Создание теории строения органических соединений. Основы строения органических соединений

Крупнейшим событием в развитии органической химии было создание в 1961 г. великим русским ученым А.М. Бутлеровым теории химического строения органических соединений.

До А.М. Бутлерова считалось невозможным познать строение молекулы, т. е. порядок химической связи между атомами. Многие ученые даже отрицали реальность атомов и молекул.

А.М. Бутлеров опроверг это мнение. Он исходил из правильных материалистических и философских представлений о реальности существования атомов и молекул, о возможности познания химической связи атомов в молекуле. Он показал, что строение молекулы можно установить опытным путем, изучая химические превращения вещества. И наоборот, зная строение молекулы, можно вывести химические свойства соединения.

Теория химического строения объясняет многообразие органических соединений. Оно обусловлено способностью четырехвалентного углерода образовывать углеродные цепи и кольца, соединяться с атомами других элементов и наличием изомерии химического строения органических соединений. Эта теория заложила научные основы органической химии и объяснила ее важнейшие закономерности. Основные принципы своей теории А.М. Бутлеров изложил в докладе «О теории химического строения».

Основные положения теории строения сводятся к следующему:

1) в молекулах атомы соединены друг с другом в определенной последовательности в соответствии с их валентностью. Порядок связи атомов называется химическим строением;

2) свойства вещества зависят не только от того, какие атомы и в каком количестве входят в состав его молекулы, но и от того, в каком порядке они соединены между собой, т. е. от химического строения молекулы;

3) атомы или группы атомов, образовавшие молекулу, взаимно влияют друг на друга.

В теории химического строения большое внимание уделяется взаимному влиянию атомов и групп атомов в молекуле.

Химические формулы, в которых изображен порядок соединения атомов в молекулах, называются структурными формулами или формулами строения.

Значение теории химического строения А.М. Бутлерова:

1) является важнейшей частью теоретического фундамента органической химии;

2) по значимости ее можно сопоставить с Периодической системой элементов Д.И. Менделеева;

3) она дала возможность систематизировать огромный практический материал;

4) дала возможность заранее предсказать существование новых веществ, а также указать пути их получения.

Теория химического строения служит руководящей основой во всех исследованиях по органической химии.

12 Фенолы, оксипроизводные ароматических соединений , содержащие одну или несколько гидроксильных групп (– OH), связанных с атомами углерода ароматического ядра. По числу ОН-групп различают одноатомные Ф., например оксибензол C 6 H 5 OH, называется обычно просто фенолом , окситолуолы CH 3 C 6 H 4 OH – так называемые крезолы , оксинафталины – нафтолы , двухатомные, например диоксибензолы C 6 H 4 (OH) 2 (гидрохинон , пирокатехин , резорцин ), многоатомные, например пирогаллол , флороглюцин . Ф. – бесцветные с характерным запахом кристаллы, реже жидкости; хорошо растворимы в органических растворителях (спирт, эфир, оензол). Обладая кислотными свойствами, Ф. образуют солеобразные продукты – феноляты: ArOH + NaOH (ArONa + H 2 O (Ar – ароматический радикал). Алкилирование и ацилирование фенолятов приводит к эфирам Ф. – простым ArOR и сложным ArOCOR (R – органический радикал). Сложные эфиры могут быть получены непосредственным взаимодействием Ф. с карбоновыми кислотами, их ангидридами и хлорангидридами. При нагревании фенолов с CO 2 образуются фенолокислоты, например салициловая кислота . В отличие от спиртов , гидроксильная группа Ф. с большим трудом замещается на галоген. Электрофильное замещение в ядре Ф. (галогенирование, нитрование, сульфирование, алкилирование и др.) осуществляется гораздо легче, чем у незамещённых ароматических углеводородов; замещающие группы при этом направляются в орто - и пара -положения к ОН-группе (см. Ориентации правила ). Каталитическое гидрирование Ф. приводит к алициклическим спиртам, например C 6 H 5 OH восстанавливается до циклогексанола . Для Ф. характерны также реакции конденсации, например с альдегидами и кетонами, что используется в промышленности для получения феноло- и резорцино-формальдегидных смол, дифенилолпропана и др. важных продуктов.


Получают Ф., например, гидролизом соответствующих галогенопроизводных, щелочным плавлением арилсульфокислот ArSO 2 OH, выделяют из каменно-угольной смолы, дёгтя бурых углей и др. Ф. – важное сырьё в производстве различных полимеров, клеев, лакокрасочных материалов, красителей, лекарственных препаратов (фенолфталеин, салициловая кислота, салол), поверхностноактивных и душистых веществ. Некоторые Ф. применяют как антисептики и антиокислители (например, полимеров, смазочных масел). Для качественной идентификации Ф. используют растворы хлорного железа, образующие с Ф. окрашенные продукты. Ф. токсичны (см. Сточные воды .).

13 Алканы

Общая характеристика

Углеводороды - простейшие органические соединения, состоящие из двух элементов: углерода и водорода. Предельными углеводородами, или алканами (международное название), называются соединения, состав которых выражается общей формулой С n Н 2n+2 , где n - число атомов углерода. В молекулах предельных углеводородов атомы угле­рода связаны между собой простой (одинарной) связью, а все остальные валентности насыщены атомами водорода. Алканы называют также насыщенными углеводородами или парафинами (Термин «парафины» означает «имеющие малое сродство»).

Первым членом гомологического ряда алканов является метан СН 4 . Окончание -ан является характерным для названий предельных углеводородов. Далее следует этан С 2 Н 6 , пропан С 3 Н 8 , бутан С 4 Н 10 . Начи­ная с пятого углеводорода, название образуется из греческого числительного, указывающего число углеродных атомов в молекуле, и окон­чания -ан. Это пентан С 5 Н 12 гексан С 6 Н 14 , гептан С 7 Н 16 , октан С 8 Н 18 , нонан С 9 Н 20 , декан С 10 Н 22 и т. д.

В гомологическом ряду наблюдается постепенное изменение физи­ческих свойств углеводородов: повышаются температуры кипения и плавления, возрастает плотность. При обычных условиях (температура ~ 22°С) первые четыре члена ряда (метан, этан, пропан, бутан) - газы, с С 5 Н 12 до С 16 Н 34 - жидкости, а с С 17 Н 36 - твердые вещества.

Алканы, начиная с четвертого члена ряда (бутана), имеют изомеры.

Все алканы насыщены водородом до предела (максимально). Их атомы углерода находятся в состоянии sp 3 -гибридизации, а значит, имеют простые (одинарные) связи.

Номенклатура

Названия первых десяти членов ряда предельных углеводородов уже даны. Чтобы подчеркнуть, что алкан имеет неразветвленную углеродную цепь, часто к названию добавляют слово нормальный (н-), например:

СН 3 -СН 2 -СН 2 -СН 3 СН 3 -СН 2 -СН 2 -СН 2 -СН 2 -СH 2 -СН 3

н-бутан н-гептан

(нормальный бутан) (нормальный гептан)

При отрыве атома водорода от молекулы алкана образуются одновалетные частицы, называемые углеводородными радикалами (сокращенно обозначаются буквой R). Названия одновалентных радикалов производятся от названий соответствующих углеводородов с заменой окончания –ан на -ил. Вот соответствующие примеры:

Радикалы образуются не только органическими, но и неорганически­ми соединениями. Так, если от азотной кислоты отнять гидроксильную группу ОН, то получится одновалентный радикал - NO 2 , называемый нитрогруппой, и т. д.

При отнятии от молекулы углеводорода двух атомов водорода получаются двухвалентные радикалы. Их названия также производятся от названий соответствующих предельных углеводородов с заменой окончания -ан на -илиден (если атомы водорода оторваны от одного атома углерода) или -илен (если атомы водорода оторваны от двух соседних атомов углерода). Радикал СН 2 = имеет название метилен.

Названия радикалов используются в номенклатуре многих производных углеводородов. Например: СН 3 I - йодистый метил, С 4 Н 9 Сl -хлористый бутил, СН 2 Сl 2 - хлористый метилен, С 2 Н 4 Вr 2 - бромистый этилен (если атомы брома связаны с разными атомами углерода) или бромистый этилиден (если атомы брома связаны с одним атомом углерода).

Для названия изомеров широко применяют две номенклатуры: старую - рациональную и современную - заместительную, которую также называют систематической или международной (предложена Международным союзом теоретической и прикладной химии ИЮПАК).

По рациональной номенклатуре углеводороды рассматриваются как производные метана, у которого один или несколько атомов водорода замещены на радикалы. Если в формуле одинаковые радикалы повторяются несколько раз, то их указывают греческими числительными: ди - два, три - три, тетра - четыре, пента - пять, гекса - шесть и т. д. Например:

Рациональная номенклатура удобна для не очень сложных соедине­ний.

По заместительной номенклатуре основой для названия служит одна углеродная цепь, а все другие фрагменты молекулы рассматриваются как заместители. В этом случае выбирают наиболее длинную цепь углеродных атомов и атомы цепи нумеруют с того конца, к которому ближе стоит углеводородный радикал. Затем называют: 1) номер углеродного атома, с которым связан радикал (начиная с простейшего радикала); 2) углеводород, которому соответствует длинная цепь. Если в формуле содержится несколько одинаковых радикалов, то перед их названием указывают число прописью (ди-, три-, тетра- и т. д.), а номера радикалов разделяют запятыми. Вот как по этой номенклатуре следует назвать изомеры гексана:

А вот более сложный пример:

Как заместительная, так и рациональная номенклатура применяются не только для углеводородов, но и для других классов органических соединений. Для некоторых органических соединений используются исторически сложившиеся (эмпирические) или так называемые тривиальные названия (муравьиная кислота, серный эфир, мочевина и др.).

При написании формул изомеров легко заметить, что атомы углерода занимают в них неодинаковое положение. Атом углерода, который связан только с одним атомом углерода в цепи, называется первичным, с двумя - вторичным, с тремя - третичным, с четырьмя - четвертичным. Так, например, в последнем примере атомы углерода 1 и 7 - первичные, 4 и 6 - вторичные, 2 и 3 - третичные, 5 - четвертичный. Свойства атомов водорода, других атомов и функциональных групп зависят от того, с каким углеродным атомом они связаны: с первичным, вторичным или третичным. Это всегда надо учитывать.

Получение. Свойства.

Физические свойства. В обычных условиях первые четыре члена гомологического ряда алканов (С 1 - С 4) - газы. Нормальные алканы от пентана до гептадекана (C 5 - C 17) - жидкости, начиная с С 18 и выше - твердые вещества. По мере увеличения числа атомов углерода в цепи, т.е. с ростом относительной моле­кулярной массы, возрастают температуры кипения и плавления алканов. При одинаковом числе атомов углерода в молекуле ал­каны с разветвленным строением имеют более низкие температу­ры кипения, чем нормальные алканы.

Алканы практически нерастворимы в воде, так как их молеку­лы малополярны и не взаимодействуют с молекулами воды, они хорошо растворяются в неполярных органических растворителях, таких как бензол, тетрахлорметан и др. Жидкие алканы легко смешиваются друг с другом.

Основные природные источники алканов - нефть и природный газ. Различные фракции нефти содержат алканы от C 5 H 12 до С 30 Н 62 . Природный газ состоит из метана (95%) с примесью этана и пропана.

Из синтетических методов получения алканов можно выделить следующие:

1. Получение из ненасыщенных углеводородов. Взаимодействие алкенов или алкинов с водородом ("гидрирование") происходит в присутствии металлических катализаторов (Ni, Pd) при
нагревании:

СН з -C≡СН + 2Н 2 → СН 3 -СН 2 -СН 3 .

2. Получение из галогенпротводных. При нагревании моногалогензамещенных алканов с металлическим натрием получают алканы с удвоенным числом атомов углерода (реакция Вюрца):

С 2 Н 5 Br + 2Na + Br-C 2 H 5 → C 2 H 5 -C 2 H 5 + 2NaBr.

Подобную реакцию не проводят с двумя разными галогензамещенными алканами, поскольку при этом получается смесь трех различных алканов

3. Получение из солей карбоновых кислот. При сплавлении безводных солей карбоновых кислот с щелочами получаются алканы, содержащие на один атом углерода меньше по сравнению с углеродной цепью исходных карбоновых кислот:

4.Получение метана. В электрической дуге, горящей в атмосфере водорода, образуется значительное количество метана:

С + 2Н 2 → СН 4 .

Такая же реакция идет при нагревании углерода в атмосфере водорода до 400-500 °С при повышенном давлении в присутствии катализатора.

В лабораторных условиях метан часто получают из карбида алюминия:

Аl 4 С 3 + 12Н 2 О = ЗСН 4 + 4Аl(ОН) 3 .

Химические свойства. В обычных условиях алканы химически инертны. Они устойчивы к действию многих реагентов: не взаимодействуют с концентрированными серной и азотной кислотами, с концентрированными и расплавленными щелочами, не окисляются сильными окислителями - перманганатом калия KMnО 4 и т.п.

Химическая устойчивость алканов объясняется высокой проч­ностью s-связей С-С и С-Н, а также их неполярностью. Непо­лярные связи С-С и С-Н в алканах не склонны к ионному разрыву, но способны расщепляться гомолитически под действием активных свободных радикалов. Поэтому для алканов характер­ны радикальные реакции, в результате которых получаются сое­динения, где атомы водорода замещены на другие атомы или группы атомов. Следовательно, алканы вступают в реакции, про­текающие по механизму радикального замещения, обозначаемого символом S R (от англ, substitution radicalic). По этому механизму легче всего замещаются атомы водорода у третичных, затем у вторичных и первичных атомов углерода.

1. Галогенирование. При взаимодействии алканов с галогена­ми (хлором и бромом) под действием УФ-излучения или высокой температуры образуется смесь продуктов от моно- до полигалогензамещенных алканов. Общая схема этой реакции показана на примере метана:

б) Рост цепи. Радикал хлора отнимает у молекулы алкана атом водорода:

Cl·+ СН 4 →НСl + СН 3 ·

При этом образуется алкильный радикал, который отнимает атом хлора у молекулы хлора:

СН 3 · + Сl 2 →СН 3 Сl + Сl·

Эти реакции повторяются до тех пор, пока не произойдет обрыв цепи по одной из реакций:

Cl· + Cl· → Сl 2 , СН 3 · + СН 3 · → С 2 Н 6 , СН 3 · + Cl· → СН 3 Сl·

Суммарное уравнение реакции:

При радикальных реакциях (галогенирование, нитрование) в первую очередь замешаются атомы водорода у третичных, затем у вторичных и первичных атомов углерода. Это объясняется тем, что легче всего разрывается гомолитически связь третичного атома углерода с водородом (энергия связи 376 кДж/моль), затем - вторичного (390 кДж/моль) и только потом - первичного (415 кДж/моль).

3. Изомеризация. Нормальные алканы при определенных условиях могут превращаться в алканы с разветвленной цепью:

4. Крекинг - это гемолитический разрыв связей С-С, который протекает при нагревании и под действием катализаторов.
При крекинге высших алканов образуются алкены и низшие ал­каны, при крекинге метана и этана образуются ацетилен:

C 8 H 18 → C 4 H 10 + С 4 Н 8 ,

2СН 4 → С 2 Н 2 + ЗН 2 ,

С 2 Н 6 → С 2 Н 2 + 2Н 2 .

Эти реакции имеют большое промышленное значение. Таким путем высококипящие фракции нефти (мазут) превращают в бензин, керосин и другие ценные продукты.

5. Окисление. При мягком окислении метана кислородом воздуха в присутствии различных катализаторов могут быть получе­ны метиловый спирт, формальдегид, муравьиная кислота:

Мягкое каталитическое окисление бутана кислородом воздуха - один из промышленных способов получения уксусной кислоты:


2C 4 H 10 + 5O 2 → 4CH 3 COOH + 2Н 2 О.
кат

На воздухе алканы сгорают до СО 2 и Н 2 О:

С n Н 2n+2 + (Зn+1)/2О 2 = nСО 2 + (n+1)Н 2 О.

Алкены

Алкены (иначе олефины или этиленовые углеводороды) - ациклические непредельные углеводороды, содержащие одну двойную связь между атомами углерода, образующие гомологический ряд с общей формулой CnH2n. Атомы углерода при двойной связи находятся в состоянии sp² гибридизации.

Простейшим алкеном является этен (C2H4). По номенклатуре IUPAC названия алкенов образуются от названий соответствующих алканов заменой суффикса «-ан» на «-ен»; положение двойной связи указывается арабской цифрой.

Гомологический ряд

Алкены, число атомов углерода в которых больше трёх, имеют изомеры. Для алкенов характерны изомерия углеродного скелета, положения двойной связи, межклассовая и геометрическая.

этен C2H4
пропен C3H6
н-бутен C4H8
н-пентен C5H10
н-гексен C6H12
н-гептен C7H14
н-октен C8H16
н-нонен C9H18
н-децен C10H20

Физические свойства

Температуры плавления и кипения увеличиваются с молекулярной массой и длиной главной углеродной цепи.
При нормальных условиях алкены с C2H4 до C4H8 - газы; с C5H10 до C17H34 - жидкости, после C18H36 - твёрдые тела. Алкены не растворяются в воде, но хорошо растворяются в органических растворителях.

Химические свойства

Алкены химически активны. Их химические свойства определяются наличием двойной связи.
Озонолиз: алкен окисляется до альдегидов (в случае монозамещенных вицинальных углеродов), кетонов (в случае дизамещенных вицинальных углеродов) или смеси альдегида и кетона (в случае три-замещенного у двойной связи алкена):

R1–CH=CH–R2 + O3 → R1–C(H)=O + R2C(H)=O + H2O
R1–C(R2)=C(R3)–R4+ O3 → R1–C(R2)=O + R3–C(R4)=O + H2O
R1–C(R2)=CH–R3+ O3 → R1–C(R2)=O + R3–C(H)=O + H2O

Озонолиз в жёстких условиях - алкен окисляется до кислоты:

R"–CH=CH–R" + O3 → R"–COOH + R"–COOH + H2O

Присоединение по двойной связи:
CH2=CH2 +Br2 → CH2Br-CH2Br

Окисление надкислотами:
CH2=CH2 + CH3COOOH →
или
CH2=CH2 + HCOOH → HOCH2CH2OH

Все вещества, которые содержат углеродный атом, помимо карбонатов, карбидов, цианидов, тиоционатов и угольной кислоты, представляют собой органические соединения. Это значит, что они способны создаваться живыми организмами из атомов углерода посредством ферментативных или прочих реакций. На сегодняшний день многие органические вещества можно синтезировать искусственно, что позволяет развивать медицину и фармакологию, а также создавать высокопрочные полимерные и композитные материалы.

Классификация органических соединений

Органические соединения являются самым многочисленным классом веществ. Здесь присутствует порядка 20 видов веществ. Они различны по химическим свойствам, отличаются физическими качествами. Их температура плавления, масса, летучесть и растворимость, а также агрегатное состояние при нормальных условиях также различны. Среди них:

  • углеводороды (алканы, алкины, алкены, алкадиены, циклоалканы, ароматические углеводороды);
  • альдегиды;
  • кетоны;
  • спирты (двухатомные, одноатомные, многоатомные);
  • простые эфиры;
  • сложные эфиры;
  • карбоновые кислоты;
  • амины;
  • аминокислоты;
  • углеводы;
  • жиры;
  • белки;
  • биополимеры и синтетические полимеры.

Данная классификация отражает особенности химического строения и наличие специфических атомных групп, определяющих разность свойств того или иного вещества. В общем виде классификация, в основе которой лежит конфигурация углеродного скелета, не учитывающая особенностей химических взаимодействий, выглядит по-другому. Соответственно ее положениям, органические соединения делятся на:

  • алифатические соединения;
  • ароматические вещества;
  • гетероциклические вещества.

Данные классы органических соединений могут иметь изомеры в разных группах веществ. Свойства изомеров различны, хотя их атомный состав может быть одинаковым. Это вытекает из положений, заложенных А. М. Бутлеровым. Также теория строения органических соединений является руководящей основой при проведении всех исследований в органической химии. Ее ставят на один уровень с менделеевским Периодическим законом.

Само понятие о химическом строении ввел А. М. Бутлеров. В истории химии оно появилось 19 сентября 1861 года. Ранее в науке существовали различные мнения, а часть ученых вовсе отрицало наличие молекул и атомов. Потому в органической и неорганической химии не было никакого порядка. Более того, не существовало закономерностей, по которым можно было судить о свойствах конкретных веществ. При этом были и соединения, которые при одинаковом составе проявляли разные свойства.

Утверждения А. М. Бутлерова во многом направили развитие химии в нужное русло и создали для нее прочнейший фундамент. Посредством нее удалось систематизировать накопленные факты, а именно, химические или же физические свойства некоторых веществ, закономерности вступления их в реакции и прочее. Даже предсказание путей получения соединений и наличие некоторых общих свойств стало возможным благодаря данной теории. А главное, А. М. Бутлеров показал, что структуру молекулы вещества можно объяснить с точки зрения электрических взаимодействий.

Логика теории строения органических веществ

Поскольку до 1861 года в химии многие отвергали существование атома или же молекулы, то теория органических соединений стала революционным предложением для ученого мира. И поскольку сам Бутлеров А. М. исходит лишь из материалистических умозаключений, то ему удалось опровергнуть философские представления об органике.

Ему удалось показать, что молекулярное строение можно распознать опытным путем посредством химических реакций. К примеру, состав любого углевода можно выяснить посредством сжигания его определенного количества и подсчета образовавшейся воды и углекислого газа. Количество азота в молекуле амина подсчитывается также при сжигании путем измерения объема газов и выделения химического количества молекулярного азота.

Если рассматривать суждения Бутлерова о химическом строении, зависящем от структуры, в обратном направлении, то напрашивается новый вывод. А именно: зная химическое строение и состав вещества, можно эмпирически предположить его свойства. Но самое главное - Бутлеров объяснил, что в органике встречается огромное количество веществ, проявляющих разные свойства, но имеющие одинаковый состав.

Общие положения теории

Рассматривая и исследуя органические соединения, Бутлеров А. М. вывел некоторые важнейшие закономерности. Он объединил их в положения теории, объясняющей строение химических веществ органического происхождения. Положения теории таковы:

  • в молекулах органических веществ атомы соединены между собой в строго определенной последовательности, которая зависит от валентности;
  • химическое строение - это непосредственный порядок, согласно которому соединены атомы в органических молекулах;
  • химическое строение обуславливает наличие свойств органического соединения;
  • в зависимости от строения молекул с одинаковым количественным составом возможно появление различных свойств вещества;
  • все атомные группы, участвующие в образовании химического соединения, имеют взаимное влияние друг на друга.

Все классы органических соединений построены согласно принципам данной теории. Заложив основы, Бутлеров А. М. смог расширить химию как область науки. Он пояснил, что благодаря тому, что в органических веществах углерод проявляет валентность равную четырем, обуславливается многообразие данные соединений. Наличие множества активных атомных групп определяет принадлежность вещества к определенному классу. И именно за счет наличия специфических атомных групп (радикалов) появляются физические и химические свойства.

Углеводороды и их производные

Данные органические соединения углерода и водорода являются самыми простыми по составу среди всех веществ группы. Они представлены подклассом алканов и циклоалканов (насыщенных углеводородов), алкенов, алкадиенов и алкатриенов, алкинов (непредельных углеводородов), а также подклассом ароматических веществ. В алканах все атомы углерода соединены только одинарной С-С связью, из-за чего в состав углеводорода уже не может быть встроен ни один атом Н.

В непредельных углеводородах водород может встраиваться по месту наличия двойной С=С связи. Также С-С связь может быть тройной (алкины). Это позволяет данным веществам вступать во множество реакций, связанных с восстановлением или присоединением радикалов. Все остальные вещества для удобства изучения их способности вступать в реакции рассматриваются как производные одного из классов углеводородов.

Спирты

Спиртами называются более сложные, чем углеводороды органические химические соединения. Они синтезируются в результате протекания ферментативных реакций в живых клетках. Самым типичным примером является синтез этанола из глюкозы в результате брожения.

В промышленности спирты получают из галогеновых производных углеводородов. В результате замещения галогенового атома на гидроксильную группу и образуются спирты. Одноатомные спирты содержат лишь одну гидроксильную групп, многоатомные - две и более. Примером двухатомного спирта является этиленгликоль. Многоатомный спирт - это глицерин. Общая формула спиртов R-OH (R - углеродная цепь).

Альдегиды и кетоны

После того как спирты вступают в реакции органических соединений, связанные с отщеплением водорода от спиртовой (гидроксильной) группы, замыкается двойная связь между кислородом и углеродом. Если данная реакция проходит по спиртовой группе, расположенной у концевого углеродного атома, то в результате ее образуется альдегид. Если углеродный атом со спиртовой расположен не на конце углеродной цепи, то результатом реакции дегидратации является получение кетона. Общая формула кетонов - R-CO-R, альдегидов R-COH (R - углеводородный радикал цепи).

Эфиры (простые и сложные)

Химическое строение органических соединений данного класса усложненное. Простые эфиры рассматриваются как продукты реакции между двумя молекулами спиртов. При отщеплении воды от них образуется соединение образца R-O-R. Механизм реакции: отщепление протона водорода от одного спирта и гидроксильной группы от другого спирта.

Сложные эфиры - продукты реакции между спиртом и органической карбоновой кислотой. Механизм реакции: отщепление воды от спиртовой и карбоновой группы обеих молекул. Водород отщепляется от кислоты (по гидроксильной группе), а сама ОН-группа отделяется от спирта. Полученное соединение изображается как R-CO-O-R, где буковой R обозначены радикалы - остальные участки углеродной цепи.

Карбоновые кислоты и амины

Карбоновыми кислотами называются особенные вещества, играющие важную роль в функционировании клетки. Химическое строение органических соединений такое: углеводородный радикал (R) с присоединенной к нему карбоксильной группой (-СООН). Карбоксильная группа может располагаться только у крайнего атома углерода, потому как валентность С в группе (-СООН) равна 4.

Амины - это более простые соединения, которые являются производными углеводородов. Здесь у любого атома углерода располагается аминный радикал (-NH2). Существуют первичные амины, у которых группа (-NH2) присоединяется к одному углероду (общая формула R-NH2). У вторичных аминов азот соединяется с двумя углеродными атомами (формула R-NH-R). У третичных аминов азот соединен с тремя углеродными атомами (R3N), где р - радикал, углеродная цепь.

Аминокислоты

Аминокислоты - комплексные соединения, которые проявляют свойства и аминов, и кислот органического происхождения. Существует несколько их видов в зависимости от расположения аминной группы по отношению к карбоксильной. Наиболее важны альфа-аминокислоты. Здесь аминная группа расположена у атома углерода, к которому присоединена карбоксильная. Это позволяет создавать пептидную связь и синтезировать белки.

Углеводы и жиры

Углеводы являются альдегидоспиртами или кетоспиртами. Это соединения с линейной или циклической структурой, а также полимеры (крахмал, целлюлоза и прочие). Их важнейшая роль в клетке - структурная и энергетическая. Жиры, а точнее липиды, выполняют те же функции, только участвуют в других биохимических процессах. С точки зрения химического строения жир является сложным эфиром органических кислот и глицерина.

К первой половине XIX века в органической химии был накоплен громадный фактический материал, дальнейшее изучение которого тормозилось отсутствием какой-либо систематизирующей основы. Начиная с 20-х годов XIX века стали появляться сменяющие друг друга теории, претендующие на обобщенное описание строения органических соединений. Одной из них была теория типов, разработанная в х годах французским ученым Ш. Жераром. Согласно этой теории, все органические соединения рассматривались как производные простейших неорганических веществ, принятых за типы.Ш. Жераром


Незадолго до появления теории строения А. М. Бутлерова немецким химиком Ф.А. Кекуле (1857) была разработана применительно к органическим соединениям теория валентности, установившая такие факты, как четырехвалентность атома углерода и его способность образовывать углеродные цепи за счет соединения с атомами углерода.А. М. БутлероваФ.А. Кекуле


Теоретические разработки добутлеровского периода внесли определенный вклад в познание строения органических соединений. Но ни одна из ранних теорий не была всеобщей. И лишь А.М. Бутлерову удалось создать такую логически завершенную теорию строения, которая и по сей день служит научной основой органической химии. Теория строения А.М. Бутлерова базируется на материалистическом подходе к реальной молекуле и исходит из возможности познания ее строения экспериментальным путем. А.М. Бутлеров при установлении строения веществ придавал основополагающее значение химическим реакциям. Теория строения А.М. Бутлерова не только объясняла уже известные факты, ее научное значение заключалось в прогнозировании существования новых органических соединений.А.М. Бутлерову А.М. Бутлерова А.М. БутлеровА.М. Бутлерова




Изомеры - это вещества, которые имеют одинаковую молекулярную формулу, но различное химическое строение, а поэтому обладают разными свойствами. Подлинное объяснение изомерия получила лишь во второй половине 19 в на основе теории химического строения А.М. Бутлерова (структурная изомерия) и стереохимического учения Я. Г. Вант-Гоффа (пространственная изомерия).Я. Г. Вант-Гоффа


ФормулаНазвание Число изомеров CH 4 метан1 C4H6C4H6 этан1 C3H8C3H8 пропан1 C 4 H 10 бутан2 C 5 H 12 пентан3 C 6 H 14 гексан5 C 7 H 16 гептан9 C 8 H 18 октан18 C 9 H 20 нонан35 C 10 H 22 декан75 C 11 H 24 ундекан159 C 12 H 26 додекан355 C 13 H 28 тридекан802 C 14 H 30 тетрадекан1 858 C 15 H 32 пентадекан4 347 C 20 H 42 эйкозан C 25 H 52 пентакозан C 30 H 62 триаконтан C 40 H 82 тетраконтан


Структурными называют изомеры, отвечающие различным структурным формулам органических соединений (с разным порядком соединения атомов). Пространственные изомеры имеют одинаковые заместители у каждого атома углерода и отличаются лишь их взаимным расположением в пространстве.


Пространственные изомеры (стереоизомеры). Стереоизомеры можно разделить на два типа: геометрические изомеры и оптические изомеры. Геометрическая изомерия характерна для соединений, содержащих двойную связь или цикл. В таких молекулах часто возможно провести условную плоскость таким образом, что заместители у различных атомов углерода могут оказаться по одну сторону (цис-) или по разные стороны (транс-) от этой плоскости. Если изменение ориентации этих заместителей относительно плоскости возможно только за счет разрыва одной из химических связей, то говорят о наличии геометрических изомеров. Геометрические изомеры отличаются своими физическими и химическими свойствами.







Открыт новый способ получения оптических изомеров органических молекул Когда Алиса оказалась в собственной, но «зазеркальной» комнате, то удивилась: комната вроде похожа, но всё же совсем другая. Точно так же различаются и зеркальные изомеры химических молекул: внешне похожи, но ведут себя по-разному. Важнейшей областью органической химии является разделение и синтез этих зеркальных вариантов. (Иллюстрация Джона Тенниела к книге Льюиса Кэрролла «Алиса в Зазеркалье»)



Американские ученые научились получать оптические изомеры соединений на основе альдегидов, осуществив наконец важную реакцию, над которой химики работали многие годы. В эксперименте они объединили два катализатора, работающие по разным принципам. В результате совместного действия этих катализаторов образуются две активных органических молекулы, которые объединяются в требуемое вещество. На примере этой реакции показана возможность синтеза целого класса биологически важных органических соединений.


Сейчас известно уже не менее 130 реакций органического синтеза, в которых получаются более или менее чистые хиральные изомеры. Если сам катализатор обладает хиральными свойствами, то из оптически неактивного субстрата получится оптически активный продукт. Это правило было выведено еще в начале XX века и остается базовым и на сегодняшний день. Принцип выборочного действия катализатора по отношению к оптическим изомерам похож на рукопожатие: катализатору «удобно» связываться только с одним из хиральных изомеров, поэтому и катализируется предпочтительно только одна из реакций. Кстати, термин «хиральный» произошел от греческого chéir рука.


Основой создания теории химического строения органических соединений А.М. Бутлеровым послужило атомно-молекулярное учение (работы А.Авагадро и С.Канниццаро). Будет неправильным предполагать, что до ее создания в мире ничего не было известно об органических веществах и не предпринимались попытки обоснования строения органических соединений. К 1861 году (год создания А.М. Бутлеровым теории химического строения органических соединений) число известных органических соединений достигало сотен тысяч, а выделение органической химии как самостоятельной науки произошло еще в 1807 году (Й. Берцелиус).

Предпосылки теории строения органических соединений

Широкое изучение органических соединений началось в XVIII веке с работ А.Лавуазье, который показал, что вещества, получаемые из живых организмов, состоят из нескольких элементов – углерода, водорода, кислорода, азота, серы и фосфора. Огромное значение имело введение терминов «радикал» и «изомерия», а также формирование теории радикалов (Л. Гитон де Морво, А. Лавуазье, Ю. Либих, Ж. Дюма, Й. Берцелиус), успехи в синтезе органических соединений (мочевина, анилин, уксусная кислота, жиры, сахароподобные вещества и др.).

Термин «химическое строение», а также основы классической теории химического строения были впервые обнародованы А.М. Бутлеровым 19 сентября 1861 года в его докладе на Съезде немецких естествоиспытателей и врачей в Шпейере.

Основные положения теории строения органических соединений А.М. Бутлерова

1. Атомы, образующие молекулу органического вещества связаны между собой в определенном порядке, причем на связь с друг другом затрачивается по одной или несколько валентностей от каждого атома. Свободных валентностей нет.

Последовательность соединения атомов Бутлеров назвал «химическим строением». Графически связи между атомами обозначаются чертой или точкой (рис. 1).

Рис. 1. Химическое строение молекулы метана: А – структурная формула, Б – электронная формула

2. Свойства органических соединений зависят от химического строения молекул, т.е. свойства органических соединений зависят от порядка соединения атомов в молекуле. Изучив свойства можно изобразить вещество.

Рассмотрим пример: вещество имеют брутто-формулу C 2 H 6 O. Известно, что при взаимодействии этого вещества с натрием выделяется водород, а при действии на него кислоты образуется вода.

C 2 H 6 O + Na = C 2 H 5 ONa + H 2

C 2 H 6 O + HCl = C 2 H 5 Cl + H 2 O

Данному веществу может соответствовать две структурные формулы:

CH 3 -O-CH 3 – ацетон (диметилкетон) и CH 3 -CH 2 -OH – этиловый спирт (этанол),

исходя из химических свойств, характерных для этого вещества делаем вывод, что это этанол.

Изомеры – это вещества, обладающие одинаковым качественным и количественным составом, но различным химическим строением. Выделяют несколько типов изомерии: структурная (линейная, разветвленная, углеродного скелета), геометрическая (цис- и транс- изомерия, характерная для соединений с кратной двойной связью (рис. 2)), оптическая (зеркальная), стерео (пространственная, характерна для веществ, способных по разному располагаться в пространстве (рис. 3)).

Рис. 2. Пример геометрической изомерии

3. На химические свойства органических соединений оказывают влияние и другие атомы, присутствующие в молекуле. Такие группы атомов получили название функциональных групп, за счет того, что их наличие в молекуле вещества придает ему особые химические свойства. Например: -OH (гидроксо-группа), -SH (тио-группа), -CO (карбонильная группа), -COOH (карбоксильная группа). Причем химические свойства органического вещества в меньшей степени зависят от углеводородного скелета, чем от функциональной группы. Именно функциональные группы обеспечивают многообразие органических соединений, за счет чего их классифицируют (спирты, альдегиды, карбоновые кислоты и т.д. К числу функциональных групп иногда относят и углерод-углеродные связи (кратные двойные и тройные). Если в молекуле органического вещества несколько одинаковых функциональных групп, то его называют гомополифунцкиональным (CH 2 (OH)-CH(OH)-CH 2 (OH) – глицерин), если несколько, но разных – гетерополифункциональным (NH 2 -CH(R)-COOH – аминокислоты).


Рис.3. Пример стерео изомерии: а – циклогексан, форма «кресла», б – циклогексан, форма «ванна»

4. Валентность углерода в органических соединениях всегда равна четырем.

Как наука оформилась в начале XIX в., когда шведский ученый Й. Я. Берцелиус впервые ввел понятие об органических веществах и об органической химии. Первая теория в органической химии - теория радикалов. Химиками было обнаружено, что при химических превращениях группы из нескольких атомов в неизменном виде переходят из молекулы одного вещества в молекулу другого вещества, подобно тому как переходят из молекулы в молекулу атомы элементов. Такие «неизменяемые» группы атомов и получили название радикалов.

Однако далеко не все ученые были согласны с теорией радикалов. Многие вообще отвергали идею атомистики - представления о сложном строении молекулы и существовании атома как ее составной части. То, что неоспоримо доказано в наши дни и не вызывает ни малейших сомнений, в XIX в. было предметом ожесточенных споров.

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки