Современная зондовая микроскопия. Теоретические основы Обобщенная структурная схема сканирующего зондового микроскопа

Сканирующая зондовая микроскопия

Основные физические принципы сканирующей зондовой микроскопии:

Общей чертой всех сканирующих зондовых микроскопов (и определяющей их название) является наличие микроскопического зонда, который приводится в контакт (не всегда речь идет о механическом контакте) с исследуемой поверхностью и, в процессе сканирования, перемещается по некоторому участку поверхности заданного размера.

Контакт зонда и образца подразумевает их взаимодействие. Выбирается какое-либо одно рабочее взаимодействие. Природа этого выбранного взаимодействия и определяет принадлежность прибора к тому или иному типу в рамках семейства зондовых микроскопов. Информация о поверхности извлекается путем фиксации (при помощи системы обратной связи) или детектирования взаимодействия зонда и образца.

В туннельном микроскопе это взаимодействие проявляется в протекании постоянного тока в туннельном контакте. В основе атомно-силовой микроскопии лежит взаимодействие зонда и образца с силами притяжения или отталкивания. Можно упомянуть о таких разновидностях зондовых микроскопов, как магнитно-силовой микроскоп (зонд и образец взаимодействуют с магнитными силами), микроскоп ближнего поля (оптические свойства образца детектируются через миниатюрную диафрагму, находящуюся в ближней зоне источника фотонов), поляризационный силовой микроскоп (с образцом взаимодействует проводящий заряженный зонд) и т.д.

Туннельная, атомно-силовая зондовая микроскопия, оптическая микроскопия ближнего поля. Информативные возможности и пространственное разрешение.

Туннельная: Принцип работы туннельного микроскопа основан на прохождении электроном потенциального барьера, который образован разрывом электрической цепи - небольшим промежутком между зондирующим микроострием и поверхностью образца. В основе работы прибора лежит хорошо известный феномен электронного туннелирования (туннельный эффект). Между металлическим острием и поверхностью исследуемого проводника прикладывают электрическое напряжение (типичные значения напряжений: от единиц мВ до В) и острие приближают к поверхности образца до появления туннельного тока. Устойчивые изображения многих поверхностей можно получать при величине туннельного тока в 10-9 А, т.е. в 1 нА. При этом острие оказывается вблизи поверхности на расстоянии в доли нанометра. Для получения изображения поверхности металлическое острие перемещают над поверхностью образца, поддерживая постоянной величину туннельного тока. При этом траектория движения острия по сути дела совпадает с профилем поверхности, острие огибает возвышенности и отслеживает углубления. Важной деталью сканирующего туннельного микроскопа является механический манипулятор, который обеспечивает перемещение зонда над поверхностью с точностью до тысячных долей нанометра. Традиционно механический манипулятор изготавливают из пьезокерамического материала.

Атомно-силовая: В атомно-силовом микроскопе взаимодействие является силовым взаимодействием зонда и образца.Атомное разрешение на проводящих и непроводящих поверхностях. В случае исследований незаряженных поверхностей в естественной атмосфере (на воздухе) основной вклад в силовое взаимодействие зонда и образца дают: силы отталкивания, вызванные механическим контактом крайних атомов зонда и образца, силы Ван-дер-Ваальса, а также капиллярные силы, связанные с наличием пленки адсорбата (воды) на поверхности образца.

Деление АСМ по способу измерения и фиксации силового взаимодействия зонда и образца позволяет выделить два основных случая: контактная атомно-силовая микроскопия и АСМ прерывистого контакта.

Оптическая микроскопия ближнего поля: оптические изображения с продольным разрешением в 50 нм. Обеспечивает разрешение лучшее, чем у обычного оптического микроскопа. Повышение разрешения БОМа достигается детектированием рассеяния света от изучаемого объекта на расстояниях меньших, чем длина волны света. В случае, если зонд (детектор) микроскопа ближнего поля снабжен устройством пространственного сканирования, то такой прибор называют сканирующим оптическим микроскопом ближнего поля. Такой микроскоп позволяет получать растровые изображения поверхностей и объектов с разрешением ниже дифракционного предела.

Если в качестве зонда взять миниатюрную диафрагму с отверстием в несколько нанометров - апертуру, то в соответствии с законами волновой оптики, видимый свет (с длиной волны несколько сот нанометров) проникает в такое маленькое отверстие, но не далеко, а на расстояние, сопоставимое с размерами отверстия. Если в пределах этого расстояния, в так называемом «ближнем поле», поставить образец, рассеянный от него свет будет регистрироваться. Перемещая диафрагму в непосредственной близости от образца, как в туннельном микроскопе, получим растровое изображение поверхности. Позднее были разработаны ближнепольные микроскопы не использующие апертуру - безапертурный СБОМ.

Уникальность ближнепольной оптической микроскопии по сравнению с другими сканирующими методами состоит в том, что изображение строится непосредственно в оптическом диапазоне, в том числе видимого света, однако разрешение многократно превышает разрешение традиционных оптических систем.

(В качестве зонда фигурирует оптическое волокно с миниатюрной диафрагмой. При сканировании образца манипулятор перемещает диафрагму вблизи поверхности. Излучение лазерного источника, проходя через диафрагму, освещает исследуемую поверхность. В микроскопе такой конструкции регистрируют рассеянный или переизлученный свет. В результате того, что рассеяние света происходит в ближней зоне (на расстоянии от излучающей диафрагмы меньшем, чем длина волны света), удается преодолеть принципиальное ограничение обычной оптической микроскопии по разрешающей способности: становятся заметными детали поверхности размером в десятки нанометров.)

Основные элементы сканирующего зондового микроскопа.

Кантилевер, зонд (для каждой микроскопии свой), механический манипулятор, лазер, фотодиод, система обратной связи. Если проще: зонд, система перемещения, регистрирующая система.

Применение при исследовании нанообъектов и линейных измерениях в нанодиапазоне.

Наиболее яркими демонстрациями возможностей этого экспериментального направления при исследовании поверхностей твердых тел могут служить: результаты по прямой визуализации поверхностной реконструкции, манипуляция отдельными атомами для записи информации с рекордной плотностью, исследование локального влияния поверхностных дефектов на зонную структуру образца и пр.

Новые возможности рассматриваемого направления в сравнении с традиционными методами исследования поверхности делают особенно перспективным применение зондовой микроскопии (в частности атомно-силовой микроскопии (АСМ) для изучения биологических и органических материалов. На этом пути в последние годы также был достигнут значительный прогресс. В частности, применительно к исследованиям нуклеиновых кислот, можно упомянуть о таких результатах, как визуализация отдельных молекул ДНК и исследование их конформационного состояния в жидких средах, прямое измерение сил взаимодействия комплементарных нуклеотидов, визуализация в реальном масштабе времени процессов взаимодействия ДНК с белками.

Первыми устройствами, с помощью которых стало возможным наблюдать за нанообъектами и передвигать их, стали сканирующие зондовые микроскопы - атомно-силовой микроскоп и работающий по аналогичному принципу сканирующий туннельный микроскоп. Атомно-силовая микроскопия (АСМ) была разработана Г. Биннигом и Г. Рорером, которым за эти исследования в 1986 была присуждена Нобелевская премия. Создание атомно-силового микроскопа, способного чувствовать силы притяжения и отталкивания, возникающие между отдельными атомами, дало возможность, наконец, «пощупать и увидеть» нанообъекты.

Рисунок 9. Принцип работы сканирующего зондового микроскопа (взято из http://www.nanometer.ru/2007/06/06/atomno_silovaa_mikroskopia_2609.html#). Пунктиром показан ход луча лазера. Остальные объяснения в тексте.

Основой АСМ (см. рис. 9) служит зонд, обычно сделанный из кремния и представляющий собой тонкую пластинку-консоль (ее называют кантилевером, от английского слова "cantilever" - консоль, балка). На конце кантилевера (длина » 500 мкм, ширина » 50 мкм, толщина » 1 мкм) расположен очень острый шип (длина » 10 мкм, радиус закругления от 1 до 10 нм), оканчивающийся группой из одного или нескольких атомов (см. рис.10).

Рисунок 10. Электронные микрофото одного и того же зонда, сделанные с малым (верх) и большим увеличением.

При перемещении микрозонда вдоль поверхности образца острие шипа приподнимается и опускается, очерчивая микрорельеф поверхности, подобно тому, как скользит по грампластинке патефонная игла. На выступающем конце кантилевера (над шипом, см. рис. 9) расположена зеркальная площадка, на которую падает и от которой отражается луч лазера. Когда шип опускается и поднимается на неровностях поверхности, отраженный луч отклоняется, и это отклонение регистрируется фотодетектором, а сила, с которой шип притягивается к близлежащим атомам – пьезодатчиком.

Данные фотодетектора и пьезодатчика используются в системе обратной связи, которая может обеспечивать, например, постоянную величину силу взаимодействия между микрозондом и поверхностью образца. В результате, можно строить объёмный рельеф поверхности образца в режиме реального времени. Разрешающая способность АСМ метода составляет примерно 0,1-1 нм по горизонтали и 0,01 нм по вертикали. Изображение бактерии кишечной палочки, полученное с помощью сканирующего зондового микроскопа, показано на рис. 11.

Рисунок 11. Бактерия кишечной палочки (Escherichia coli ). Изображение получено с помощью сканирующего зондового микроскопа. Длина бактерии – 1,9 мкм, ширина – 1 мкм. Толщина жгутиков и ресничек – 30 нм и 20 нм, соответственно.

Другая группа сканирующих зондовых микроскопов для построения рельефа поверхности использует так называемый квантово-механический «туннельный эффект». Суть туннельного эффекта состоит в том, что электрический ток между острой металлической иглой и поверхностью, расположенной на расстоянии около 1 нм, начинает зависеть от этого расстояния – чем меньше расстояние, тем больше ток. Если между иглой и поверхностью прикладывать напряжение 10 В, то этот «туннельный» ток может составить от 10 рА до 10 нА. Измеряя этот ток и поддерживая его постоянным, можно сохранять постоянным и расстояние между иглой и поверхностью. Это позволяет строить объёмный профиль поверхности (см. рис. 12). В отличие от атомно-силового микроскопа, сканирующий туннельный микроскоп может изучать только поверхности металлов или полупроводников.

Рисунок 12. Игла сканирующего туннельного микроскопа, находящаяся на постоянном расстоянии (см. стрелки) над слоями атомов исследуемой поверхности.

Сканирующий туннельный микроскоп можно использовать и для перемещения какого-либо атома в точку, выбранную оператором. Например, если напряжение между иглой микроскопа и поверхностью образца сделать в несколько больше, чем надо для изучения этой поверхности, то ближайший к ней атом образца превращается в ион и "перескакивает" на иглу. После этого слегка переместив иглу и изменив напряжение, можно заставить сбежавший атом "спрыгнуть" обратно на поверхность образца. Таким образом, можно манипулировать атомами и создавать наноструктуры, т.е. структуры на поверхности, имеющие размеры порядка нанометра. Ещё в 1990 году сотрудники IBM показали, что это возможно, сложив из 35 атомов ксенона название своей компании на пластинке из никеля (см. рис. 13).

Рисунок 13. Сложенное из 35 атомов ксенона на пластинке из никеля название компании IBM, сделанное сотрудниками этой компании с помощью сканирующей зондового микроскопа в 1990 году.

С помощью зондового микроскопа можно не только двигать атомы, но и создавать предпосылки для их самоорганизации. Например, если на металлической пластине находится капля воды, содержащая ионы тиолов, то зонд микроскопа будет способствовать такой ориентации этих молекул, при которой их два углеводородных хвоста будут обращены от пластины. В результате, можно выстроить монослой тиольных молекул, прилипших к металлической пластине (см. рис. 14). Этот способ создания монослоя молекул на поверхности металла называют «перьевой нанолитографией».

Рисунок 14. Слева вверху – кантилевер (серо-стальной) сканирующего зондового микроскопа над металлической пластинкой. Справа – увеличенное изображение области (обведена белым на рисунке слева) под зондом кантилевера, на которой схематически показаны молекулы тиола с фиолетовыми углеводородными хвостами, выстраивающимися в монослой у кончика зонда. Взято из Scientific American, 2001, Sept, p. 44.

Введение

В настоящее время бурно развивается научно-техническое направление - нанотехнология, охватывающее широкий круг, как фундаментальных, так и прикладных исследований. Это принципиально новая технология, способная решать проблемы в таких разных областях, как связь, биотехнология, микроэлектроника и энергетика. Сегодня больше сотни молодых компаний разрабатывают нанотехнологические продукты, которые выйдут на рынок в ближайшие два - три года.

Нанотехнологии станут ведущими, в 21-м веке, технологиями и будут способствовать развитию экономики и социальной сферы общества, они могут стать предпосылкой новой промышленной революции. В предыдущие двести лет прогресс в промышленной революции был достигнут ценой затрат около 80% ресурсов Земли. Нанотехнологии позволят значительно уменьшить объем потребления ресурсов и не окажут давления на окружающую среду, они будут играть ведущую роль в жизни человечества, как, например, компьютер стал неотъемлемой частью жизни людей .

Прогресс в нанотехнологии стимулировался развитием экспериментальных методов исследований, наиболее информативными из которых являются методы сканирующей зондовой микроскопии, изобретением и в особенности распространением которых мир обязан нобелевским лауреатам 1986 года – профессору Генриху Рореру и доктору Герду Биннигу .

Мир был заворожен открытием столь простых методов визуализации атомов, да еще с возможностью манипуляции ими. Многие исследовательские группы принялись конструировать самодельные приборы и экспериментировать в данном направлении. В результате был рожден ряд удобных схем приборов, были предложены различные методы визуализации результатов взаимодействия зонд-поверхность, такие как: микроскопия латеральных сил, магнитно-силовая микроскопия, микроскопия регистрации магнитных, электростатических, электромагнитных взаимодействий. Получили интенсивное развитие методы ближнепольной оптической микроскопии. Были разработаны методы направленного, контролируемого воздействия в системе зонд-поверхность, например, нанолитография – изменения происходят на поверхности под действием электрических, магнитных воздействий, пластических деформаций, света в системе зонд-поверхность. Были созданы технологии производства зондов с заданными геометрическими параметрами, со специальными покрытиями и структурами для визуализации различных свойств поверхностей .

Сканирующая зондовая микроскопия (СЗМ) – один из мощных современных методов исследования морфологии и локальных свойств поверхности твердого тела с высоким пространственным разрешением. За последние 10 лет сканирующая зондовая микроскопия превратилась из экзотической методики, доступной лишь ограниченному числу исследовательских групп, в широко распространенный и успешно применяемый инструмент для исследования свойств поверхности. В настоящее время практически ни одно исследование в области физики поверхности и тонкопленочных технологий не обходится без применения методов СЗМ. Развитие сканирующей зондовой микроскопии послужило также основой для развития новых методов в нанотехнологии – технологии создания структур с нанометровыми масштабами .


1. Историческая справка

Для наблюдения мелких объектов голландец Антони ван Левенгук в 17 веке изобрел микроскоп, открыв мир микробов. Его микроскопы был несовершенными и давали увеличение от 150 до 300 раз. Но е го последователи усовершенствовали этот оптический прибор, заложив фундамент для многих открытий в биологии, геологии, физике. Однако в конце 19 века (1872 г.) немецкий оптик Эрнст Карл Аббе показал, что из-за дифракции света разрешающая способность микроскопа (то есть минимальное расстояние между объектами, когда они еще не сливаются в одно изображение) ограничена длиной световой волны (0.4 – 0.8 мкм). Тем самым он сэкономил массу усилий оптиков, пытавшихся сделать более совершенные микроскопы, но разочаровал биологов и геологов, лишившихся надежды получить прибор с увеличением выше 1500x.

История создания электронного микроскопа – замечательный пример того, как самостоятельно развивающиеся области науки и техники могут, обмениваясь полученной информацией и объединяя усилия, создавать новый мощный инструмент научных исследований. Вершиной классической физики была теория электромагнитного поля, которая объяснила распространение света, возникновение электрических и магнитных полей, движение заряженных частиц в этих полях как распространение электромагнитных волн. Волновая оптика сделала понятными явление дифракции, механизм формирования изображения и игру факторов, определяющих разрешение, в световом микроскопе. Успехам в области теоретической и экспериментальной физики мы обязаны открытием электрона с его специфическими свойствами. Эти отдельные и, казалось бы, независимые пути развития привели к созданию основ электронной оптики, одним из важнейших приложений которой являлось изобретение ЭМ в 1930-х годах. Прямым намеком на такую возможность можно считать гипотезу о волновой природы электрона, выдвинутую в 1924 Луи де Бройлем и экспериментально подтвержденную в 1927 К.Дэвиссоном и Л.Джермером в США и Дж.Томсоном в Англии. Тем самым была подсказана аналогия, позволившая построить ЭМ по законам волновой оптики. Х.Буш обнаружил, что с помощью электрических и магнитных полей можно формировать электронные изображения. В первые два десятилетия 20 в. были созданы и необходимые технические предпосылки. Промышленные лаборатории, работавшие над электронно-лучевым осциллографом, дали вакуумную технику, стабильные источники высокого напряжения и тока, хорошие электронные эмиттеры .

В 1931 Р.Руденберг подал патентную заявку на просвечивающий электронный микроскоп, а в 1932 М.Кнолль и Э.Руска построили первый такой микроскоп, применив магнитные линзы для фокусировки электронов. Этот прибор был предшественником современного оптического просвечивающего электронного микроскопа (ОПЭМ). (Руска был вознагражден за свои труды тем, что стал лауреатом Нобелевской премии по физике за 1986.) В 1938 Руска и Б. фон Боррис построили прототип промышленного ОПЭМ для фирмы «Сименс-Хальске» в Германии; этот прибор в конце концов позволил достичь разрешения 100 нм. Несколькими годами позднее А.Пребус и Дж.Хиллер построили первый ОПЭМ высокого разрешения в Торонтском университете (Канада).

Широкие возможности ОПЭМ почти сразу же стали очевидны. Его промышленное производство было начато одновременно фирмой «Сименс-Хальске» в Германии и корпорацией RCA в США. В конце 1940-х годов такие приборы стали выпускать и другие компании .

РЭМ в его нынешней форме был изобретен в 1952 Чарльзом Отли. Правда, предварительные варианты такого устройства были построены Кноллем в Германии в 1930-х годах и Зворыкиным с сотрудниками в корпорации RCA в 1940-х годах, но лишь прибор Отли смог послужить основой для ряда технических усовершенствований, завершившихся внедрением в производство промышленного варианта РЭМ в середине 1960-х годов. Круг потребителей такого довольно простого в обращении прибора с объемным изображением и электронным выходным сигналом расширился с быстротой взрыва. В настоящее время насчитывается добрый десяток промышленных изготовителей РЭМ"ов на трех континентах и десятки тысяч таких приборов, используемых в лабораториях всего мира. В 1960-х годах разрабатывались сверхвысоковольтные микроскопы для исследования более толстых образцов. Лидером этого направления разработок был Г.Дюпуи во Франции, где в 1970 был введен в действие прибор с ускоряющим напряжением, равным 3,5 млн. вольт. РТМ был изобретен Г.Биннигом и Г.Рорером в 1979 в Цюрихе. Этот весьма простой по устройству прибор обеспечивает атомное разрешение поверхностей. За свою работу по созданию РТМ Бинниг и Рорер (одновременно с Руской) получили Нобелевскую премию.

В 1986 году Рорером и Биннигом был изобретен сканирующий зондовый микроскоп. С момента своего изобретения СТМ широко используется учеными самых разных специальностей, охватывающих практически все естественнонаучные дисциплины начиная от фундаментальных исследований в области физики, химии, биологии и до конкретных технологических приложений. Принцип действия СТМ настолько прост, а потенциальные возможности так велики, что невозможно предсказать его воздействие на науку и технику даже ближайшего будущего.

Как оказалось в дальнейшем, практически любые взаимодействия острийного зонда с поверхностью (механические, магнитные) могут быть преобразованы с помощью соответствующих приборов и компьютерных программ в изображение поверхности .

Установка сканирующего зондового микроскопа состоит из нескольких функциональных блоков, изображенных на рис. 1. Это, во-первых, сам микроскоп с пьезоманипулятором для управления зондом, преобразователем туннельного тока в напряжение и шаговым двигателем для подвода образца; блок аналого-цифровых и цифро-аналоговых преобразователей и высоковольтных усилителей; блок управления шаговым двигателем; плата с сигнальным процессором, рассчитывающим сигнал обратной связи; компьютер, собирающий информацию и обеспечивающий интерфейс с пользователем. Конструктивно блок ЦАПов и АЦП установлен в одном корпусе с блоком управления шаговым двигателем. Плата с сигнальным процессором (DSP – Digital Signal Processor) ADSP 2171 фирмы Analog Devices установлена в ISA слот расширения персонального компьютера .

Общий вид механической системы микроскопа представлен на рис. 2. В механическую систему входит основание с пьезоманипулятором и системой плавной подачи образца на шаговом двигателе с редуктором и две съемные измерительные головки для работы в режимах сканирующей туннельной и атомно-силовой микроскопии. Микроскоп позволяет получить устойчивое атомное разрешение на традиционных тестовых поверхностях без применения дополнительных сейсмических и акустических фильтров .

СКАНИРУЮЩИЕ ЗОНДОВЫЕ МИКРОСКОПЫ: ВИДЫ И ПРИНЦИП РАБОТЫ

Кувайцев Александр Вячеславович
Димитровградский инженерно-технологический институт филиал национального исследовательского ядерного университета «МИФИ»
студент


Аннотация
В данной статье описывается принцип работы зондового микроскопа. Это принципиально новая технология, способная решать проблемы в таких разных областях, как связь, биотехнология, микроэлектроника и энергетика. Нанотехнологии в микроскопии позволят значительно уменьшить объем потребления ресурсов и не окажут давления на окружающую среду, они будут играть ведущую роль в жизни человечества, как, например, компьютер стал неотъемлемой частью жизни людей.

SCANNING PROBE MICROSCOPY: TYPES AND OPERATING PRINCIPLES

Kuvaytsev Aleksandr Vyacheslavovich
Dimitrovgrad Engineering and Technological Institute of the National Research Nuclear University MEPHI
student


Abstract
This article describes the principle of a probe microscope. It is a new technology that can solve problems in such diverse areas as communications, biotechnology, microelectronics and energy. Nanotechnology in microscopy will significantly reduce the consumption of resources and do not put pressure on the environment, they will play a leading role in human life, as, for example, the computer has become an integral part of people"s lives.

В 21-м веке стремительно набирают популярность нанотехнологии, которые проникают во все сферы нашей жизни, но прогресса в них не было бы без новых, экспериментальных методов исследований, одним из наиболее информативных является метод сканирующей зондовой микроскопии, которую изобрели и распространили нобелевские лауреаты 1986 года – профессор Генрих Рорер и доктор Герд Бинниг.

В мире произошла настоящая революция с появлением методов визуализации атомов. Стали появляться группы энтузиастов, конструировавшие свои приборы. В итоге получилось несколько удачных решений для визуализации результатов взаимодействия зонда с поверхностью. Были созданы технологии производства зондов с необходимыми параметрами.

Так что же представляет из себя зондовый микроскоп? В первую очередь это непосредственно зонд, который исследует поверхность образца, так же необходима система перемещения зонда относительно образца в двумерном или трехмерном представлении (перемещается по X-Y или X-Y-Z координатам). Все это дополняет регистрирующая система, которая фиксирует значение функции, зависящей от расстояния от зонда до образца. Регистрирующая система фиксирует и запоминает значение по одной из координат.

Основные типы сканирующих зондовых микроскопов можно разделить на 3 группы:

  1. Сканирующий туннельный микроскоп – предназначен для измерения рельефа проводящих поверхностей с высоким пространственным разрешением.
    В СТМ острая металлическая игла проводится над образцом на очень малом расстоянии. При подаче на иглу небольшого тока между ней и образцом возникает туннельный ток, величину которого фиксирует регистрирующая система. Игла проводится над всей поверхностью образца и фиксирует малейшие изменение тоннельного тока, благодаря чему вырисовывается карта рельефа поверхности образца. СТМ первый из класса сканирующих зондовых микроскопов, остальные были разработаны позднее.
  2. Сканирующий атомно-силовой микроскоп – используется для построения структуры поверхности образца с разрешением до атомарного. В отличии от СТМ с помощью этого микроскопа можно исследовать как проводящие так и непроводящие поверхности. Из-за способности не только сканировать но и манипулировать атомами, назван силовым.
  3. Ближнепольный оптический микроскоп – «усовершенствованный» оптический микроскоп, обеспечивающий разрешение лучше чем у обычного оптического. Повышение разрешения БОМа было достигнуто путем улавливания света от изучаемого объекта на расстояниях меньших, чем длинна волны. В случае если зонд микроскопа снабжен устройством для сканирования пространственного поля, то такой микроскоп называют сканирующим оптическим микроскопом ближнего поля. Такой микроскоп позволяет получить изображения поверхностей и с очень высоким разрешением.

На изображении (рис. 1) показана простейшая схема работы зондового микроскопа.

Рисунок 1. - Схема работы зондового микроскопа

Его работа основана на взаимодействии поверхности образца с зондом, это может быть кантилевер, игла или оптический зонд. При малом расстоянии между зондом и объектом исследования действия сил взаимодействия, такие как отталкивания притяжение и т.д., и проявление эффектов, таких как, туннелирование электронов, можно зафиксировать с помощью средств регистрации. Для детектирования этих сил используются очень чувствительные сенсоры способные уловить малейшие изменения. Пьезотрубки или плоскопараллельные сканеры используются как система развертки по координатам для получения растрового изображения..

К основным техническим сложностям при создании сканирующих зондовых микроскопов можно отнести:

  1. Обеспечение механической целостности
  2. Детекторы должны иметь максимальную чувствительность
  3. Конец зонда должен иметь минимальные размеры
  4. Создание системы развертки
  5. Обеспечения плавности зонда

Почти всегда полученное сканирующим зондовым микроскопом изображение плохо поддается расшифровке из-за искажений при получении результатов. Как правило необходима дополнительная математическая обработка. Для этого используется специализированное ПО.

В настоящее время, сканирующая зондовая и электронная микроскопия используются как дополняющие друг друга методы исследования из-за ряда физических и технических особенностей. За прошедшие годы применение зондовой микроскопии позволило получить уникальные научные исследования в областях физики, химии и биологии. Первые микроскопы были всего лишь приборами – индикаторами, помогающими в исследованиях, а современные образцы это полноценные рабочие станции, включающие в себя до 50 различных методик исследования.

Главной задачей этой передовой техники является получение научных результатов, но применение возможностей этих приборов на практике требует высокой квалификации от специалиста.

Основы сканирующей зондовой микроскопии. (4,8 Мбайт)

1. Введение.

  1. Принципы сканирующей зондовой микроскопии (СЗМ).
  2. Конструктивные особенности и режимы работы зондовых микроскопов.
  3. Комбинации различных типов микроскопов в одном приборе.

2. Сканирующая туннельная микроскопия.

  1. Конструкции сканирующих туннельных микроскопов (СТМ).
  2. Системы сближения иглы и образца.
  3. Сканирующие элементы.
  4. Способы изготовления СТМ зондов.

3. Режимы работы СТМ.

  1. Получение изображений поверхности в режимах постоянного туннельного тока и постоянной средней высоты.
  2. Получение информации о распределении локальной работы выхода электронов вдоль поверхности.

4. Система автоматизации СТМ.

  1. Система сбора и обработки информации.
  2. Характерные искажения СТМ изображений и методы их устранений.
  3. Спектральный и корреляционный анализ изображения поверхности.

5. Туннельная спектроскопия.

  1. Вольт-амперные характеристики туннельных контактов.
  2. Зависимость туннельного тока от расстояния зонд-образец .
  3. Резонансные эффекты в СТМ.
  4. Низкотемпературный СТМ. Спектроскопия сверхпроводников.

6. Атомно-силовая микроскопия.

  1. Принципы работы и конструкции атомно-силовых микроскопов (АСМ).
  2. Силы, действующие на зонд АСМ (Ван-дер-Ваальса, капиллярные, электростатические).
  3. Режимы работы АСМ. Методы регистрации сигнала пропорционального рельефу поверхности.
  4. Электросиловая микроскопия.

7. Магнитно-силовая микроскопия.

  1. Принципы работы и конструкции магнитно-силовых микроскопов (МСМ).
  2. Взаимодействие зонда с магнитными полями образца.
  3. Особенности формирования МСМ контраста от различных структур.
  4. Регистрация магнитострикционного отклика поверхности.

8. Ближнепольная оптическая микроскопия.

  1. Прохождение света через отверстия с размерами меньшими длины волны.
  2. Принципы работы ближнепольных оптических микроскопов (СБОМ).
  3. Режимы работы СБОМ: коллекторная мода, излучательная мода на отражение и на прохождение.
  4. Эванесцентные волны.
  5. Типы ближнепольных оптических зондов и методы их изготовления.
  6. Ближнепольная спектроскопия полупроводниковых структур. Исследование фотолюминесценции квантовых точек, нитей и ям с высоким пространственным разрешением.

9. Пространственное разрешение зондовых микроскопов.

  1. Связь разрешения СЗМ с размером зонда и расстоянием между зондом и образцом.
  2. Искажения, вносимые зондом в изображение рельефа и свойств поверхности. Методы восстановления истинного рельефа поверхности.

10. Модификация свойств поверхности с помощью СТМ/АСМ/МСМ.

  1. Механические воздействия зонда на поверхность.
  2. Тепловое воздействие электрического тока через контакт зонд-поверхность .
  3. Термохимические процессы на поверхности, стимулированные протеканием тока через контакт.
  4. Магнитное воздействие зонда на поверхность магнитных образцов.
  5. Создание поверхностных структур нанометрового масштаба.
  6. Сверхплотная запись информации методом МСМ.

11. Модификация свойств поверхности с помощью СБОМ.

  1. Инициирование фотохимических, термохимических реакций и процессов диффузии под действием оптического излучения.
  2. Ближнепольная фотолитография. Физические и технологические ограничения метода.
  3. Сверхплотная запись информации методом СБОМ. Реверсивная и нереверсивная запись.
  1. В.Л.Миронов — Основы сканирующей зондовой микроскопии . М.: Техносфера, 2004, 143 стр.
  2. Сканирующая зондовая микроскопия биополимеров. Под ред. И. Г. Яминского, М.: Научный мир, 1997, 88 стр.
  3. В.К.Неволин — Основы туннельно-зондовой нанотехнологии . М.: МГИЭТ (ТУ), 1996, 91 стр.
  4. В.С.Эдельман — Сканирующая туннельная микроскопия (обзор). // Приборы и техника эксперимента, 1989, № 5, стр. 25 — 49.

Дополнительная литература

  1. В.И.Панов — Сканирующая туннельная микроскопия и спектроскопия поверхности . // УФН, 1988, т.155, № 1, стр. 155 — 158.
  2. В.А.Быков, М. И. Лазарев, С. А. Саунин — Сканирующая зондовая микроскопия для науки и промышленности . // «Электроника: наука, технология, бизнес”., 1997, № 5, стр. 7 — 14.
  3. А.П.Володин — Новое в сканирующей микроскопии . // Приборы и техника эксперимента, 1998, № 6, стр. 3 — 42.

Вопросы для контроля

  1. Сканирующие элементы зондовых микроскопов. Конструкции, принципы работы и основные характеристики.
  2. Системы прецизионного сближения зонда и образца в зондовых микроскопах.
  3. Виброзащита и термостабилизация зондовых микроскопов.
  4. Методы изготовления зондов для туннельного и атомно-силового микроскопов.
  5. Принципы работы сканирующего туннельного микроскопа. Основные режимы получения СТМ изображений рельефа поверхности.
  6. Принципы регистрации распределения локальной работы выхода электронов с помощью туннельного микроскопа.
  7. Организация системы обратной связи сканирующего туннельного микроскопа.
  8. Туннельная спектроскопия. Методы снятия вольт-амперных характеристик туннельного контакта СТМ. Основные типы ВАХ контактов металл-металл , металл-полупроводник , металл-сверхпроводник .
  9. Принципы работы атомно-силового микроскопа. Основные режимы получения АСМ изображений рельефа поверхности.
  10. Колебательные методики атомно-силовой микроскопии.
  11. Организация системы обратной связи атомно-силового микроскопа.
  12. Силовая спектроскопия свойств поверхности с помощью атомно-силового микроскопа.
  13. Принципы работы электросилового микроскопа. Режимы измерения распределения потенциала вдоль поверхности, локальной емкости контакта зонд-поверхность .
  14. Принципы работы магнитно-силового микроскопа. Магнитное взаимодействие зонда МСМ и образца. Методы получения МСМ контраста. Интерпретация МСМ контраста простейших распределений намагниченности образцов.
  15. Принципы работы ближнепольного оптического микроскопа. Shear-force контроль расстояния зонд-поверхность . Основные конфигурации БОМ.
  16. Модификация свойств поверхности с помощью СТМ/АСМ/МСМ/БОМ.