Создание математических моделей по чертежам. Что такое математическая модель? Математические модели

Понятие математической модели

Представь себе самолет: крылья, фюзеляж, хвостовое оперение, все это вместе – настоящий огромный, необъятный, целый самолет. А можно сделать модель самолета, маленькую, но все как взаправду, те же крылья и т.д., но компактный. Так же и математическая модель. Есть текстовая задача, громоздкая, на нее можно так посмотреть, прочесть, но не совсем понять, и уж тем более не ясно как решать ее. А что если сделать из большой словесной задачи ее маленькую модель, математическую модель? Что значит математическую? Значит, используя правила и законы математической записи, переделать текст в логически верное представление при помощи цифр и арифметических знаков. Итак, математическая модель – это представление реальной ситуации с помощью математического языка.

Начнем с простого: Число больше числа на. Нам нужно записать это, не используя слов, а только язык математики. Если больше на, то получается, что если мы из вычтем, то останется та самая разность этих чисел равная. Т.е. или. Суть понял?

Теперь посложнее, сейчас будет текст, который ты должен попробовать представить в виде математической модели, пока не читай, как это сделаю я, попробуй сам! Есть четыре числа: , и. Произведение и больше произведения и в два раза.

Что получилось?

В виде математической модели выглядеть это будет так:

Т.е. произведение относится к как два к одному, но это можно еще упросить:

Ну ладно, на простых примерах ты понял суть, я так полагаю. Переходим к полноценным задачам, в которых эти математические модели еще и решать нужно! Вот задача.

Математическая модель на практике

Задача 1

После дождя уровень воды в колодце может повыситься. Мальчик измеряет время падения небольших камешков в колодец и рассчитывает расстояние до воды по формуле, где - расстояние в метрах, - время падения в секундах. До дождя время падения камешков составляло с. На сколько должен подняться уровень воды после дождя, чтобы измеряемое время изменилось на с? Ответ выразите в метрах.

О, ужас! Какие формулы, что за колодец, что происходит, что делать? Я прочел твои мысли? Расслабься, в задачах этого типа условия бывают и пострашнее, главное помнить, что тебя в этой задаче интересуют формулы и отношения между переменными, а что все это обозначает в большинстве случаев не очень важно. Что ты тут видишь полезного? Я лично вижу. Принцип решения этих задач следующий: берешь все известные величины и подставляешь. НО, задумываться иногда надо!

Последовав моему первому совету, и,подставив все известные в уравнение, получим:

Это я подставил время секунды, и нашел высоту, которую пролетал камень до дождя. А теперь надо посчитать после дождя и найти разницу!

Теперь прислушайся ко второму совету и задумайся, в вопросе уточняется, «на сколько должен подняться уровень воды после дождя, чтобы измеряемое время изменилось на с». Сразу надо прикинуть, тааак, после дождя уровень воды повышается, значит, время падения камня до уровня воды меньше и тут витиеватая фраза «чтобы измеряемое время изменилось» приобретает конкретный смысл: время падения не увеличивается, а сокращается на указанные секунды. Это означает, что в случае броска после дождя, нам просто нужно из начального времени c вычесть с, и получим уравнение высоты, которую камень пролетит после дождя:

Ну и наконец, чтобы найти, на сколько должен подняться уровень воды после дождя, чтобы измеряемое время изменилось на с., нужно просто вычесть из первой высоты падения вторую!

Получим ответ: на метра.

Как видишь, ничего сложного нет, главное, особо не заморачивайся, откуда такое непонятное и порой сложное уравнение в условиях взялось и что все в нем означает, поверь на слово, большинство этих уравнений взяты из физики, а там дебри похлеще, чем в алгебре. Мне иногда кажется, что эти задачи придуманы, чтоб запугать ученика на ЕГЭ обилием сложных формул и терминов, а в большинстве случаев не требуют почти никаких знаний. Просто внимательно читай условие и подставляй известные величины в формулу!

Вот еще задача, уже не по физике, а из мира экономической теории, хотя знаний наук кроме математики тут опять не требуется.

Задача 2

Зависимость объёма спроса (единиц в месяц) на продукцию предприятия-монополиста от цены (тыс. руб.) задаётся формулой

Выручка предприятия за месяц (в тыс. руб.) вычисляется по формуле. Определите наибольшую цену, при которой месячная выручка составит не менее тыс. руб. Ответ приведите в тыс. руб.

Угадай, что сейчас сделаю? Ага, начну подставлять то, что нам известно, но, опять же, немного подумать все же придется. Пойдем с конца, нам нужно найти при котором. Так, есть, равно какому-то, находим, чему еще равно это, а равно оно, так и запишем. Как ты видишь, я особо не заморачиваюсь о смысле всех этих величин, просто смотрю из условий, что чему равно, так тебе поступать и нужно. Вернемся к задаче, у тебя уже есть, но как ты помнишь из одного уравнения с двумя переменными ни одну из них не найти, что же делать? Ага, у нас еще в условии осталась неиспользованная частичка. Вот, уже два уравнения и две переменных, значит, теперь обе переменные можно найти - отлично!

– такую систему решить сможешь?

Решаем подстановкой, у нас уже выражена, значит, подставим ее в первое уравнение и упростим.

Получается вот такое квадратное уравнение: , решаем, корни вот такие, . В задании требуется найти наибольшую цену, при которой будут соблюдаться все те условия, которые мы учли, когда систему составляли. О, оказывается это было ценой. Прикольно, значит, мы нашли цены: и. Наибольшую цену, говорите? Окей, наибольшая из них, очевидно, ее в ответ и пишем. Ну как, сложно? Думаю, нет, и вникать не надо особо!

А вот тебе и устрашающая физика, а точнее еще одна задачка:

Задача 3

Для определения эффективной температуры звёзд используют закон Стефана–Больцмана, согласно которому, где - мощность излучения звезды, - постоянная, - площадь поверхности звезды, а - температура. Известно, что площадь поверхности некоторой звезды равна, а мощность её излучения равна Вт. Найдите температуру этой звезды в градусах Кельвина.

Откуда и понятно? Да, в условии написано, что чему равно. Раньше я рекомендовал все неизвестные сразу подставлять, но здесь лучше сначала выразить неизвестное искомое. Смотри как все просто: есть формула и в ней известны, и (это греческая буква «сигма». Вообще, физики любят греческие буквы, привыкай). А неизвестна температура. Давай выразим ее в виде формулы. Как это делать, надеюсь, знаешь? Такие задания на ГИА в 9 классе обычно дают:

Теперь осталось подставить числа вместо букв в правой части и упростить:

Вот и ответ: градусов Кельвина! А какая страшная была задача, а!

Продолжаем мучить задачки по физике.

Задача 4

Высота над землей подброшенного вверх мяча меняется по закону, где - высота в метрах, - время в секундах, прошедшее с момента броска. Сколько секунд мяч будет находиться на высоте не менее трех метров?

То были всё уравнения, а вот здесь надо определить, сколько мяч находился на высоте не менее трех метров, это значит на высоте. Что мы составлять будем? Неравенство, именно! У нас есть функция, которая описывает как летит мяч, где – это как раз та самая высота в метрах, нам нужна высота. Значит

А теперь просто решаешь неравенство, главное, не забудь поменять знак неравенства с больше либо равно на меньше, либо равно, когда будешь умножать на обе части неравенства, чтоб перед от минуса избавиться.

Вот такие корни, строим интервалы для неравенства:

Нас интересует промежуток, где знак минус, поскольку неравенство принимает там отрицательные значения, это от до оба включительно. А теперь включаем мозг и тщательно думаем: для неравенства мы применяли уравнение, описывающее полет мяча, он так или иначе летит по параболе, т.е. он взлетает, достигает пика и падает, как понять, сколько времени он будет находиться на высоте не менее метров? Мы нашли 2 переломные точки, т.е. момент, когда он взмывает выше метров и момент, когда он, падая, достигает этой же отметки, эти две точки выражены у нас в виде времени, т.е. мы знаем на какой секунде полета он вошел в интересующую нас зону (выше метров) и в какую вышел из нее (упал ниже отметки в метра). Сколько секунд он находился в этой зоне? Логично, что мы берем время выхода из зоны и вычитаем из него время вхождения в эту зону. Соответственно: - столько он находился в зоне выше метров, это и есть ответ.

Так уж тебе повезло, что больше всего примеров по этой теме можно взять из разряда задачек по физике, так что лови еще одну, она заключительная, так что поднапрягись, осталось совсем чуть-чуть!

Задача 5

Для нагревательного элемента некоторого прибора экспериментально была получена зависимость температуры от времени работы:

Где - время в минутах, . Известно, что при температуре нагревательного элемента свыше прибор может испортиться, поэтому его нужно отключить. Найдите, через какое наибольшее время после начала работы нужно отключить прибор. Ответ выразите в минутах.

Действуем по отлаженной схеме, все, что дано, сперва выписываем:

Теперь берем формулу и приравниваем ее к значению температуры, до которой максимально можно нагреть прибор пока он не сгорит, то есть:

Теперь подставляем вместо букв числа там, где они известны:

Как видишь, температура при работе прибора описывается квадратным уравнением, а значит, распределяется по параболе, т.е. прибор нагревается до какой-то температуры, а потом остывает. Мы получили ответы и, следовательно, при и при минутах нагревания температура равна критической, но между и минутами - она еще выше предельной!

А значит, отключить прибор нужно через минуты.

МАТЕМАТИЧЕСКИЕ МОДЕЛИ. КОРОТКО О ГЛАВНОМ

Чаще всего математические модели используются в физике: тебе ведь наверняка приходилось запоминать десятки физических формул. А формула – это и есть математическое представление ситуации.

В ОГЭ и ЕГЭ есть задачи как раз на эту тему. В ЕГЭ (профильном) это задача номер 11 (бывшая B12). В ОГЭ – задача номер 20.

Схема решения очевидна:

1) Из текста условия необходимо «вычленить» полезную информацию – то, что в задачах по физике мы пишем под словом «Дано». Этой полезной информацией являются:

  • Формула
  • Известные физические величины.

То есть каждой букве из формулы нужно поставить в соответствие определенное число.

2) Берешь все известные величины и подставляешь в формулу. Неизвестная величина так и остается в виде буквы. Теперь нужно только решить уравнение (обычно, довольно простое), и ответ готов.

Ну вот, тема закончена. Если ты читаешь эти строки, значит ты очень крут.

Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, значит ты попал в эти 5%!

Теперь самое главное.

Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.

Проблема в том, что этого может не хватить…

Для чего?

Для успешной сдачи ЕГЭ, для поступления в институт на бюджет и, САМОЕ ГЛАВНОЕ, для жизни.

Я не буду тебя ни в чем убеждать, просто скажу одну вещь…

Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.

Но и это - не главное.

Главное то, что они БОЛЕЕ СЧАСТЛИВЫ (есть такие исследования). Возможно потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю...

Но, думай сам...

Что нужно, чтобы быть наверняка лучше других на ЕГЭ и быть в конечном итоге… более счастливым?

НАБИТЬ РУКУ, РЕШАЯ ЗАДАЧИ ПО ЭТОЙ ТЕМЕ.

На экзамене у тебя не будут спрашивать теорию.

Тебе нужно будет решать задачи на время .

И, если ты не решал их (МНОГО!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь.

Это как в спорте - нужно много раз повторить, чтобы выиграть наверняка.

Найди где хочешь сборник, обязательно с решениями, подробным разбором и решай, решай, решай!

Можно воспользоваться нашими задачами (не обязательно) и мы их, конечно, рекомендуем.

Для того, чтобы набить руку с помощью наших задач нужно помочь продлить жизнь учебнику YouClever, который ты сейчас читаешь.

Как? Есть два варианта:

  1. Открой доступ ко всем скрытым задачам в этой статье - 299 руб.
  2. Открой доступ ко всем скрытым задачам во всех 99-ти статьях учебника - 499 руб.

Да, у нас в учебнике 99 таких статей и доступ для всех задач и всех скрытых текстов в них можно открыть сразу.

Доступ ко всем скрытым задачам предоставляется на ВСЕ время существования сайта.

И в заключение...

Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.

“Понял” и “Умею решать” - это совершенно разные навыки. Тебе нужны оба.

Найди задачи и решай!

Всего, найдите в учебниках или справочниках формулы, характеризующие его закономерности. Заранее подставьте во те из параметров, которые являются константами. Теперь найдите неизвестную информацию о ходе процесса в той или иной его стадии, подставив в формулу известные данные о его ходе в данной стадии.
Например, необходимо моделировать изменение мощности, выделяющейся на резисторе, в зависимости от напряжения на ней. В этом случае, придется воспользоваться известным сочетанием формул: I=U/R, P=UI

При необходимости, составьте график или графиков обо всем ходе процесса. Для этого разбейте его ход на некоторое количество точек (чем их больше, тем точнее результат, но вычисления). Осуществите вычисления для каждой из точек. Особенно трудоемкими будет расчет в том случае, если независимо друг от друга меняется несколько параметров, поскольку осуществить его необходимо для всех их сочетаний.

Если объем расчетов значителен, воспользуйтесь вычислительной техникой. Используйте тот язык программирования, которым вы хорошо владеете. В частности, чтобы рассчитать изменение мощности на нагрузке сопротивлением в 100 Ом при изменении напряжения от 1000 до 10000 В с шагом в 1000 В (в реальности построить такую нагрузку затруднительно, поскольку мощность на ней достигнет мегаватта), можно такую программу на Бейсик:
10 R=100

20 FOR U=1000 TO 10000 STEP 1000

При желании, воспользуйтесь для моделирования одного процесса другим, подчиняющимся тем же закономерностям. Например, маятник можно заменить электрическим колебательным контуром, или наоборот. Иногда имеется возможность воспользоваться в качестве моделирующего тем же явлением, что и моделируемое, но в уменьшенном или увеличенном масштабе. Например, если взять уже упомянутое сопротивление в 100 Ом, но подавать на него напряжения в диапазоне не от 1000 до 10000, а от 1 до 10 В, то мощность, выделяемая на нем, будет изменяться не от 10000 до 1000000 Вт, а от 0,01 до 1 Вт. Такая уместится на столе, а выделяемую мощность можно будет измерить обычным калориметром. После этого результат измерения будет необходимо умножить на 1000000.
Учитывайте, что масштабированию поддаются не все явления. Например, известно, что если все детали теплового двигателя уменьшить или увеличить в одинаковое число раз, то есть, пропорционально, то велика вероятность, что он не заработает. Поэтому при изготовлении двигателей разных размеров увеличения или уменьшения для каждой из его деталей берут различные.

В программе по математике важное место отводится развитию у школьников правильных представлений о роли математического моделирования в научном познании и в практике. Цель данной статьи – показать пример математического моделирования прикладной задачи по математике. Напомним, что с термином «модель» уча­щиеся часто встречаются в быту, на уроках физики, химии, географии. Основное свойство каждой из моделей заключается в том, что она отра­жает самые существенные свойства своего оригинала. Математическая модель - это описание какого-либо реального процесса на языке ма­тематических понятий, формул и отношений. С примерами математического моделирования прикладных задач по математике можно ознакомиться в статьях серии

Как правило, школьники встречаются с идеей математического моделирования при решении сюжетных или прикладных задач, решаемых с помощью уравнений. С примерами прикладных задач по математике можно ознакомиться .

П ример математического моделирования прикладной задачи по математике поможет понять суть математической модели и выяснить этапы математического моделирования.

Пример математического моделирования прикладной задачи по математике

Задача 1.

Какое количество касс в супермаркете необходимо и достаточно, чтобы посетители обслуживались без очереди?

Первый этап математического моделиро­вания.

Это этап формализации. Его суть в том, чтобы условие задачи перевести на математический язык. При этом нужно выделить все необходимые для реше­ния данные и с помощью посредством математических соотношений описать связи между ними.

Для решения задачи введем следующие характеристики:

  1. k - необходимое количество касс;
  2. b - время обслуживания одного покупателя за кассой;
  3. Т - время работы магазина;
  4. N - количество покупателей, побывавших в супермаркете за день.

В течение рабочего дня через одну кассу может пройти Т/b покупа­телей.

Значит, число касс надо взять таким, чтобы (T/b) * k = N. Это соотношение и есть математическая модель решаемой задачи.

Второй этап математического моделирования.

Этот этап представляют как внутримодельное решение. Найдем из полученного равенства (T/b) * k = N искомое количество касс: k = (N/T) * b.

Третий этап математического моделирования.

Пришло время интерпретации, т. е. перевода полученного решения на тот язык, на котором была сформулирована исходная задача.

Чтобы в супермаркете возле касс не создавались очереди, число кассовых блоков должно быть равным или большим полученного значе­ния k .

Число k обычно выбирают таким, чтобы оно было ближайшим по величине целым, удовлетворяющим неравенству k ≥ (N/T) * b .

Обратим внимание на упрощающие допу­щения, сделанные при построении модели:

  • в качестве b взято среднее время прохождения одного человека через кассу;
  • за кассовыми аппара­тами сидят люди, работающие с разной скоростью;
  • кроме того, ежедневно в универсаме бывает разное количество покупателей N;
  • различна и ин­тенсивность потока покупателей в разное время дня, т. е. число людей, проходящих через кассу за единицу времени.

То есть, для более точных, досто­верных расчетов в полученной формуле надо вместо среднего значения N/Т взять максимальное значение этой величины a=max (N/T) .


Подчеркнем, что любая математическая модель основана на упрощении, она не совпадает с конкретной реальной ситуацией, а яв­ляется лишь ее приближенным описанием. Отсюда очевидна и неко­торая погрешность результатов. Однако именно благодаря замене ре­ального процесса соответствующей ему математической моделью появ­ляется возможность воспользоваться математическими методами при его изучении.

Рассмотренный пример математического моделирования прикладной задачи по математике показывает, что ценность этого метода при решении прикладных задач заключается еще и в том, что одна и та же модель может описывать разные ситуации, разные процессы реальной человеческой практики. Исследовав одну модель, результаты можно применить в другой ситуа­ции. Так, результат, полученный в задаче 1, можно использовать и в .

Пример 1.5.1.

Пусть некоторый экономический регион производит несколько (n) видов продуктов исключительно своими силами и только для населения данного региона. Предполагается, что технологический процесс отработан, а спрос населения на эти товары изучен. Надо определить годовой объем выпуска продуктов, с учетом того, что этот объем должен обеспечить как конечное, так и производственное потребление.

Составим математическую модель этой задачи. По ее условию даны: виды продуктов, спрос на них и технологический процесс; требуется найти объем выпуска каждого вида продукта.

Обозначим известные величины:

c i – спрос населения на i -й продукт (i =1,...,n ); a ij – количество i -го продукта, необходимое для выпуска единицы j -го продукта по данной технологии (i =1,...,n ; j =1,...,n );

х i – объем выпуска i -го продукта (i =1,...,n ); совокупность с =(c 1 ,..., c n ) называется вектором спроса, числа a ij – технологическими коэффициентами, а совокупность х =(х 1 ,..., х n ) – вектором выпуска.

По условию задачи вектор х распределяется на две части: на конечное потребление (вектор с ) и на воспроизводство (вектор х-с ). Вычислим ту часть вектора х которая идет на воспроизводство. По нашим обозначениям для производства х j количества j-го товара идет a ij · х j количества i -го товара.

Тогда сумма a i1 · х 1 +...+ a in · х n показывает ту величину i -го товара, которая нужна для всего выпуска х =(х 1 ,..., х n ).

Следовательно, должно выполняться равенство:

Распространяя это рассуждение на все виды продуктов, приходим к искомой модели:

Решая эту систему из n линейных уравнений относительно х 1 ,...,х n и найдем требуемый вектор выпуска.

Для того, чтобы написать эту модель в более компактной (векторной) форме, введем обозначения:

Квадратная (
) -матрицаА называется технологической матрицей. Легко проверить, что наша модель теперь запишется так:х-с=Ах или

(1.6)

Мы получили классическую модель «Затраты – выпуск », автором которой является известный американский экономист В. Леонтьев.

Пример 1.5.2.

Нефтеперерабатывающий завод располагает двумя сортами нефти: сортом А в количестве 10 единиц, сортом В - 15 единиц. При переработке из нефти получаются два материала: бензин (обозначим Б ) и мазут (М ). Имеется три варианта технологического процесса переработки:

I : 1ед.А + 2ед.В дает 3ед.Б + 2ед.М

II: 2ед.А + 1ед.В дает 1ед.Б + 5ед.М

III : 2ед.А + 2ед.В дает 1ед.Б + 2ед.М

Цена бензина - 10 долл. за единицу, мазута - 1 долл. за единицу.

Требуется определить наиболее выгодное сочетание технологических процессов переработки имеющегося количества нефти.

Перед моделированием уточним следующие моменты. Из условия задачи следует, что «выгодность» технологического процесса для завода следует понимать в смысле получения максимального дохода от реализации своей готовой продукции (бензина и мазута). В связи с этим понятно, что «выбор (принятие) решения» завода состоит в определении того, какую технологию и сколько раз применить. Очевидно, что таких возможных вариантов достаточно много.

Обозначим неизвестные величины:

х i – количество использованияi -го технологического процесса(i=1,2,3) . Остальные параметры модели (запасы сортов нефти, цены бензина и мазута)известны .

Теперь одно конкретное решение завода сводится к выбору одного вектора х =(х 1 2 3 ) , для которого выручка завода равна(32х 1 +15х 2 +12х 3 ) долл. Здесь 32 долл. – это доход, полученный от одного применения первого технологического процесса (10 долл. ·3ед.Б + 1 долл. ·2ед.М = 32 долл.). Аналогичный смысл имеют коэффициенты 15 и 12 для второго и третьего технологических процессов соответственно. Учет запаса нефти приводит к следующим условиям:

для сорта А :

для сорта В :,

где в первом неравенстве коэффициенты 1, 2, 2 – это нормы расхода нефти сорта А для одноразового применения технологических процессов I ,II ,III соответственно. Коэффициенты второго неравенства имеют аналогичный смысл для нефти сорта В.

Математическая модель в целом имеет вид:

Найти такой вектор х = (х 1 2 3 ) , чтобы максимизировать

f(x) =32х 1 +15х 2 +12х 3

при выполнении условий:

Сокращенная форма этой записи такова:

при ограничениях

(1.7)

Мы получили так называемую задачу линейного программирования.

Модель (1.7.) является примером оптимизационной модели детерминированного типа (с вполне определенными элементами).

Пример1.5.3.

Инвестору требуется определить наилучший набор из акций, облигаций и других ценных бумаг для приобретения их на некоторую сумму с целью получения определенной прибыли с минимальным риском для себя. Прибыль на каждый доллар, вложенный в ценную бумагу j - го вида, характеризуется двумя показателями: ожидаемой прибылью и фактической прибылью. Для инвестора желательно, чтобы ожидаемая прибыль на один доллар вложений была для всего набора ценных бумаг не ниже заданной величины b .

Заметим, что для правильного моделирования этой задачи от математика требуются определенные базовые знания в области портфельной теории ценных бумаг.

Обозначим известные параметры задачи:

n – число разновидностей ценных бумаг; а j – фактическая прибыль (случайное число) от j-го вида ценной бумаги; – ожидаемая прибыль отj -го вида ценной бумаги.

Обозначим неизвестные величины :

y j - средства, выделенные для приобретения ценных бумаг вида j .

По нашим обозначениям вся инвестированная сумма выражается как . Для упрощения модели введем новые величины

.

Таким образом, х i - это доля от всех средств, выделяемая для приобретения ценных бумаг видаj .

Ясно, что

Из условия задачи видно, что цель инвестора - достижение определенного уровня прибыли с минимальным риском. Содержательно риск - это мера отклонения фактической прибыли от ожидаемой. Поэтому его можно отождествить с ковариацией прибыли для ценных бумаг вида i и вида j. Здесь М - обозначение математического ожидания.

Математическая модель исходной задачи имеет вид:

при ограничениях

,
,
,
. (1.8)

Мы получили известную модель Марковица для оптимизации структуры портфеля ценных бумаг.

Модель (1.8.) является примеров оптимизационной модели стохастического типа (с элементами случайности).

Пример1.5.4.

На базе торговой организации имеется n типов одного из товаров ассортиментного минимума. В магазин должен быть завезен только один из типов данного товара. Требуется выбрать тот тип товара, который целесообразно завести в магазин. Если товар типа j будет пользоваться спросом, то магазин от его реализации получит прибыльр j , если же он не будет пользоваться спросом - убытокq j .

Перед моделированием обсудим некоторые принципиальные моменты. В данной задаче лицом, принимающим решение (ЛПР), является магазин. Однако исход (получение максимальной прибыли) зависит не только от его решения, но и от того, будет ли завезенный товар пользоваться спросом, т. е. будет ли выкуплен населением (предполагается, что по какой-то причине у магазина нет возможности изучить спрос населения). Поэтому население может рассматриваться как второе ЛПР, выбирающее тип товара согласно своего предпочтения. Наихудшим для магазина «решением» населения является: «завезенный товар не пользуется спросом». Так что, для учета всевозможных ситуаций, магазину нужно считать население своим «противником» (условно), преследующим противоположную цель – минимизировать прибыль магазина.

Итак, имеем задачу принятия решения с двумя участниками, преследующими противоположные цели. Уточним, что магазин выбирает один из типов товаров для продажи (всего n вариантов решений), а население - один из типов товаров, который пользуется наибольшим спросом (n вариантов решений).

Для составления математической модели нарисуем таблицу с n строками и n столбцами (всего n 2 клеток) и условимся, что строки соответствуют выбору магазина, а столбики - выбору населения. Тогда клетка (i, j) соответствует той ситуации, когда магазин выбирает i -й тип товара (i -ю строку), а население выбирает j -й тип товара (j- ю столбик). В каждую клетку запишем числовую оценку (прибыль или убыток) соответствующей ситуации с точки зрения магазина:

Числа q i написаны с минусом для отражения убытка магазина; в каждой ситуации «выигрыш» населения (условно) равен «выигрышу» магазина, взятому с обратным знаком.

Сокращенный вид этой модели таков:

(1.9)

Мы получили так называемую матричную игру. Модель (1.9.) является примером игровых моделей принятия решения.