с гуанином. Это называется правилом комплементарности (см. принцип комплементарности ).

Правило комплементарности:

A-T G-C

Например, если нам дана цепь ДНК, имеющая последовательность

3’- ATGTCCTAGCTGCTCG - 5’,

то вторая ей цепь будет комплементарна и направлена в противоположном направлении - от 5’-конца к 3’-концу:

5’- TACAGGATCGACGAGC- 3’.


Рис. 7. Направленность цепей молекулы ДНК и соединение азотистых оснований с помощью водородных связей

РЕПЛИКАЦИЯ ДНК

Репликация ДНК - это процесс удвоения молекулы ДНК путем матричного синтеза. В большинстве случаев естественной репликации ДНК праймером для синтеза ДНК является короткий фрагмент (создаваемый заново). Такой рибонуклеотидный праймер создается ферментом праймазой (ДНК-праймаза у прокариот, ДНК-полимераза у эукариот), и впоследствии заменяется дезоксирибонуклеотидами полимеразой, выполняющей в норме функции репарации (исправления химических повреждений и разрывов в молекле ДНК).

Репликация происходит по полуконсервативному механизму. Это значит, что двойная спираль ДНК расплетается и на каждой из ее цепей по принципу комплементарности достраивается новая цепь. Дочерняя молекула ДНК, таким образом, содержит в себе одну цепь от материнской молекулы и одну вновь синтезированную. Репликация происходит в направлении от 3’ к 5’ концу материнской цепи.

Рис. 8. Репликация (удвоение) молекулы ДНК

ДНК-синтез - это не такой сложный процесс, как может показаться на первый взгляд. Если подумать, то для начала нужно разобраться, что же такое синтез. Это процесс объединения чего-либо в одно целое. Образование новой молекулы ДНК проходит в несколько этапов:

1) ДНК-топоизомераза, располагаясь перед вилкой репликации, разрезает ДНК для того, чтобы облегчить ее расплетание и раскручивание.
2) ДНК-хеликаза вслед за топоизомеразой влияет на процесс «расплетения» спирали ДНК.
3) ДНК-связывающие белки осуществляют связывание нитей ДНК, а также проводят их стабилизацию, не допуская их прилипания друг к другу.
4) ДНК-полимераза δ (дельта), согласовано со скоростью движения репликативной вилки, осуществляет синтез ведущей цепи дочерней ДНК в направлении 5"→3" на матрице материнскойнити ДНК по направлению от ее 3"-конца к 5"-концу (скорость до 100 пар нуклеотидов в секунду). Этим события на данной материнской нити ДНК ограничиваются.



Рис. 9. Схематическое изображение процесса репликации ДНК: (1) Отстающая цепь (запаздывающая нить), (2) Ведущая цепь (лидирующая нить), (3) ДНК-полимераза α (Polα ), (4) ДНК-лигаза, (5) РНК-праймер, (6) Праймаза, (7) Фрагмент Оказаки, (8) ДНК-полимераза δ (Polδ ), (9) Хеликаза, (10) Однонитевые ДНК-связывающие белки, (11) Топоизомераза.

Далее описан синтез отстающей цепи дочерней ДНК (см. Схему репликативной вилки и функции ферментов репликации)

Нагляднее о репликации ДНК см.

5) Непосредственно сразу после расплетания и стабилизации другой нити материнской молекулы к ней присоединяется ДНК-полимераза α (альфа) и в направлении 5"→3" синтезирует праймер (РНК-затравку) - последовательность РНК на матрице ДНК длиной от 10 до 200 нуклеотидов. После этого фермент удаляется с нити ДНК.

Вместо ДНК-полимеразы α к 3"-концу праймера присоединяется ДНК-полимераза ε .

6) ДНК-полимераза ε (эпсилон) как бы продолжает удлинять праймер, но в качестве субстрата встраивает дезоксирибонуклеотиды (в количестве 150-200 нуклеотидов). В результате образуется цельная нить из двух частей - РНК (т.е. праймер) и ДНК . ДНК-полимераза ε работает до тех пор, пока не встретит праймер предыдущего фрагмента Оказаки (синтезированный чуть ранее). После этого данный фермент удаляется с цепи.

7) ДНК-полимераза β (бета) встает вместо ДНК-полимеразы ε , движется в том же направлении (5"→3") и удаляет рибонуклеотиды праймера, одновременно встраивая дезоксирибонуклеотиды на их место. Фермент работает до полного удаления праймера, т.е. пока на его пути не встанет дезоксирибонуклеотид (еще более ранее синтезированный ДНК-полимеразой ε ). Связать результат свой работы и впереди стоящую ДНК фермент не в состоянии, поэтому он сходит с цепи.

В результате на матрице материнской нити "лежит" фрагмент дочерней ДНК. Он называется фрагмент Оказаки .

8) ДНК-лигаза производит сшивку двух соседних фрагментов Оказаки , т.е. 5"-конца отрезка, синтезированного ДНК-полимеразой ε , и 3"-конца цепи, встроенного ДНК-полимеразой β .

СТРОЕНИЕ РНК

Рибонуклеиновая кислота (РНК) — одна из трёх основных макромолекул (две другие — ДНК и белки), которые содержатся в клетках всех живых организмов.

Так же, как ДНК, РНК состоит из длинной цепи, в которой каждое звено называется нуклеотидом . Каждый нуклеотид состоит из азотистого основания, сахара рибозы и фосфатной группы. Однако в отличие от ДНК, РНК обычно имеет не две цепи, а одну. Пентоза в РНК представлена рибозой, а не дезоксирибозой (у рибозы присутствует дополнительная гидроксильная группа на втором атоме углевода). Наконец, ДНК отличается от РНК по составу азотистых оснований: вместо тимина (Т ) в РНК представлен урацил (U ) , который также комплементарен аденину.

Последовательность нуклеотидов позволяет РНК кодировать генетическую информацию. Все клеточные организмы используют РНК (мРНК) для программирования синтеза белков.

Клеточные РНК образуются в ходе процесса, называемого транскрипцией , то есть синтеза РНК на матрице ДНК, осуществляемого специальными ферментами - РНК-полимеразами .

Затем матричные РНК (мРНК) принимают участие в процессе, называемом трансляцией, т.е. синтеза белка на матрице мРНК при участии рибосом. Другие РНК после транскрипции подвергаются химическим модификациям, и после образования вторичной и третичной структур выполняют функции, зависящие от типа РНК.

Рис. 10. Отличие ДНК от РНК по азотистому основанию: вместо тимина (Т) в РНК представлен урацил (U), который также комплементарен аденину.

ТРАНСКРИПЦИЯ

Это процесс синтеза РНК на матрице ДНК. ДНК раскручивается на одном из участков. На одной из цепей содержится информация, которую необходимо скопировать на молекулу РНК - эта цепь называется кодирующей. Вторая цепь ДНК, комплементарная кодирующей, называется матричной. В процессе транскрипции на матричной цепи в направлении 3’ - 5’ (по цепи ДНК) синтезируется комплементарная ей цепь РНК. Таким образом, создается РНК-копия кодирующей цепи.

Рис. 11. Схематическое изображение транскрипции

Например, если нам дана последовательность кодирующей цепи

3’- ATGTCCTAGCTGCTCG - 5’,

то, по правилу комплементарности, матричная цепь будет нести последовательность

5’- TACAGGATCGACGAGC- 3’,

а синтезируемая с нее РНК - последовательность

ТРАНСЛЯЦИЯ

Рассмотрим механизм синтеза белка на матрице РНК, а также генетический код и его свойства. Также для наглядности по ниже приведенной ссылке рекомендуем посмотреть небольшое видео о процессах транскрипции и трансляции, происходящих в живой клетке:

Рис. 12. Процесс синтеза белка: ДНК кодирует РНК, РНК кодирует белок

ГЕНЕТИЧЕСКИЙ КОД

Генетический код - способ кодирования аминокислотной последовательности белков с помощью последовательности нуклеотидов. Каждая аминокислота кодируется последовательностью из трех нуклеотидов - кодоном или триплетом.

Генетический код, общий для большинства про- и эукариот. В таблице приведены все 64 кодона и указаны соответствующие аминокислоты. Порядок оснований — от 5" к 3" концу мРНК.

Таблица 1. Стандартный генетический код

1-е
основа

ние

2-е основание

3-е
основа

ние

U

C

A

G

U

U U U

(Phe/F)

U C U

(Ser/S)

U A U

(Tyr/Y)

U G U

(Cys/C)

U

U U C

U C C

U A C

U G C

C

U U A

(Leu/L)

U C A

U A A

Стоп-кодон**

U G A

Стоп-кодон**

A

U U G

U C G

U A G

Стоп-кодон**

U G G

(Trp/W)

G

C

C U U

C C U

(Pro/P)

C A U

(His/H)

C G U

(Arg/R)

U

C U C

C C C

C A C

C G C

C

C U A

C C A

C A A

(Gln/Q)

C GA

A

C U G

C C G

C A G

C G G

G

A

A U U

(Ile/I)

A C U

(Thr/T)

A A U

(Asn/N)

A G U

(Ser/S)

U

A U C

A C C

A A C

A G C

C

A U A

A C A

A A A

(Lys/K)

A G A

A

A U G

(Met/M)

A C G

A A G

A G G

G

G

G U U

(Val/V)

G C U

(Ala/A)

G A U

(Asp/D)

G G U

(Gly/G)

U

G U C

G C C

G A C

G G C

C

G U A

G C A

G A A

(Glu/E)

G G A

A

G U G

G C G

G A G

G G G

G

Среди триплетов есть 4 специальных последовательности, выполняющих функции «знаков препинания»:

  • *Триплет AUG , также кодирующий метионин, называется старт-кодоном . С этого кодона начинается синтез молекулы белка. Таким образом, во время синтеза белка, первой аминокислотой в последовательности всегда будет метионин.
  • **Триплеты UAA , UAG и UGA называются стоп-кодонами и не кодируют ни одной аминокислоты. На этих последовательностях синтез белка прекращается.

Свойства генетического кода

1. Триплетность . Каждая аминокислота кодируется последовательностью из трех нуклеотидов - триплетом или кодоном.

2. Непрерывность . Между триплетами нет никаких дополнительных нуклеотидов, информация считывается непрерывно.

3. Неперекрываемость . Один нуклеотид не может входить одновременно в два триплета.

4. Однозначность . Один кодон может кодировать только одну аминокислоту.

5. Вырожденность . Одна аминокислота может кодироваться несколькими разными кодонами.

6. Универсальность . Генетический код одинаков для всех живых организмов.

Пример. Нам дана последовательность кодирующей цепи:

3’- CCGATTGCACGTCGATCGTATA - 5’.

Матричная цепь будет иметь последовательность:

5’- GGCTAACGTGCAGCTAGCATAT - 3’.

Теперь «синтезируем» с этой цепи информационную РНК:

3’- CCGAUUGCACGUCGAUCGUAUA - 5’.

Синтез белка идет в направлении 5’ → 3’, следовательно, нам нужно перевернуть последовательность, чтобы «прочитать» генетический код:

5’- AUAUGCUAGCUGCACGUUAGCC - 3’.

Теперь найдем старт-кодон AUG:

5’- AUAUG CUAGCUGCACGUUAGCC - 3’.

Разделим последовательность на триплеты:

звучит следующим образом: информация с ДНК передается на РНК (транскрипция), с РНК - на белок (трансляция). ДНК также может удваиваться путем репликации, и также возможен процесс обратной транскрипции, когда по матрице РНК синтезируется ДНК, но такой процесс в основном характерен для вирусов.


Рис. 13. Центральная догма молекулярной биологии

ГЕНОМ: ГЕНЫ и ХРОМОСОМЫ

(общие понятия)

Геном - совокупность всех генов организма; его полный хромосомный набор.

Термин "геном" был предложен Г. Винклером в 1920 г. для описания совокупности генов, заключенных в гаплоидном наборе хромосом организмов одного биологического вида. Первоначальный смысл этого термина указывал на то, что понятие генома в отличие от генотипа является генетической характеристикой вида в целом, а не отдельной особи. С развитием молекулярной генетики значение данного термина изменилось. Известно, что ДНК, которая является носителем генетической информации у большинства организмов и, следовательно, составляет основу генома, включает в себя не только гены в современном смысле этого слова. Большая часть ДНК эукариотических клеток представлена некодирующими ("избыточными") последовательностями нуклеотидов, которые не заключают в себе информации о белках и нуклеиновых кислотах. Таким образом, основную часть генома любого организма составляет вся ДНК его гаплоидного набора хромосом.

Гены — это участки молекул ДНК, кодирующие полипептиды и молекулы РНК

За последнее столетие наше представление о генах существенно изменилось. Ранее геном называли участок хромосомы, кодирующий или определяющий один признак или фенотипическое (видимое) свойство, например цвет глаз.

В 1940 г. Джордж Бидл и Эдвард Тейтем предложили молекулярное определение гена. Ученые обрабатывали споры гриба Neurospora crassa рентгеновским излучением и другими агентами, вызывающими изменения в последовательности ДНК (мутации ), и обнаружили мутантные штаммы гриба, утратившие некоторые специфические ферменты, что в некоторых случаях приводило к нарушению целого метаболического пути. Бидл и Тейтем пришли к выводу, что ген — это участок генетического материала, который определяет или кодирует один фермент. Так появилась гипотеза «один ген — один фермент» . Позднее эта концепция была расширена до определения «один ген — один полипептид» , поскольку многие гены кодируют белки, не являющиеся ферментами, а полипептид может оказаться субъединицей сложного белкового комплекса.

На рис. 14 показана схема того, как триплеты нуклеотидов в ДНК определяют полипептид - аминокислотную последовательность белка при посредничестве мРНК. Одна из цепей ДНК играет роль матрицы для синтеза мРНК, нуклеотидные триплеты (кодоны) которой комплементарны триплетам ДНК. У некоторых бактерий и многих эукариот кодирующие последовательности прерываются некодирующими участками(так называемыми интронами ).

Современное биохимическое определение гена еще более конкретно. Генами называются все участки ДНК, кодирующие первичную последовательность конечных продуктов, к которым относятся полипептиды или РНК, обладающие структурной или каталитической функцией.

Наряду с генами ДНК содержит и другие последовательности, выполняющие исключительно регуляторную функцию. Регуляторные последовательности могут обозначать начало или конец генов, влиять на транскрипцию или указывать место инициации репликации или рекомбинации. Некоторые гены могут экспрессироваться разными путями, при этом один и тот же участок ДНК служит матрицей для образования разных продуктов.

Мы можем приблизительно рассчитать минимальный размер гена , кодирующего средний белок. Каждая аминокислота в полипептидной цепи кодируется последовательностью из трех нуклеотидов; последовательности этих триплетов (кодонов) соответствуют цепочке аминокислот в полипептиде, который кодируется данным геном. Полипептидная цепь из 350 аминокислотных остатков (цепь средней длины) соответствует последовательности из 1050 п.н. (пар нуклеотидов ). Однако многие гены эукариот и некоторые гены прокариот прерываются сегментами ДНК, не несущими информации о белке, и поэтому оказываются значительно длиннее, чем показывает простой расчет.

Сколько генов в одной хромосоме?


Рис. 15. Вид хромосом в прокаритической (слева) и эукариотической клеках. Гистоны (Histones) — обширный класс ядерных белков, выполняющих две основные функции: они участвуют в упаковке нитей ДНК в ядре и в эпигенетической регуляции таких ядерных процессов, как транскрипция, репликация и репарация.

ДНК прокариот устроена более просто: их клетки не имеют ядра, поэтому ДНК находится непосредственно в цитоплазме в форме нуклеоида.

Как известно, бактериальные клетки имеют хромосому в виде нити ДНК, уложенной в компактную структуру - нуклеоид. Хромосома прокариота Escherichia coli , чей геном полностью расшифрован, представляет собой кольцевую молекулу ДНК (на самом деле, это не правильный круг, а скорее петля без начала и конца), состоящую из 4 639 675 п.н. В этой последовательности содержится примерно 4300 генов белков и еще 157 генов стабильных молекул РНК. В геноме человека примерно 3,1 млрд пар нуклеотидов, соответствующих почти 29 000 генам, расположенным на 24 разных хромосомах.

Прокариоты (Бактерии).

Бактерия E. coli имеет одну двухцепочечную кольцевую молекулу ДНК. Она состоит из 4 639 675 п.н. и достигает в длину примерно 1,7 мм, что превышает длину самой клетки E. coli приблизительно в 850 раз. Помимо крупной кольцевой хромосомы в составе нуклеоида многие бактерии содержат одну или несколько маленьких кольцевых молекул ДНК, свободно располагающихся в цитозоле. Такие внехромосомные элементы называют плазмидами (рис. 16).

Большинство плазмид состоит всего из нескольких тысяч пар нуклеотидов, некоторые содержат более 10000 п. н. Они несут генетическую информацию и реплицируются с образованием дочерних плазмид, которые попадают в дочерние клетки в процессе деления родительской клетки. Плазмиды обнаружены не только в бактериях, но также в дрожжах и других грибах. Во многих случаях плазмиды не дают никаких преимуществ клеткам-хозяевам, и их единственная задача — независимое воспроизведение. Однако некоторые плазмиды несут полезные для хозяина гены. Например, содержащиеся в плазмидах гены могут придавать клеткам бактерий устойчивость к антибактериальным агентам. Плазмиды, несущие ген β-лактамазы, обеспечивают устойчивость к β-лактамным антибиотикам, таким как пенициллин и амоксициллин. Плазмиды могут переходить от клеток, устойчивых к антибиотикам, к другим клеткам того же или другого вида бактерий, в результате чего эти клетки также становятся резистентными. Интенсивное применение антибиотиков является мощным селективным фактором, способствующим распространению плазмид, кодирующих устойчивость к антибиотикам (а также транспозонов, которые кодируют аналогичные гены) среди болезнетворных бактерий, и приводит к появлению бактериальных штаммов с устойчивостью к нескольким антибиотикам. Врачи начинают понимать опасность широкого использования антибиотиков и назначают их только в случае острой необходимости. По аналогичным причинам ограничивается широкое использование антибиотиков для лечения сельскохозяйственных животных.

См. также: Равин Н.В., Шестаков С.В. Геном прокариот // Вавиловский журнал генетики и селекции, 2013. Т. 17. № 4/2. С. 972-984.

Эукариоты.

Таблица 2. ДНК, гены и хромосомы некоторых организмов

Общая ДНК,

п.н.

Число хромосом*

Примерное число генов

Escherichia coli (бактерия)

4 639 675

4 435

Saccharomyces cerevisiae (дрожжи)

12 080 000

16**

5 860

Caenorhabditis elegans (нематода)

90 269 800

12***

23 000

Arabidopsis thaliana (растение)

119 186 200

33 000

Drosophila melanogaster (плодовая мушка)

120 367 260

20 000

Oryza sativa (рис)

480 000 000

57 000

Mus musculus (мышь)

2 634 266 500

27 000

Homo sapiens (человек)

3 070 128 600

29 000

Примечание. Информация постоянно обновляется; для получения более свежей информации обратитесь к сайтам, посвященным отдельным геномным проектам

* Для всех эукариот, кроме дрожжей, приводится диплоидный набор хромосом. Диплоидный набор хромосом (от греч. diploos- двойной и eidos- вид) - двойной набор хромосом (2n), каждая из которых имеет себе гомологичную.
**Гаплоидный набор. Дикие штаммы дрожжей обычно имеют восемь (октаплоидный) или больше наборов таких хромосом.
***Для самок с двумя Х хромосомами. У самцов есть Х хромосома, но нет Y, т. е. всего 11 хромосом.

В клетке дрожжей, одних из самых маленьких эукариот, в 2,6 раза больше ДНК, чем в клетке E. coli (табл. 2). Клетки плодовой мушки Drosophila , классического объекта генетических исследований, содержат в 35 раз больше ДНК, а клетки человека — примерно в 700 раз больше ДНК, чем клетки E. coli. Многие растения и амфибии содержат еще больше ДНК. Генетический материал клеток эукариот организован в виде хромосом. Диплоидный набор хромосом (2n ) зависит от вида организма (табл. 2).

Например, в соматической клетке человека 46 хромосом (рис. 17 ). Каждая хромосома эукариотической клетки, как показано на рис. 17, а , содержит одну очень крупную двухспиральную молекулу ДНК. Двадцать четыре хромосомы человека (22 парные хромосомы и две половые хромосомы X и Y) различаются по длине более чем в 25 раз. Каждая хромосома эукариот содержит определенный набор генов.


Рис. 17. Хромосомы эукариот. а — пара связанных и конденсированных сестринских хроматид из хромосомы человека. В такой форме эукариотические хромосомы пребывают после репликации и в метафазе в процессе митоза. б — полный набор хромосом из лейкоцита одного из авторов книги. В каждой нормальной соматической клетке человека содержится 46 хромосом.


Размер и функция ДНК как матрицы для хранения и передачи наследственного материала объясняют наличие особых структурных элементов в организации этой молекулы. У высших организмов ДНК распределена между хромосомами.

Совокупность ДНК (хромосом) организма называется геномом. Хромосомы находятся в клеточном ядре и формируют структуру, называемую хроматином. Хроматин представляет собой комплекс ДНК и основных белков (гистонов) в соотношении 1:1. Длину ДНК обычно измеряют числом пар комплементарных нуклеотидов (п.н.). Например, 3-я хромосома чело века представляет собой молекулу ДНК размером 160 млн п.н.. Выделенная линеаризованная ДНК размером 3*10 6 п.н. имеет длину примерно 1 мм, следовательно, линеаризованная молекула 3-й хромосомы человека была бы 5 мм в длину, а ДНК всех 23 хромосом (~3*10 9 п.н., MR = 1,8*10 12) гаплоидной клетки - яйцеклетки или сперматозоида - в линеаризованном виде составляла бы 1 м. За исключением половых клеток, все клетки организма человека (их около 1013) содержат двойной набор хромосом. При клеточном делении все 46 молекул ДНК реплицируются и снова организуются в 46 хромосом.

Если соединить между собой молекулы ДНК человеческого генома (22 хромосомы и хромосомы X и Y или Х и Х), получится последовательность длиной около одного метра. Прим.: У всех млекопитающих и других организмов с гетерогаметным мужским полом, у самок две X-хромосомы (XX), а у самцов — одна X-хромосома и одна Y-хромосома (XY).

Большинство клеток человека , поэтому общая длина ДНК таких клеток около 2м. У взрослого человека примерно 10 14 клеток, таким образом, общая длина всех молекул ДНК составляет 2・10 11 км. Для сравнения, окружность Земли — 4・10 4 км, а расстояние от Земли до Солнца — 1,5・10 8 км. Вот как удивительно компактно упакована ДНК в наших клетках!

В клетках эукариот есть и другие органеллы, содержащие ДНК, — это митохондрии и хлоропласты. Выдвигалось множество гипотез относительно происхождения ДНК митохондрий и хлоропластов. Общепризнанная сегодня точка зрения заключается в том, что они представляют собой рудименты хромосом древних бактерий, которые проникли в цитоплазму хозяйских клеток и стали предшественниками этих органелл. Митохондриальная ДНК кодирует митохондриальные тРНК и рРНК, а также несколько митохондриальных белков. Более 95% митохондриальных белков кодируется ядерной ДНК.

СТРОЕНИЕ ГЕНОВ

Рассмотрим строение гена у прокариот и эукариот, их сходства и различия. Несмотря на то, что ген — это участок ДНК, кодирующий всего один белок или РНК, кроме непосредственно кодирующей части, он также включает в себя регуляторные и иные структурные элементы, имеющие разное строение у прокариот и эукариот.

Кодирующая последовательность - основная структурно-функциональная единица гена, именно в ней находятся триплеты нуклеотидов, кодирующие аминокислотную последовательность. Она начинается со старт-кодона и заканчивается стоп-кодоном.

До и после кодирующей последовательности находятся нетранслируемые 5’- и 3’-последовательности . Они выполняют регуляторные и вспомогательные функции, например, обеспечивают посадку рибосомы на и-РНК.

Нетранслируемые и кодирующая последовательности составлют единицу транскрипции - транскрибируемый участок ДНК, то есть участок ДНК, с которого происходит синтез и-РНК.

Терминатор - нетранскрибируемый участок ДНК в конце гена, на котором останавливается синтез РНК.

В начале гена находится регуляторная область , включающая в себя промотор и оператор .

Промотор - последовательность, с которой связывается полимераза в процессе инициации транскрипции. Оператор - это область, с которой могут связываться специальные белки - репрессоры , которые могут уменьшать активность синтеза РНК с этого гена - иначе говоря, уменьшать его экспрессию .

Строение генов у прокариот

Общий план строения генов у прокариот и эукариот не отличается - и те, и другие содержат регуляторную область с промотором и оператором, единицу транскрипции с кодирующей и нетранслируемыми последовательностями и терминатор. Однако организация генов у прокариот и эукариот отличается.

Рис. 18. Схема строения гена у прокариот (бактерий) - изображение увеличивается

В начале и в конце оперона есть единые регуляторные области для нескольких структурных генов. С транскрибируемого участка оперона считывается одна молекула и-РНК, которая содержит несколько кодирующих последовательностей, в каждой из которых есть свой старт- и стоп-кодон. С каждого из таких участков с интезируется один белок. Таким образом, с одной молекулы и-РНК синтезируется несколько молекул белка.

Для прокариот характерно объединение нескольких генов в единую функциональную единицу - оперон . Работу оперона могут регулировать другие гены, которые могут быть заметно удалены от самого оперона - регуляторы . Белок, транслируемый с этого гена называется репрессор . Он связывается с оператором оперона, регулируя экспрессию сразу всех генов, в нем содержащихся.

Для прокариот также характерно явление сопряжения транскрипции и трансляции .


Рис. 19 Явление сопряжения транскрипции и трансляции у прокариот - изображение увеличивается

Такое сопряжение не встречается у эукариот из-за наличия у них ядерной оболочки, отделяющей цитоплазму, где происходит трансляция, от генетического материала, на котором происходит транскрипция. У прокариот во время синтеза РНК на матрице ДНК с синтезируемой молекулой РНК может сразу связываться рибосома. Таким образом, трансляция начинается еще до завершения транскрипции. Более того, с одной молекулой РНК может одновременно связываться несколько рибосом, синтезируя сразу несколько молекул одного белка.

Строение генов у эукариот

Гены и хромосомы эукариот очень сложно организованы

У бактерий многих видов всего одна хромосома, и почти во всех случаях в каждой хромосоме присутствует по одной копии каждого гена. Лишь немногие гены, например гены рРНК, содержатся в нескольких копиях. Гены и регуляторные последовательности составляют практически весь геном прокариот. Более того, почти каждый ген строго соответствует аминокислотной последовательности (или последовательности РНК), которую он кодирует (рис. 14).

Структурная и функциональная организация генов эукариот гораздо сложнее. Исследование хромосом эукариот, а позднее секвенирование полных последовательностей геномов эукариот принесло много сюрпризов. Многие, если не большинство, генов эукариот обладают интересной особенностью: их нуклеотидные последовательности содержат один или несколько участков ДНК, в которых не кодируется аминокислотная последовательность полипептидного продукта. Такие нетранслируемые вставки нарушают прямое соответствие между нуклеотидной последовательностью гена и аминокислотной последовательностью кодируемого полипептида. Эти нетранслируемые сегменты в составе генов называют интронами , или встроенными последовательностями , а кодирующие сегменты — экзонами . У прокариот лишь немногие гены содержат интроны.

Итак, у эукариот практически не встречается объединение генов в опероны, и кодирующая последовательность гена эукариот чаще всего разделена на транслируемые участки - экзоны , и нетранслируемые участки - интроны.

В большинстве случаев функция интронов не установлена. В целом, лишь около 1,5% ДНК человека являются ≪кодирующими≫, т. е. несут информацию о белках или РНК. Однако с учетом крупных интронов получается, что ДНК человека на 30% состоит из генов. Поскольку гены составляют относительно небольшую долю в геноме человека, значительная часть ДНК остается неучтенной.

Рис. 16. Схема строение гена у эукариот - изображение увеличивается

С каждого гена сначала синтезируется незрелая, или пре-РНК, которая содержит в себе как интроны, так и экзоны.

После этого проходит процесс сплайсинга, в результате которого интронные участки вырезаются, и образуется зрелая иРНК, с которой может быть синтезирован белок.


Рис. 20. Процесс альтернативного сплайсинга - изображение увеличивается

Такая организация генов позволяет, например, осуществить , когда с одного гена могут быть синтезированы разные формы белка, за счет того, что в процессе сплайсинга экзоны могут сшиваться в разных последовательностях.

Рис. 21. Отличия в строении генов прокариот и эукариот - изображение увеличивается

МУТАЦИИ И МУТАГЕНЕЗ

Мутацией называется стойкое изменение генотипа, то есть изменение нуклеотидной последовательности.

Процесс, который приводит к возникновению мутаций называется мутагенезом , а организм, все клетки которого несут одну и ту же мутацию — мутантом .

Мутационная теория была впервые сформулирована Гуго де Фризом в 1903 году. Современный ее вариант включает в себя следующие положения:

1. Мутации возникают внезапно, скачкообразно.

2. Мутации передаются из поколения в поколение.

3. Мутации могут быть полезными, вредными или нейтральными, доминантными или рецессивными.

4. Вероятность обнаружения мутаций зависит от числа исследованных особей.

5. Сходные мутации могут возникать повторно.

6. Мутации не направленны.

Мутации могут возникать под действием различных факторов. Различают мутации, возникшие под действием мутагенных воздействий : физических (например, ультрафиолета или радиации), химических (например, колхицина или активных форм кислорода) и биологических (например, вирусов). Также мутации могут быть вызваны ошибками репликации .

В зависимости от условий появления мутации подразделяют на спонтанные — то есть мутации, возникшие в нормальных условиях, и индуцированые — то есть мутации, которые возникли при особых условиях.

Мутации могут возникать не только в ядерной ДНК, но и, например, в ДНК митохондрий или пластид. Соответственно, мы можем выделять ядерные и цитоплазматические мутации.

В результате возникновения мутаций часто могут появляться новые аллели. Если мутантный аллель подавляет действие нормального, мутация называется доминантной . Если нормальный аллель подавляет мутантный, такая мутация называется рецессивной . Большинство мутаций, приводящих к возникновению новых аллелей являются рецессивными.

По эффекту выделяют мутации адаптивные , приводящие к повышению приспособленности организма к среде, нейтральные , не влияющие на выживаемость, вредные , понижающие приспособленность организмов к условиям среды и летальные , приводящие к смерти организма на ранних стадиях развития.

По последствиям выделяются мутации, приводящие к потери функции белка , мутации, приводящие к возникновению у белка новой функции , а также мутации, которые изменяют дозу гена , и, соответственно, дозу белка синтезируемого с него.

Мутация может возникнуть к любой клетке организма. Если мутация возникает в половой клетке, она называется герминативной (герминальной, или генеративной). Такие мутации не проявляются у того организма, у которого они появились, но приводят к появлению мутантов в потомстве и передаются по наследству, поэтому они важны для генетики и эволюции. Если мутация возникает в любой другой клетке, она называется соматической . Такая мутация может в той или иной степени проявляться у того организма, у которого она возникла, например, приводить к образованию раковых опухолей. Однако такая мутация не передается по наследству и не влияет на потомков.

Мутации могут затрагивать разные по размеру участки генома. Выделяют генные , хромосомные и геномные мутации.

Генные мутации

Мутации, которые возникают в масштабе меньшем, чем один ген, называются генными , или точечными (точковыми) . Такие мутации приводят к изменению одного и нескольких нуклеотидов в последовательности. Среди генных мутаций выделяют замены , приводящие к замене одного нуклеотида на другой, делеции , приводящие к выпадению одного из нуклеотидов, инсерции , приводящие к добавлению лишнего нуклеотида в последовательность.


Рис. 23. Генные (точечные) мутации

По механизму воздействия на белок, генные мутации делят на: синонимичные , которые (в результате вырожденности генетического кода) не приводят к изменению аминокислотного состава белкового продукта, миссенс-мутации , которые приводят к замене одной аминокислоты на другую и могут влиять на структуру синтезируемого белка, хотя часто они оказываются незначительными, нонсенс-мутации , приводящие к замене кодирующего кодона на стоп-кодон, мутации, приводящие к нарушению сплайсинга:


Рис. 24. Схемы мутаций

Также по механизму воздействия на белок выделяют мутации, приводящие к сдвигу рамки считывания , например, инсерции и делеции. Такие мутации, как и нонсенс-мутации, хоть и возникают в одной точке гена, часто воздействуют на всю структуру белка, что может привести к полному изменению его структуры. , когда участок хромосомы поворачивается на 180 градусов, Рис. 28. Транслокация

Рис. 29. Хромосома до и после дупликации

Геномные мутации

Наконец, геномные мутации затрагивают весь геном целиком, то есть меняется количество хромосом. Выделяют полиплоидии — увеличение плоидности клетки, и анеуплоидии, то есть изменение количества хромосом, например, трисомии (наличие у одной из хромосом дополнительного гомолога) и моносомии (отсутствие у хромосомы гомолога).

Видео по теме ДНК

РЕПЛИКАЦИЯ ДНК, КОДИРОВАНИЕ РНК, СИНТЕЗ БЕЛКА

(Если видео не отображается оно доступно по

Молекула ДНК состоит из двух нитей, образующих двойную спираль. Впервые ее структура была расшифрована Френсисом Криком и Джеймсом Уотсоном в 1953 году.

Поначалу молекула ДНК, состоящая из пары нуклеотидных, закрученных друг вокруг друга цепочек, порождала вопросы о том, почему именно такую форму она имеет. Ученые назвали этот феномен комплементарностью, что означает, что в ее нитях друг напротив друга могут находиться исключительно определенные нуклеотиды. К примеру, напротив тимина всегда стоит аденин, а напротив цитозина - гуанин. Эти нуклеотиды молекулы ДНК и называются комплементарными.

Схематически это изображается так:

Т — А

Ц — Г

Данные пары образуют химическую нуклеотидную связь, которая определяет порядок расстановки аминокислот. В первом случае она немного слабее. Связь между Ц и Г более прочная. Некомплементарные нуклеотиды между собой пары не образуют.


О строении

Итак, строение молекулы ДНК особое. Такую форму она имеет неспроста: дело в том, что количество нуклеотидов очень большое, и для размещения длинных цепочек необходимо много места. Именно по этой причине цепочкам присуще спиральное закручивание. Это явление названо спирализацией, оно позволяет нитям укорачиваться где-то в пять-шесть раз.

Некоторые молекулы такого плана организм использует очень активно, другие - редко. Последние, помимо спирализации, подвергаются еще и такой «компактной упаковке», как суперспирализация. И тогда длина молекулы ДНК уменьшается в 25-30 раз.

Что такое «упаковка» молекулы?

В процессе суперспирализации задействуются гистоновые белки. Они имеют структуру и вид катушки для ниток или стержня. На них и наматываются спирализованные нити, которые становятся сразу «компактно упакованными» и занимают мало места. Когда возникает необходимость использования той или иной нити, она сматывается с катушки, к примеру, гистонового белка, и спираль раскручивается в две параллельные цепочки. Когда молекула ДНК пребывает именно в таком состоянии, с нее можно считывать необходимые генетические данные. Однако есть одно условие. Получение информации возможно, только если структура молекулы ДНК имеет раскрученный вид. Хромосомы, доступные для считывания, называются эухроматинами, а если они суперсипирализованы, то это уже гетерохроматины.

Нуклеиновые кислоты

Нуклеиновые кислоты, как и белки, являются биополимерами. Главная функция - это хранение, реализация и передача наследственной (генетической информации). Они бывают двух типов: ДНК и РНК (дезоксирибонуклеиновые и рибонуклеиновые). Мономерами в них выступают нуклеотиды, каждый из которых имеет в своем составе остаток фосфорной кислоты, пятиуглеродный сахар (дезоксирибоза/рибоза) и азотистое основание. В ДНК код входит 4 вида нуклеотидов - аденин (А)/ гуанин (Г)/ цитозин (Ц)/ тимин (Т). Они отличаются по содержащемуся в их составе азотистому основанию.

В молекуле ДНК количество нуклеотидов может быть огромным - от нескольких тысяч до десятков и сотен миллионов. Рассмотреть такие гигантские молекулы можно через электронный микроскоп. В этом случае удастся увидеть двойную цепь из полинуклеотидных нитей, которые соединены между собой водородными связями азотистых оснований нуклеотидов.

Исследования

В ходе исследований ученые обнаружили, что виды молекул ДНК у разных живых организмов отличаются. Также было установлено, что гуанин одной цепи может связываться только лишь с цитозином, а тимин - с аденином. Расположение нуклеотидов одной цепи строго соответствует параллельной. Благодаря такой комплементарности полинуклеотидов молекула ДНК способна к удвоению и самовоспроизведению. Но сначала комплементарные цепи под воздействием специальных ферментов, разрушающих парные нуклеотиды, расходятся, а затем в каждой из них начинается синтез недостающей цепи. Это происходит за счет имеющихся в большом количестве в каждой клетке свободных нуклеотидов. В результате этого вместо «материнской молекулы» формируются две «дочерние», идентичные по составу и структуре, и ДНК-код становится исходным. Данный процесс является предшественником клеточного деления. Он обеспечивает передачу всех наследственных данных от материнских клеток дочерним, а также всем последующим поколениям.

Как читается генный код?

Сегодня вычисляется не только масса молекулы ДНК - можно узнать и более сложные, ранее не доступные ученым данные. Например, можно прочитать информацию о том, как организм использует собственную клетку. Конечно, сначала сведения эти находятся в закодированном виде и имеют вид некой матрицы, а потому ее необходимо транспортировать на специальный носитель, коим выступает РНК. Рибонуклеиновой кислоте под силу просачиваться в клетку через мембрану ядра и уже внутри считывать закодированную информацию. Таким образом, РНК - это переносчик скрытых данных из ядра в клетку, и отличается она от ДНК тем, что в её состав вместо дезоксирибозы входит рибоза, а вместо тимина - урацил. Кроме того, РНК одноцепочная.

Синтез РНК

Глубокий анализ ДНК показал, что после того как РНК покидает ядро, она попадает в цитоплазму, где и может быть встроена как матрица в рибосомы (специальные ферментные системы). Руководствуясь полученной информацией, они могут синтезировать соответствующую последовательность белковых аминокислот. О том, какую именно разновидность органического соединения необходимо присоединить к формирующейся белковой цепи, рибосома узнает из триплетного кода. Каждой аминокислоте соответствует свой определенный триплет, который ее и кодирует.

После того как формирование цепочки завершено, она приобретает конкретную пространственную форму и превращается в белок, способный осуществлять свои гормональные, строительные, ферментные и иные функции. Для любого организма он является генным продуктом. Именно из него определяются всевозможные качества, свойства и проявления генов.

Гены

В первую очередь процессы секвенирования разрабатывались с целью получения информации о том, сколько генов имеет структура молекулы ДНК. И, хотя исследования позволили ученым далеко продвинуться в этом вопросе, узнать точное их количество пока что не представляется возможным.

Еще несколько лет назад предполагалось, что молекулы ДНК содержат приблизительно 100 тыс. генов. Немного погодя цифра уменьшилась до 80 тысяч, а в 1998 г. генетиками было заявлено, что в одной ДНК присутствует только 50 тысяч генов, которые являются всего лишь 3 % всей длины ДНК. Но поразили последние заключения генетиков. Теперь они утверждают, что в геном входит 25-40 тысяч упомянутых единиц. Получается, что за кодирование белков отвечает только 1,5 % хромосомной ДНК.

На этом исследования не прекратились. Параллельная команда специалистов генной инженерии установила, что численность генов в одной молекуле составляет именно 32 тысячи. Как видите, получить окончательный ответ пока что невозможно. Слишком много противоречий. Все исследователи опираются только на свои полученные результаты.

Было ли эволюционирование?

Несмотря на то что нет никаких доказательств эволюции молекулы (так как строение молекулы ДНК хрупкое и имеет малый размер), все же учеными было высказано одно предположение. Исходя из лабораторных данных, они озвучили версию следующего содержания: молекула на начальном этапе своего появления имела вид простого самовоспроизводящегося пептида, в состав которого входило до 32 аминокислот, содержащихся в древних океанах.

После саморепликации, благодаря силам естественного отбора, у молекул появилась способность защищать себя от воздействия внешних элементов. Они стали дольше жить и воспроизводиться в больших количествах. Молекулы, нашедшие себя в липидном пузыре, получили все шансы для самовоспроизведения. В результате череды последовательных циклов липидные пузыри приобрели форму клеточных мембран, а уже далее - всем известных частиц. Следует отметить, что сегодня любой участок молекулы ДНК представляет собой сложную и четко функционирующую структуру, все особенности которой учеными до конца еще не изучены.

Современный мир

Недавно ученые из Израиля разработали компьютер, которому под силу выполнять триллионы операций в секунду. Сегодня это самая быстрая машина на Земле. Весь секрет заключается в том, что инновационное устройство функционирует от ДНК. Профессора говорят, что в ближайшей перспективе такие компьютеры смогут даже вырабатывать энергию.

Специалисты из института Вейцмана в Реховоте (Израиль) год назад заявили о создании программируемой молекулярной вычислительной машины, состоящей из молекул и ферментов. Ими они заменили микрочипы из кремния. К настоящему времени команда еще продвинулась вперед. Теперь обеспечить компьютер необходимыми данными и предоставить нужное топливо может всего одна молекула ДНК.

Биохимические «нанокомпьютеры» - это не выдумка, они уже существуют в природе и проявлены в каждом живом существе. Но зачастую они не управляются людьми. Человек пока что не может оперировать геном какого-либо растения, чтобы рассчитать, скажем, число «Пи».

Идея об использовании ДНК для хранения/обработки данных впервые посетила светлые головы ученных в 1994 году. Именно тогда для решения простой математической задачи была задействована молекула. С того момента ряд исследовательских групп предложил различные проекты, касающиеся ДНК-компьютеров. Но здесь все попытки основывались только на энергетической молекуле. Невооруженным глазом такой компьютер не увидишь, он имеет вид прозрачного раствора воды, находящегося в пробирке. В нем нет никаких механических деталей, а только триллионы биомолекулярных устройств - и это только в одной капле жидкости!

ДНК человека

Какой вид у ДНК человека, людям стало известно в 1953 году, когда ученые впервые смогли продемонстрировать миру двухцепочную модель ДНК. За это Кирк и Уотсон получили Нобелевскую премию, так как данное открытие стало фундаментальным в 20 веке.

Со временем, конечно, доказали, что не только так, как в предложенном варианте, может выглядеть структурированная молекула человека. Проведя более детальный анализ ДНК, открыли А-, В- и левозакрученную форму Z-. Форма А- зачастую является исключением, так как образуется только в том случае, если наблюдается недостаточность влаги. Но это возможно разве что при лабораторных исследованиях, для естественной среды это аномально, в живой клетке такой процесс происходить не может.

Форма В- является классической и известна как двойная правозакрученная цепь, а вот форма Z- не только закручена в обратном направлении, влево, но также имеет более зигзагообразный вид. Учеными выделена еще и форма G-квадруплекс. В ее структуре не 2, а 4 нити. По мнению генетиков, возникает такая форма на тех участках, где имеется избыточное количество гуанина.

Искусственная ДНК

Сегодня уже существует искусственная ДНК, являющаяся идентичной копией настоящей; она идеально повторяет структуру природной двойной спирали. Но, в отличие от первозданного полинуклеотида, в искусственном - всего два дополнительных нуклеотида.

Так как дубляж создавался на основе информации, полученной в ходе различных исследований настоящей ДНК, то он также может копироваться, самовоспроизводиться и эволюционировать. Над созданием такой искусственной молекулы специалисты работали около 20 лет. В результате получилось удивительное изобретение, которое может пользоваться генетическим кодом так же, как и природная ДНК.

К четырем имеющимся азотистым основаниям генетики добавили дополнительные два, которые создали методом химической модификации естественных оснований. В отличие от природной, искусственная ДНК получилась достаточно короткой. Она содержит только 81 пару оснований. Тем не менее она также размножается и эволюционирует.

Репликация молекулы, полученной искусственным путем, имеет место благодаря полимеразной цепной реакции, но пока что это происходит не самостоятельно, а через вмешательство ученых. В упомянутую ДНК они самостоятельно добавляют необходимые ферменты, помещая ее в специально подготовленную жидкую среду.

Конечный результат

На процесс и конечный итог развития ДНК могут влиять различные факторы, например мутации. Это обуславливает обязательное изучение образцов материи, чтобы результат анализов был достоверным и надежным. В качестве примера можно привести тест на отцовство. Но не может не радовать, что такие казусы, как мутация, встречаются редко. Тем не менее образцы материи всегда перепроверяют, чтобы на основе анализа получить более точную информацию.

ДНК растений

Благодаря высоким технологиям секвенирования (HTS) совершена революция и в области геномики - выделение ДНК из растений также возможно. Конечно, получение из растительного материала молекулярной массы ДНК высокого качества вызывает некоторые трудности, обусловленные большим числом копий митохондрий и хлоропластов ДНК, а также высоким уровнем полисахаридов и фенольных соединений. Для выделения рассматриваемой нами структуры в этом случае задействуются самые разные методы.

Водородная связь в ДНК

За водородную связь в молекуле ДНК отвечает электромагнитное притяжение, создаваемое между положительно заряженным атомом водорода, который присоединен к электроотрицательному атому. Данное дипольное взаимодействие не подпадает под критерий химической связи. Но она может осуществиться межмолекулярно либо в различных частях молекулы, т. е. внутримолекулярно.

Атом водорода присоединяется к электроотрицательному атому, являющемуся донором данной связи. Электроотрицательным атомом может быть азот, фтор, кислород. Он - путем децентрализации - привлекает к себе электронное облако из водородного ядра и делает атом водорода заряженным (частично) положительно. Так как размер Н маленький, по сравнению с другими молекулами и атомами, заряд получается также малым.

Расшифровка ДНК

Прежде чем расшифровать молекулу ДНК, ученные сначала берут огромное количество клеток. Для наиболее точной и успешной работы их необходимо около миллиона. Полученные в процессе изучения результаты постоянно сравнивают и фиксируют. Сегодня расшифровка генома - это уже не редкость, а доступная процедура.

Конечно, расшифровывать геном одной клетки - это нецелесообразное занятие. Полученные в ходе таких исследований данные для ученых не представляют никакого интереса. Но важно понимать, что все существующие на данный момент методы декодировки, несмотря на их сложность, недостаточно эффективны. Они позволят считывать только 40-70 % ДНК.

Однако гарвардские профессора недавно заявили о способе, благодаря которому можно расшифровать 90 % генома. Методика основана на добавлении к выделенным клеткам молекул-праймеров, с помощью них и начинается репликация ДНК. Но даже и этот метод нельзя считать успешным, его еще нужно доработать, прежде чем открыто использовать в науке.

Нуклеиновые кислоты - высокомолекулярные вещества, состоящие из мононуклеотидов, которые соединены друг с другом в полимерную цепочку с помощью 3",5"- фосфодиэфирных связей и упакованы в клетках определенным образом.

Нуклеиновые кислоты - биополимеры двух разновидностей: рибонуклеиновая кислота (РНК) и дезоксирибонуклеиновая кислота (ДНК). Каждый биополимер состоит из нуклеотидов, различающихся по углеводному остатку (рибозе, дезоксирибозе) и одному из азотистых оснований (урацил, тимин). Соответственно этим различиям нуклеиновые кислоты и получили свое название.

Структура дезоксирибонуклеиновой кислоты

Нуклеиновые кислоты имеют первичную, вторичную и третичную структуру.

Первичная структура ДНК

Первичной структурой ДНК называют линейную полинуклеотидную цепь, в которой мононуклеотиды соединены 3", 5"-фосфодиэфирными связями. Исходным материалом при сборке цепи нуклеиновой кислоты в клетке является нуклеозид 5"-трифосфат, который в результате удаления β и γ остатков фосфорной кислоты способен присоединить 3"-атом углерода другого нуклеозида. Таким образом, 3"-атом углерода одной дезоксирибозы ковалентно связывается с 5"-атомом углерода другой дезоксирибозы посредством одного остатка фосфорной кислоты и образует линейную полинуклеотидную цепь нуклеиновой кислоты. Отсюда и название: 3", 5"-фосфодиэфирные связи. Азотистые основания не принимают участия в соединении нуклеотидов одной цепи (рис. 1.).

Такое соединение, между остатком молекулы фосфорной кислоты одного нуклеотида и углеводом другого, приводит к образованию пентозо-фосфатного скелета молекулы полинуклеотида, на котором сбоку один за другим присоединяются азотистые основания. Их последовательность расположения в цепях молекул нуклеиновых кислот строго специфична для клеток разных организмов, т.е. носит видовой характер (правило Чаргаффа).

Линейная цепь ДНК, длина которой зависит от числа входящих в цепь нуклеотидов, имеет два конца: один называется 3"-концом и содержит свободный гидроксил, а другой - 5"-концом, содержит остаток фосфорной кислоты. Цепь полярна и может иметь напрвление 5"->3" и 3"->5". Исключением являются кольцевые ДНК.

Генетический "текст" ДНК составлен с помощью кодовых "слов" - триплетов нуклеотидов, называемых кодонами. Участки ДНК, содержащие информацию о первичной структуре всех типов РНК, называют структурными генами.

Полинуклеодитные цепочки ДНК достигают гигантских размеров, поэтому в клетке они упакованы определенным образом.

Изучая состав ДНК, Чаргафф (1949) установил важные закономерности, касающиеся содержания отдельных оснований ДНК. Они помогли раскрыть вторичную структуру ДНК. Эти закономерности называют правилами Чаргаффа.

Правила Чаргаффа

  1. сумма пуриновых нуклеотидов равна сумме пиримидиновых нуклеотидов, т. е. А+Г / Ц+Т = 1
  2. содержание аденина равно содержанию тимина (А = Т, или А/Т=1);
  3. содержание гуанина равно содержанию цитозина (Г = Ц, или Г/Ц = 1);
  4. количество 6-аминогрупп равно количеству 6-кетогрупп оснований, содержащихся в ДНК: Г + Т = А + Ц;
  5. изменчива только сумма А + Т и Г + Ц. Если А+Т > Г-Ц, то это АТ-тип ДНК; если Г+Ц > А+Т, то это ГЦ-тип ДНК.

Эти правила говорят о том, что при построении ДНК должно соблюдаться довольно строгое соответствие (спаривание) не пуриновых и пиримидиновых оснований вообще, а конкретно тимина с аденином и цитозина с гуанином.

На основании этих правил в том числе, в 1953 г. Уотсон и Крик предложили модель вторичной структуры ДНК, получившую название двойной спирали (рис.).

Вторичная структура ДНК

Вторичная структура ДНК - это двойная спираль, модель которой была предложена Д.Уотсоном и Ф.Криком в 1953 году.

Предпосылки к созданию модели ДНК

В результате первоначальных анализов сложилось представление, что ДНК любого происхождения содержит все четыре нуклеотида в равных молярных количествах. Однако в 1940-х годах Э. Чаргафф и его сотрудники в результате анализа ДНК, выделенных из разнообразных организмов, ясно показали, что азотистые основания содержатся в них в различных количественных соотношениях. Чаргафф нашел, что, хотя эти соотношения одинаковы для ДНК из всех клеток одного и того же вида организмов, ДНК от разных видов могут заметно различаться по содержанию тех или иных нуклеотидов. Это наводило на мысль, что различия в соотношении азотистых оснований, возможно, связаны с каким-то биологическим кодом. Хотя соотношение отдельных пуриновых и пиримидиновых оснований в различных образцах ДНК оказалось неодинаковым, при сравнении результатов анализов выявилась определенная закономерность: во всех образцах общее количество пуринов было равно общему количеству пиримидинов (А + Г = Т + Ц), количество аденина - количеству тимина (А = Т), а количество гуанина - количеству цитозина (Г = Ц). ДНК, выделенная из клеток млекопитающих, была в целом богаче аденином и тимином и относительно беднее гуанином и цитозином, тогда как у бактерий ДНК была богаче гуанином и цитозином и относительно беднее аденином и тимином. Эти данные составили важную часть фактического материала, на основе которого позднее была построена модель структуры ДНК Уотсона - Крика.

Еще одним важным косвенным указанием на возможную структуру ДНК послужили данные Л. Полинга о строении белковых молекул. Полинг показал, что возможно несколько различных устойчивых конфигураций аминокислотной цепи в белковой молекуле. Одна из распространенных конфигураций пептидной цепи - α-спираль - представляет собой правильную винтообразную структуру. При такой структуре возможно образование водородных связей между аминокислотами, находящимися на смежных витках цепи. Полинг описал α-спиральную конфигурацию полипептидной цепи в 1950 году и высказал предположение, что и молекулы ДНК, вероятно, имеют спиральную структуру, закрепленную водородными связями.

Однако наиболее ценные сведения о строении молекулы ДНК дали результаты рентгеноструктурного анализа. Рентгеновские лучи, проходя сквозь кристалл ДНК, претерпевают дифракцию, т. е. отклоняются в определенных направлениях. Степень и характер отклонения лучей зависят от структуры самих молекул. Дифракционная рентгенограмма (рис. 3) дает опытному глазу ряд косвенных указаний относительно строения молекул исследуемого вещества. Анализ дифракционных рентгенограмм ДНК привел к заключению, что азотистые основания (имеющие плоскую форму) уложены наподобие стопки тарелок. Рентгенограммы позволили выявить в структуре кристаллической ДНК три главных периода: 0,34, 2 и 3,4 нм.

Модель ДНК Уотсона-Крика

Исходя из аналитических данных Чаргаффа, рентгенограмм, полученных Уилкинсом и исследований химиков, предоставивших сведения о точных расстояниях между атомами в молекуле, об углах между связями данного атома и о величине атомов, Уотсон и Крик начали строить физические модели отдельных составных частей молекулы ДНК в определенном масштабе и "подгонять" их друг к другу с таким расчетом, чтобы полученная система соответствовала различным экспериментальным данным [показать] .

Еще раньше было известно, что в цепи ДНК соседние нуклеотиды соединены фосфодиэфирными мостиками, связывающими 5"-углеродный атом дезоксирибозы одного нуклеотида с 3"-углеродным атомом дезоксирибозы следующего нуклеотида. Уотсон и Крик не сомневались в том, что период 0,34 нм соответствует расстоянию между последовательными нуклеотидами в цепи ДНК. Далее, можно было предполагать, что период 2 нм соответствует толщине цепи. А для того чтобы объяснить, какой реальной структуре соответствует период 3,4 нм, Уотсон и Крик, так же как ранее Полинг, предположили, что цепь закручена в виде спирали (или, точнее, образует винтовую линию, так как спираль в строгом смысле этого слова получается тогда, когда витки образуют в пространстве коническую, а не цилиндрическую поверхность). Тогда период 3,4 нм будет соответствовать расстоянию между последовательными витками этой спирали. Такая спираль может быть очень плотной или же несколько растянутой, т. е. витки ее могут быть пологими или крутыми. Поскольку период 3,4 нм ровно в 10 раз больше расстояния между последовательными нуклеотидами (0,34 нм), ясно, что каждый полный виток спирали содержит 10 нуклеотидов. По этим данным Уотсон и Крик смогли вычислить плотность полинуклеотидной цепи, закрученной в спираль диаметром 2 нм, с расстоянием между витками, равным 3,4 нм. Оказалось, что у такой цепи плотность была бы вдвое меньше фактической плотности ДНК, которая была уже известна. Пришлось предположить, что молекула ДНК состоит из двух цепей - что это двойная спираль из нуклеотидов.

Следующей задачей было, конечно, выяснение пространственных отношений между обеими цепями, образующими двойную спираль. Испробовав на своей физической модели ряд вариантов расположения цепей, Уотсон и Крик нашли, что всем имеющимся данным лучше всего соответствует такой вариант, в котором две полинуклеотидные спирали идут в противоположных направлениях; при этом цепи, состоящие из остатков сахара и фосфата, образуют поверхность двойной спирали, а пурины и пиримидины располагаются внутри. Расположенные друг против друга основания, принадлежащие двум цепям, попарно соединены водородными связями; именно эти водородные связи и удерживают цепи вместе, фиксируя таким образом общую конфигурацию молекулы.

Двойную спираль ДНК можно представить себе в виде винтообразно закрученной веревочной лестницы, так чтобы перекладины ее оставались в горизонтальном положении. Тогда две продольные веревки будут соответствовать цепям из остатков сахара и фосфата, а перекладины - парам азотистых оснований, соединенных водородными связями.

В результате дальнейшего изучения возможных моделей Уотсон и Крик пришли к выводу, что каждая "перекладина" должна состоять из одного пурина и одного пиримидина; при периоде 2 нм (что соответствует диаметру двойной спирали) для двух пуринов не хватило бы места, а два пиримидина не могли бы при этом располагаться достаточно близко друг к другу, чтобы образовать надлежащие водородные связи. Углубленное исследование детальной модели показало, что аденин и цитозин, составляя подходящую по размерам комбинацию, все же не могли бы располагаться таким образом, чтобы между ними образовались водородные связи. Аналогичные сообщения заставили исключить также комбинацию гуанин - тимин, тогда как сочетания аденин - тимин и гуанин - цитозин оказались вполне приемлемыми. Природа водородных связей такова, что аденин образует пару с тимином, а гуанин - с цитозином. Это представление о специфическом спаривании оснований позволяло объяснить "правило Чаргаффа", согласно которому в любой молекуле ДНК количество аденина всегда равно содержанию тимина, а количество гуанина - количеству цитозина. Между аденином и тимином образуются две водородные связи, а между гуанином и цитозином - три. Благодаря этой специфичности в образовании водородных связей против каждого аденина в одной цепи в другой оказывается тимин; точно так же против каждого гуанина может находиться только цитозин. Таким образом, цепи комплементарны друг другу, т. е. последовательность нуклеотидов в одной цепи однозначно определяет их последовательность в другой. Две цепи идут в противоположных направлениях, и их концевые фосфатные группы находятся на противоположных концах двойной спирали.

В результате своих исследований, в 1953 году Уотсон и Крик предложили модель строения молекулы ДНК (рис. 3), которая остается актуальной по настоящее время. Согласно модели молекула ДНК состоит из двух комплементарных полинуклеотидных цепей. Каждая цепь ДНК представляет полинуклеотид, состоящий из нескольких десятков тысяч нуклеотидов. В ней соседние нуклеотиды образуют регулярный пентозо-фосфатный остов за счет соединения остатка фосфорной кислоты и дезоксирибозы прочной ковалентной связью. Азотистые основания одной полинуклеотидной цепи при этом располагаются в строго определенном порядке против азотистых оснований другой. Чередование азотистых оснований в полинуклеотидной цепи нерегулярно.

Расположение азотистых оснований в цепи ДНК является комплементарным (от греч. "комплемент" - дополнение), т.е. против аденина (А) всегда оказывается тимин (Т), а против гуанина (Г) - только цитозин (Ц). Это объясняется тем, что А и Т, а также Г и Ц строго соответствуют друг другу, т.е. дополняют друг другу. Такое соответствие задается химической структурой оснований, позволяющей образовать водородные связи в паре пурина и пиримидина. Между А и Т возникают две связи, между Г и Ц - три. Эти связи обеспечивают частичную стабилизацию молекулы ДНК в пространстве. Устойчивость двойной спирали при этом прямо пропорциональна числу связей G≡С, являющихся более стабильными по сравнению со связями А=Т.

Известная последовательность расположения нуклеотидов в одной цепи ДНК позволяет по принципу комплементарности установить нуклеотиды другой цепи.

Кроме того, установлено, что азотистые основания, имеющие ароматическую структуру, в водном растворе располагаются один над другим, формируя как бы стопку монет. Такой процесс формирования стопок из органических молекул называется стекинг. Полинуклеотидные цепи молекулы ДНК рассматриваемой модели Уотсона-Крика имеют аналогичное физико-химическое состояние, их азотистые основания располагаются в виде стопки монет, между плоскостями которых возникают ван-дер-ваальсовы взаимодействия (стекинг-взаимодействия).

Водородные связи между комплементарными основаниями (по горизонтали) и стекинг-взаимодействие между плоскостями оснований в полинуклеотидной цепи за счет ван-дер-ваальсовых сил (по вертикали) обеспечивает молекуле ДНК дополнительную стабилизацию в пространстве.

Сахарофосфатные остовы обеих цепей обращены наружу, а основания внутрь, навстречу друг другу. Направление цепей в ДНК антипараллельно (одна из них имеет направление 5"->3", другая - 3"->5", т.е. 3"-конец одной цепи расположен напротив 5"-конца другой.). Цепи образуют правые спирали с общей осью. Один виток спирали составляет 10 нуклеотидов, размер витка 3,4 нм, высота каждого нуклеотида 0,34 нм, диаметр спирали – 2,0 нм. В результате вращения одной цепи вокруг другой, образуется большая борозда (диаметром около 20 Å) и малая борозда (около 12 Å) двойной спирали ДНК. Такая форма двойной спирали Уотсона-Крика в дальнейшем получила название В-формы. В клетках ДНК обычно существует в В-форме, которая является самой стабильной.

Функции ДНК

Предложенная модель объясняла многие биологические свойства дезоксирибонуклеиновой кислоты, в том числе хранение генетической информации и многообразие генов, обеспечиваемое большим разнообразием последовательных сочетаний 4-х нуклеотидов и фактом существования генетического кода, способность к самовоспроизведению и передаче генетической информации, обеспечиваемое процессом репликации, и реализацию генетической информации в виде белков, а также любых других соединений, образующихся с помощью белков-ферментов.

Oсновные функции ДНК.

  1. ДНК является носителем генетической информации, что обеспечивается фактом существования генетического кода.
  2. Воспроизведение и передана генетической информации в поколениях клеток и организмов. Эта функция обеспечивается процессом репликации.
  3. Реализация генетической информации в виде белков, а также любых других соединений, образующихся с помощью белков-ферментов. Эта функция обеспечивается процессами транскрипции и трансляции.

Формы организации двухцепочечной ДНК

ДНК может формировать несколько типов двойных спиралей (рис.4). В настоящее время уже известно шесть форм (от А до Е и Z-форма).

Структурные формы ДНК, как установила Розалинда Франклин, зависят от насыщения водой молекулы нуклеиновой кислоты. В исследованиях волокон ДНК при помощи рентгеноструктурного анализа было показано, что рентгенограмма радикальным образом зависит от того, при какой относительной влажности, при какой степени насыщения водой этого волокна происходит эксперимент. Если волокно было достаточно насыщено водой, то получалась одна рентгенограмма. При высушивании возникала совершенно другая рентгенограмма, сильно отличающаяся от рентгенограммы волокна высокой влажности.

Молекула ДНК высокой влажности получила название В-формы . При физиологических условиях (низкая концентрация соли, высокая степерь гидратации) доминирующим структурным типом ДНК является В-форма (основная форма двухцепочечной ДНК - модель Уотсона-Крика). Шаг спирали такой молекулы равен 3,4 нм. На виток приходится 10 комплементарных пар в виде скрученных стопок "монет" - азотистых оснований. Стопки удерживаются водородными связями между двумя противолежащими "монетами" стопок, и "обмотаны" двумя лентами фосфодиэфирного остова, закрученными в правую спираль. Плоскости азотистых оснований перпендикулярны оси спирали. Соседние комплементарные пары повернуты друг относительно друга на 36°. Диаметр спирали 20Å, причем пуриновый нуклеотид занимает 12Å, а пиримидиновый - 8Å.

Молекула ДНК более низкой влажности получила название А-формы . А-форма образуется в условиях менее высокой гидратации и при более высоком содержании ионов Na + или К + . Эта более широкая правоспиральная конформация имеет 11 пар азотистых оснований на виток. Плоскости азотистых оснований имеют более сильный наклон к оси спирали, они отклонены от нормали к оси спирали на 20°. Отсюда следует наличие внутренней пустоты диаметром 5Å. Расстояние между соседними нуклеотидами составляет 0,23 нм, длина витка – 2,5 нм, диаметр спирали – 2,3 нм.

Первоначально считали, что А-форма ДНК менее важна. Однако в дальнейшем выяснилось, что А-форма ДНК, также как и В-форма, имеет огромное биологическое значение. А-форму имеет спираль РНК-ДНК в комплексе матрица-затравка, а также спираль РНК-РНК и шпилечные структуры РНК (2’-гидроксильная группа рибозы не позволяет молекулам РНК образовывать В-форму). А-форма ДНК обнаружена в спорах. Установлено, что А-форма ДНК в 10 раз устойчивее к действию УФ-лучей, чем В-форма.

А-форму и В-форму называют каноническими формами ДНК.

Формы С-Е также правоспиральные, их образование можно наблюдать только в специальных экспериментах, и, по-видимому, они не существуют in vivo. С-форма ДНК имеет структуру, сходную с В-ДНК. Число пар оснований на виток составляет 9,33, длина витка спирали равна 3,1 нм. Пары оснований наклонены на угол 8 градусов относительно перпендикулярного положения к оси. Желобки по размерам близки к желобкам В-ДНК. При этом главный желобок несколько мельче, а минорный желобок – глубже. В С-форму могут переходить природные и синтетические полинуклеотиды ДНК.

Таблица 1. Характеристика некоторых типов структур ДНК
Тип спирали A B Z
Шаг спирали 0,32 нм 3,38 нм 4,46 нм
Закрученность спирали Правая Правая Левая
Число пар оснований на виток 11 10 12
Расстояние между плоскостями оснований 0,256 нм 0,338 нм 0,371 нм
Конформация гликозидной связи анти анти анти-С
син-Г
Конформация фуранозного цикла С3"-эндо С2"-эндо С3"-эндо-Г
С2"-эндо-Ц
Ширина бороздки, малой/большой 1,11/0,22 нм 0,57/1,17 нм 0,2/0,88 нм
Глубина бороздки, малой/большой 0,26/1,30 нм 0,82/0,85 нм 1,38/0,37 нм
Диаметр спирали 2,3 нм 2,0 нм 1,8 нм

Структурные элементы ДНК
(неканонические структуры ДНК)

К структурным элементам ДНК можно отнести необычные структуры, ограниченные какими-то специальными последовательностями:

  1. Z-форма ДНК - образуется в местах В-формы ДНК, где пурины чередуются с пиримидинами или в повторах, содержащих метилированный цитозин.
  2. Палиндромы - последовательности-перевертыши, инвертированные повторы последовательностей оснований, имеющие симметрию второго порядка относительно двух цепей ДНК и образующие "шпильки" и "кресты".
  3. H-форма ДНК и тройные спирали ДНК - образуются при наличии в одной цепи нормального Уотсон-Криковского дуплекса участка, содержащего только пурины, и во второй цепи, соответственно, комплементарные им пиримидины.
  4. G-квадруплекс (G-4) - четырехцепочечная спираль ДНК, где 4 гуаниновых основания из разных цепей образуют G-квартеты (G-тетрады), скрепленные водородными связами с образованием G-квадруплексов.

Z-форма ДНК была открыта в 1979 году при изучении гексануклеотида d(CG)3 - . Ее открыл профессор Массачусетского технологического института Александр Рич с сотрудниками. Z-форма стала одним из важнейших структурных элементов ДНК в связи с тем, что ее образование наблюдалось в участках ДНК, где пурины чередуются с пиримидинами (например, 5’-ГЦГЦГЦ-3’), или в повторах 5’-ЦГЦГЦГ-3’, содержащих метилированный цитозин. Существенным условием образования и стабилизации Z-ДНК являлось присутствие в ней пуриновых нуклеотидов в син-конформации, чередующихся с пиримидиновыми основаниями в анти-конформации.

Природные молекулы ДНК в основном существуют в правой В-форме, если они не содержат последовательностей типа (ЦГ)n. Однако, если такие последовательности входят в состав ДНК, то эти участки при изменении ионной силы раствора или катионов, нейтрализующих отрицательный заряд на фосфодиэфирном каркасе, могут переходить в Z-форму, при этом другие участки ДНК в цепи остаются в классической В-форме. Возможность такого перехода указывает на то, что две цепи в двойной спирали ДНК находятся в динамическом состоянии и могут раскручиваться друг относительно друга, переходя из правой формы в левую и наоборот. Биологические следствия такой лабильности, допускающей конформационные превращения структуры ДНК пока не вполне понятны. Полагают, что участки Z-ДНК играют определенную роль в регуляции экспрессии некоторых генов и принимают участие в генетической рекомбинации.

Z-форма ДНК - это левозакрученная двойная спираль, в которой фосфодиэфирный остов расположен зигзагообразно вдоль оси молекулы. Отсюда и название молекулы (zigzag)-ДHK. Z-ДНК - наименее скрученная (12 пар оснований на виток) и наиболее тонкая из известных в природе. Расстояние между соседними нуклеотидами составляет 0,38 нм, длина витка – 4,56 нм, диаметр Z-ДНК – 1,8 нм. Кроме того, внешний вид этой молекулы ДНК отличается наличием одной бороздки.

Z-форма ДНК была обнаружена в клетках прокариот и эукариот. В настоящее время получены антитела, способные отличать Z-форму от В-формы ДНК. Эти антитела связываются с определенными участками гигантских хромосом клеток слюнных желез дрозофилы (Dr. melanogaster). За реакцией связывания легко следить из-за необычного строения этих хромосом, у которых более плотные участки (диски) контрастируют с менее плотными (междисками). Участки Z-ДНК расположены в междисках. Из этого следует, что Z-форма реально существует в естественных условиях, хотя размеры индивидуальных участков Z-формы пока неизвестны.

(перевертыши) - наиболее известные и часто встречающиеся в ДНК последовательности оснований. Палиндромом называют слово или фразу, которое читается слева направо и наоборот одинаково. Примерами таких слов или фраз являются: ШАЛАШ, КАЗАК, ПОТОП, А РОЗА УПАЛА НА ЛАПУ АЗОРА. В применении к участкам ДНК данный термин (палиндром) означает одинаковое чередование нуклеотидов вдоль цепи справа налево и слева направо (подобно буквам в слове "шалаш" и пр.).

Палиндром характеризуется наличием инвертированных повторов последовательностей оснований имеющих симметрию второго порядка относительно двух цепей ДНК. Такие последовательности, по вполне понятной причине, являются самокомплементарными и имеют склонность к образованию шпилечных или крестообразных структур (рис.). Шпильки помогают регуляторным белкам узнавать место списывания генетического текста ДНК хромосом.

В тех случаях, когда инвертированный повтор присутствует в одной и той же цепи ДНК такая последовательность называется зеркальным повтором. Зеркальные повторы не обладают свойствами самокомплементарности и, поэтому не способны к формированию шпилечных или крестообразных структур. Последовательности такого типа обнаружены практически во всех крупных молекулах ДНК и могут включать от всего нескольких пар оснований до нескольких тысяч пар оснований.

Присутствие палиндромов в виде крестообразных структур в эукариотических клетках не доказано, хотя некоторое количество крестообразных структур обнаружено в условиях in vivo в клетках E. coli. Наличие в составе РНК или одноцепочечных ДНК самокомплементарных последовательностей служит основной причиной сворачивания в растворах нуклеиновой цепи в определенную пространственную структуру, отличающуюся формированием множества "шпилек".

Н-форма ДНК - это спираль, которую образуют три цепи ДНК - тройная спираль ДНК. Представляет собой комплекс уотсон-криковской двойной спирали с третьей одноцепочечной нитью ДНК, которая укладывается в ее большой желобок, с образованием так называемой хугстиновской пары.

Образование подобного триплекса происходит в результате сложения двойной спирали ДНК таким образом, что половина ее участка остается в виде двойной спирали, а вторая половина разъединяется. При этом одна из разъединенных спиралей образует новую структуру с первой половиной двойной спирали - тройную спираль, а вторая оказывается неструктурированной, в виде однонитевого участка. Особенностью этого структурного перехода является резкая зависимость от рН среды, протоны которой стабилизируют новую структуру. В силу этой особенности новая структура получила название Н-формы ДНК, образование которой было обнаружено в сверхспирализованных плазмидах, содержащих гомопурин-гомопиримидиновые участки, представляющие собой зеркальный повтор.

В дальнейших исследованиях была установлена возможность осуществления структурного перехода некоторых гомопурин-гомопиримидиновых двунитиевых полинуклеотидов с образованием трехнитиевой структуры, содержащей:

  • одну гомопуриновую и две гомопиримидиновые нити (Py-Pu-Py триплекс ) [хугстиновское взаимодействие].

    Составляющие блоки Py-Pu-Py триплекса - канонические изоморфные CGC+ и TAT триады. Стабилизация триплекса требует протонирования триады CGC+, поэтому эти триплексы зависят от рН раствора.

  • одну гомопиримидиновую и две гомопуриновые нити (Py-Pu-Pu триплекс ) [обратное хугстиновское взаимодействие].

    Составляющие блоки Py-Pu-Pu триплекса - канонические изоморфные CGG и TAA триад. Существенным свойством Py-Pu-Pu триплексов является зависимость их стабильности от присутствия двухзарядных ионов, причем для стабилизации триплексов разной последовательности необходимы различные ионы. Поскольку для образования Py-Pu-Pu триплексов не требуется протонирования входящих в их состав нуклеотидов, такие триплексы могут существовать при нейтральных pH.

    Прим.: прямое и обратное хугстиновское взаимодействие объясняется симметрией 1-метилтимина: поворот на 180° приводит к тому, что место атома О4 занимает атом О2, при этом система водородных связей сохраняется.

Известны два вида тройных спиралей:

  1. параллельные тройные спирали, в которых полярность третьей цепи совпадает с полярностью гомопуриновой цепи Уотсон-криковского дуплекса
  2. антипараллельные тройные спирали, в которых полярности третьей и гомопуриновой цепей противоположны.
Химически гомологичные цепи как в Py-Pu-Pu, так и в Py-Pu-Py триплексах, находятся в антипараллельной ориентации. Это в дальнейшем было подтверждено данными ЯМР спектроскопии.

G-квадруплекс - 4-х спиральная ДНК. Такая структура образуется в случае, если имеются четыри гуанина, которые образуют так называемый G-квадруплекс - хоровод из четырех гуанинов.

Первые намеки на возможность образования таких структур были получены задолго до прорывной работы Уотсона и Крика - еще в 1910 году. Тогда немецкий химик Ивар Банг обнаружил, что один из компонентов ДНК - гуанозиновая кислота - при высоких концентрациях образует гели, в то время как другие составные части ДНК таким свойством не обладают.

В 1962 году с помощью рентгеноструктурного метода удалось установить структуру ячейки этого геля. Она оказалась составлена из четырех остатков гуанина, связывающих друг друга по кругу и образующих характерный квадрат. В центре связь поддерживает ион металла (Na, K, Mg). Такие же структуры могут образовываться и в ДНК, если в ней много гуанина. Эти плоские квадраты (G-квартеты) складываются в стопки, и получаются довольно устойчивые, плотные структуры (G-квадруплексы).

В четырехспиральные комплексы могут сплетаться четыре отдельные цепочки ДНК, но это скорее является исключением. Чаще единственная нить нуклеиновой кислоты просто завязывается в узел, образуя характерные утолщения (например, на концах хромосом), либо двуцепочечная ДНК на каком-то богатом гуанином участке образует локальный квадруплекс.

Наиболее изучено существование квадруплексов на концах хромосом - на теломерах и в онкопромоторах. Однако до сих пор полное представление о локализации такой ДНК в человеческих хромосомах не известно.

Все эти необычные структуры ДНК в линейной форме нестабильны по сравнению с В-формой ДНК. Однако ДНК часто существует в кольцевой форме топологического напряжения, когда у нее имеется так называемая сверхспирализация. В этих условиях легко образуются неканонические структуры ДНК: Z-формы, "кресты" и "шпильки", H-формы, гуаниновые квадруплексы и i-мотив.

  • Суперспирализированная форма - отмечается при выделении из ядра клетки без повреждения пентозо-фосфатного остова. Имеет форму сверхскрученных замкнутых колец. В сверхскрученном состоянии двойная спираль ДНК хотя бы один раз "перекручена сама на себя", т. е. содержит хотя бы один супервиток (принимает форму восьмерки).
  • Релаксированное состояние ДНК - наблюдается при одиночном разрыве (разрыве одной нити). При этом супервитки исчезают и ДНК принимает форму замкнутого кольца.
  • Линейная форма ДНК - наблюдается при разрыве двух нитей двойной спирали.
Все три перечисленные формы ДНК легко разделяются при гельэлекрофорезе.

Третичная структура ДНК

Третичная структура ДНК образуется в результате дополнительного скручивания в пространстве двуспиральной молекулы - ее суперспирализации. Суперспирализации молекулы ДНК в эукариотических клетках в отличие от прокариот осуществляется в форме комплексов с белками.

ДНК эукариот почти вся находится в хромосомах ядер, лишь небольшое количество ее содержится в митохондриях, а у растений и в пластидах. Основное вещество хромосом эукариотических клеток (в том числе и хромосом человека) - это хроматин, состоящий из двухцепочечной ДНК, гистоновых и негистоновых белков.

Гистоновые белки хроматина

Гистоны - простые белки, составляют до 50% хроматина. Во всех изученных клетках животных и растений обнаружено пять основных классов гистонов: H1, H2A, H2B, H3, H4, различающихся по размерам, аминокислотному составу и величине заряда (всегда положительный).

Гистон Н1 млекопитающих состоит из одной полипептидной цепи, содержащей примерно 215 аминокислот; размеры других же гистонов варьируют от 100 до 135 аминокислот. Все они спирализованы и скручены в глобулу диаметром около 2,5 нм, содержат необычно большое количество положительно заряженных аминокислот лизина и аргинина. Гистоны могут быть ацетилированы, метилированы, фосфорилированы, поли(АДФ)-рибозилированы, а гистоны Н2А и Н2В – ковалентно связаны с убиквитином. Какова роль таких модификаций в становлении структуры и выполнении функций гистонами до конца пока не выяснено. Предполагается, что в этом заключается их способность взаимодействовать с ДНК и обеспечивать один из механизмов регуляции действия генов.

Гистоны взаимодействуют с ДНК в основном через ионные связи (солевые мостики), образующиеся между отрицательно заряженными фосфатными группами ДНК и положительно заряженными лизиновыми и аргининовыми остатками гистонов.

Негистоновые белки хроматина

Негистоновые белки в отличие от гистонов очень разнообразны. Выделено до 590 разных фракций ДНК-связывающих негистоновых белков. Их еще называют кислыми белками, так как в их структуре преобладают кислые аминокислоты (они являются полианионами). С разнообразием негистоновых белков связывают специфическую регуляцию активности хроматина. Например ферменты, необходимые для репликации и экспрессии ДНК, могут связываться с хроматином временно. Другие белки, скажем, принимающие участие в различных процессах регуляции, связываются с ДНК только в специфических тканях или на определенных стадиях дифференциации. Каждый белок комплементарен определённой последовательности нуклеотидов ДНК (сайт ДНК). К этой группе относят:

  • семейство сайт-специфических белков типа "цинковые пальцы". Каждый "цинковый палец" узнаёт определённый сайт, состоящий из 5 нуклеотидных пар.
  • семейство сайт-специфических белков - гомодимеры. Фрагмент такого белка, контактирующий с ДНК, имеет структуру "спираль-поворот-спираль".
  • белки высокой подвижности (HMG-белки - от англ, high mobility gel proteins) - группа структурных и регуляторных белков, которые постоянно ассоциированы с хроматином. Они имеют молекулярную массу менее 30 кД и характеризуются высоким содержанием заряженных аминокислот. Благодаря небольшой молекулярной массе HMG-белки обладают высокой подвижностью при электрофорезе в полиакриламидном геле.
  • ферменты репликации, транскрипции и репарации.

При участии структурных, регуляторных белков и ферментов, участвующих в синтезе ДНК и РНК, нить нуклеосом преобразуется в высококонденсированный комплекс белков и ДНК. Образованная структура в 10 000 раз короче исходной молекулы ДНК.

Хроматин

Хроматин - это комплекс белков с ядерной ДНК и неорганическими веществами. Основная часть хроматина неактивна. Она содержит плотно упакованную, конденсированную ДНК. Это гетерохроматин. Различают конститутивный, генетически неактивный хроматин (сателлитная ДНК) состоящий из неэкспрессируемых областей, и факультативный - неактивный в ряду поколений, но при определенных обстоятельствах способный эспрессировать.

Активный хроматин (эухроматин) неконденсированный, т.е. упакован менее плотно. В разных клетках его содержание составляет от 2 до 11%. В клетках головного мозга его больше всего - 10-11%, в клетках печени - 3-4 и почек - 2-3%. Отмечается активная транскрипция эухроматина. При этом его структурная организация позволяет использовать одну и ту же генетическую информацию ДНК, присущую данному виду организма, по-разному в специализированных клетках.

В электронном микроскопе изображение хроматина напоминает бусы: шаровидные утолщения размером около 10 нм, разделенные нитевидными перемычками. Эти шаровидные утолщения названы нуклеосомами. Нуклеосома является структурной единицей хроматина. Каждая нуклеосома содержит сверхспиральный сегмент ДНК длиной 146 пар нуклеотидов, намотанный с образованием 1,75 левых витков на нуклеосомный кор. Нуклеосомный кор – это гистоновый октамер, состоящий из гистонов Н2А, Н2В, Н3 и Н4, по две молекулы каждого вида (рис. 9), который выглядит как диск диаметром 11 нм и толщиной 5,7 нм. Пятый гистон, Н1, не входит в состав нуклеосомного кора и не участвует в процессе наматывания ДНК на гистоновый октамер. Он контактирует с ДНК в тех местах, где двойная спираль входит и выходит из нуклеосомного кора. Это межкоровые (линкерные) участки ДНК, длина которых варьирует в зависимости от типа клеток от 40 до 50 нуклеотидных пар. В результате этого варьирует и длина фрагмента ДНК, входящего в состав нуклеосом (от 186 до 196 нуклеотидных пар).

В состав нуклеосом входит примерно 90% ДНК, остальная ее часть приходится на линкер. Считается, что нуклеосомы - это фрагменты "молчащего" хроматина, а линкер - активного. Однако нуклеосомы могут развертываться и переходить в линейную форму. Развернутые нуклеосомы являются уже активным хроматином. Так наглядно проявляется зависимость функции от структуры. Можно считать, что чем больше хроматина находится в составе глобулярных нуклеосом, тем менее он активен. Очевидно, в разных клетках неодинаковая доля покоящегося хроматина связана с количеством таких нуклеосом.

На электронно-микроскопических фотографиях в зависимости от условий выделения и степени растяжения хроматин может выглядеть не только как длинная нить с утолщениями – "бусинками" нуклеосом, но и как более короткая и более плотная фибрилла (волокно) диаметром 30 нм, образование которой наблюдается при взаимодействии гистона Н1, связанного с линкерным участком ДНК и гистона Н3, что приводит к дополнительному скручиванию спирали из шести нуклеосом на виток с образованием соленоида диаметром 30 нм. При этом гистоновый белок может препятствовать транскрипции ряда генов и таким образом регулировать их активность.

В результате описанных выше взаимодействий ДНК с гистонами сегмент двойной спирали ДНК из 186 пар оснований со средним диаметром 2 нм и длиной 57 нм превращается в спираль диаметром 10 нм и длиной 5 нм. При последующем сжатии этой спирали до волокна диаметром 30 нм степень конденсации увеличивается еще в шесть раз.

В конечном итоге упаковка дуплекса ДНК с пятью гистонами приводит к 50-кратной конденсации ДНК. Однако даже столь высокая степень конденсации не может объяснить почти 50 000 - 100 000-кратное уплотнение ДНК в метафазной хромосоме. К сожалению детали дальнейшей упаковки хроматина вплоть до метафазной хромосомы пока не известны, поэтому можно рассматривать лишь общие особенности этого процесса.

Уровни компактизации ДНК в хромосомах

Каждая молекула ДНК упакована в отдельную хромосому. В диплоидных клетках человека содержится 46 хромосом, которые располагаются в ядре клетки. Общая длина ДНК всех хромосом клетки составляет 1,74 м, однако диаметр ядра, в которое упакованы хромосомы, в миллионы раз меньше. Такая компактная укладка ДНК в хромосомах и хромосом в ядре клетки обеспечивается разнообразными, гистоновыми и негистоновыми белками, взаимодействующими в определенной последовательности с ДНК (см выше). Компактизация ДНК в хромосомах позволяет уменьшить ее линейные размеры примерно в 10 000 раз - условно с 5 см до 5 мкм. Выделяют несколько уровней компактизации (рис. 10).

  • двойная спираль ДНК - отрицательно заряженная молекула диаметром 2 нм и длиной несколько см.
  • нуклеосомный уровень - хроматин выглядит в электронном микроскопе как цепочка "бусин" – нуклеосом - "на нити". Нуклеосома - это универсальная структурная единица, которая обнаруживается как в эухроматине, так и в гетерохроматине, в интерфазном ядре и метафазных хромосомах.

    Нуклеосомный уровень компактизации обеспечивается специальными белками - гистонами. Восемь положительно заряженных гистоновых доменов образуют кор (сердцевину) нуклеосомы на которую наматывается отрицательно заряженная молекула ДНК. Это дает укорочение в 7 раз, при этом диаметр увеличивается с 2 до 11 нм.

  • соленоидный уровень

    Соленоидный уровень организации хромосом характеризуется скручиванием нуклеосомной нити и образованием из нее более толстых фибрилл 20-35 нм в диаметре - соленоидов или супербидов. Шаг соленоида равен 11 нм, на один виток приходится около 6-10 нуклеосом. Соленоидная упаковка считается наиболее вероятной, чем супербидная, согласно которой фибрилла хроматина диаметром 20-35 нм представляет собой цепь гранул, или супербидов, каждая из которых состоит из восьми нуклеосом. На соленоидном уровне линейный размер ДНК сокращается в 6-10 раз, диаметр увеличивается до 30 нм.

  • петлевой уровень

    Петлевой уровень обеспечивается негистоновыми сайт-специфическими ДНК-связывающими белками, которые распознают определенные последовательности ДНК и связываются с ними, образуя петли примерно по 30-300 тысяч пар оснований. Петля обеспечивает экспрессию генов, т.е. петля является не только структурным, но и функциональным образованием. Укорочение на этом уровне происходит в 20-30 раз. Диаметр увеличивается до 300 нм. Петлеобразные структуры типа "ламповых щеток" в ооцитах земноводных можно видеть на цитологических препаратах. Эти петли, видимо, суперспирализованы и представляют собой домены ДНК, соответствующие, вероятно, единицам транскрипции и репликации хроматина. Специфические белки фиксируют основания петель и, возможно, некоторые их внутренние участки. Петлеобразная доменная организация способствует укладке хроматина в метафазных хромосомах в спиральные структуры более высоких порядков.

  • доменный уровень

    Доменный уровень организации хромосом изучен недостаточно. На данном уровне отмечается образование петлевых доменов - структур из нитей (фибрилл) толщиной 25-30 нм, которые содержат 60% белка, 35% ДНК и 5% РНК, практически не видны во всех фазах клеточного цикла за исключением митоза и несколько беспорядочно распределены по клеточному ядру. Петлеобразные структуры типа "ламповых щеток" в ооцитах земноводных можно видеть на цитологических препаратах.

    Петлевые домены своим основанием прикрепляются к внутриядерному белковому матриксу в так называемых встроенных местах прикрепления, часто обозначаемых как MAR/SAR-последовательности (MAR, от англ. matrix associated region; SAR, от англ. scaffold attachment regions) – фрагментах ДНК протяженностью в несколько сотен пар оснований, которые характеризуются высоким содержанием (>65%) А/Т пар нуклеотидов. Каждый домен, по-видимому, имеет одну точку начала репликации и функционирует как автономная сверхспиральная единица. Любой петельный домен содержит множество единиц транскрипции, функционирование которых, вероятно, координируется – весь домен находиться либо в активном, либо в неактивном состоянии.

    На доменном уровне в результате последовательной упаковки хроматина присходит уменьшение линейных размеров ДНК примерно в 200 раз (700 нм).

  • хромосомный уровень

    На хромосомном уровне происходит конденсация профазной хромосомы в метафазную с уплотнением петельных доменов вокруг осевого каркаса негистоновых белков. Эта суперспирализация сопровождается фосфорилированием в клетке всех молекул H1. В результате метафазную хромосому можно изобразить в виде плотно уложенных соленоидных петель, свернутых в тугую спираль. Типичная хромосома человека может содержать до 2600 петель. Толщина такой структуры достигает 1400 нм (две хроматиды), а молекула ДНК при этом укорачивается в 104 раз, т.е. с 5 см растянутой ДНК до 5 мкм.

Функции хромосом

Во взаимодействии с внехромосомными механизмами хромосомы обеспечивают

  1. хранение наследственной информации
  2. использование этой информации для создания и поддержания клеточной организации
  3. регуляцию считывания наследственной информации
  4. самоудвоение генетического материала
  5. передачу генетического материала от материнской клетки дочерним.

Существуют данные, что при активировании участка хроматина, т.е. при транскрипции, с него обратимо удаляются сначала гистон H1, а затем и октет гистонов. Это вызывает деконденсацию хроматина, последовательный переход 30-нанометровой фибриллы хроматина в 10-нанометровую нить и ее дальнейшее разворачивание в участки свободной ДНК, т.е. утрату нуклеосомной структуры.