Спектральный анализ кратко. Спектральный анализ в астрономии

В семнадцатом веке, обозначающее совокупность всех значений какой-либо физической величины. Энергии, массы, оптического излучения. Именно последнее зачастую имеется в виду, когда мы говорим о спектре света. Конкретно спектр света представляет собой совокупность полос оптического излучения разной частоты, часть из которых мы можем видеть повседневно в окружающем мире, часть же их недоступна для невооруженного глаза. В зависимости от возможности восприятия человеческим глазом, спектр света разделяют на видимую часть и невидимую. Последнюю, в свою очередь, - на инфракрасный и ультрафиолетовый свет.

Виды спектров

Существуют также разные виды спектров. Таких выделяют три, в зависимости от спектральной плотности интенсивности излучения. Спектры могут быть непрерывные, линейчатые и полосатые. Виды спектров определяют с помощью

Непрерывный спектр

Непрерывный спектр образуется нагретыми до высокой температуры твердыми телами или газами высокой плотности. Всем известная радуга семи цветов является прямым примером непрерывного спектра.

Линейчатый спектр

Также представляет виды спектров и исходит от любого вещества, находящегося в газообразном атомарном состоянии. Здесь важно отметить, что именно в атомарном, а не молекулярном. Такой спектр обеспечивает крайне низкое взаимодействие атомов друг с другом. Поскольку взаимодействия нет, атомы излучают волны перманентно одинаковой длины. Примером такого спектра является свечение газов, нагретых до высокой температуры.

Полосатый спектр

Полосатый спектр визуально представляет собой отдельные полосы, четко разграниченные достаточно темными промежутками. При этом каждая из этих полос не является излучением строго определенной частоты, а состоит из большого количества близко расположенных друг к другу световых линий. Примером таких спектров, как и в случае с линейчатым, является свечение паров при высокой температуре. Однако они создаются уже не атомами, а имеющими крайне тесную общую связь молекулами, что и обуславливает подобное свечение.

Спектр поглощения

Однако на этом виды спектров все-таки не заканчиваются. Дополнительно выделяют еще такой вид, как спектр поглощения. При спектральном анализе спектр поглощения - это темные линии на фоне непрерывного спектра и, по существу, спектр поглощения - это выражение зависимости от показателя поглощения вещества, который может быть более или менее высоким.

Хотя существует широкий диапазон экспериментальных подходов к измерению спектров поглощения. Наиболее распространенным является эксперимент, когда генерируемый пучок излучения пропускается через охлажденный (для отсутствия взаимодействия частиц и, следовательно, свечения) газ, после чего определяется интенсивность излучения, проходящего через него. Переданная энергия вполне может быть использована для вычисления поглощения.

Спектральный анализ

Спектральный анализ - совокупность методов качественного и количественного определения состава объекта, основанная на изучении спектров взаимодействия материи с излучением, включая спектры электромагнитного излучения, акустических волн, распределения по массам и энергиям элементарных частиц и др.

В зависимости от целей анализа и типов спектров выделяют несколько методов спектрального анализа. Атомный и молекулярный спектральные анализы позволяют определять элементный и молекулярный состав вещества, соответственно. В эмиссионном и абсорбционном методах состав определяется по спектрам испускания и поглощения.

Масс-спектрометрический анализ осуществляется по спектрам масс атомарных или молекулярных ионов и позволяет определять изотопный состав объекта.

История

Тёмные линии на спектральных полосках были замечены давно, но первое серьёзное исследование этих линий было предпринято только в 1814 году Йозефом Фраунгофером. В его честь эффект получил название «Фраунгоферовы линии». Фраунгофер установил стабильность положения линий, составил их таблицу (всего он насчитал 574 линии), присвоил каждой буквенно-цифровой код. Не менее важным стало его заключение, что линии не связаны ни с оптическим материалом, ни с земной атмосферой, но являются природной характеристикой солнечного света. Аналогичные линии он обнаружил у искусственных источников света, а также в спектрах Венеры и Сириуса.

Вскоре выяснялось, что одна из самых отчётливых линий всегда появляется в присутствии натрия. В 1859 году Г. Кирхгоф и Р. Бунзен после серии экспериментов заключили: каждый химический элемент имеет свой неповторимый линейчатый спектр, и по спектру небесных светил можно сделать выводы о составе их вещества. С этого момента в науке появился спектральный анализ, мощный метод дистанционного определения химического состава.

Для проверки метода в 1868 году Парижская академия наук организовала экспедицию в Индию, где предстояло полное солнечное затмение. Там учёные обнаружили: все тёмные линии в момент затмения, когда спектр излучения сменил спектр поглощения солнечной короны, стали, как и было предсказано, яркими на тёмном фоне.

Природа каждой из линий, их связь с химическими элементами выяснялись постепенно. В 1860 году Кирхгоф и Бунзен при помощи спектрального анализа открыли цезий, а в 1861 году - рубидий. А гелий был открыт на Солнце на 27 лет ранее, чем на Земле (1868 и 1895 годы соответственно).

Принцип работы

Атомы каждого химического элемента имеют строго определённые резонансные частоты, в результате чего именно на этих частотах они излучают или поглощают свет. Это приводит к тому, что в спектроскопе на спектрах видны линии (тёмные или светлые) в определённых местах, характерных для каждого вещества. Интенсивность линий зависит от количества вещества и его состояния. В количественном спектральном анализе определяют содержание исследуемого вещества по относительной или абсолютной интенсивностям линий или полос в спектрах.

Оптический спектральный анализ характеризуется относительной простотой выполнения, отсутствием сложной подготовки проб к анализу, незначительным количеством вещества (10-30 мг), необходимого для анализа на большое число элементов.

Атомарные спектры (поглощения или испускания) получают переведением вещества в парообразное состояние путём нагревания пробы до 1000-10000 °C. В качестве источников возбуждения атомов при эмиссионном анализе токопроводящих материалов применяют искру, дугу переменного тока; при этом пробу помещают в кратер одного из угольных электродов. Для анализа растворов широко используют пламя или плазму различных газов.

Применение

В последнее время, наибольшее распространение получили эмиссионные и масс-спектрометрические методы спектрального анализа, основанные на возбуждении атомов и их ионизации в аргоновой плазме индукционных разрядов, а также в лазерной искре.

Спектральный анализ - чувствительный метод и широко применяется в аналитической химии, астрофизике, металлургии, машиностроении, геологической разведке и других отраслях науки.

В теории обработки сигналов, спектральный анализ также означает анализ распределения энергии сигнала (например, звукового) по частотам, волновым числам и т. п.

См. также


Wikimedia Foundation . 2010 .

  • Балты
  • Северная Хань

Смотреть что такое "Спектральный анализ" в других словарях:

    СПЕКТРАЛЬНЫЙ АНАЛИЗ - физич. методы качеств. .и количеств. определения состава в ва, основанные на получении и исследовании его спектров. Основа С. а. спектроскопия атомов и молекул, его классифицируют по целям анализа и типам спектров. Атомный С. а. (АСА) определяет… … Физическая энциклопедия

    Спектральный анализ - Измерение состава вещества, основанное на исследовании его спектров Источник … Словарь-справочник терминов нормативно-технической документации

    Спектральный анализ - см. Спектроскопия. Геологический словарь: в 2 х томах. М.: Недра. Под редакцией К. Н. Паффенгольца и др.. 1978. Спектральный анализ … Геологическая энциклопедия

    СПЕКТРАЛЬНЫЙ АНАЛИЗ - Введенное Бунзеном и Кирхгофом в 1860 году химическое исследование вещества посредством свойственных этому последнему цветных линий, которые замечаются, если смотреть на него (во время улетучивания) через призму. Объяснение 25000 иностранных слов … Словарь иностранных слов русского языка

    СПЕКТРАЛЬНЫЙ АНАЛИЗ - СПЕКТРАЛЬНЫЙ АНАЛИЗ, один из методов анализа, в к ром используются спектры (см. Спектроскопия, спектроскоп), даваемые тем» или иными телами при их накаливании! или при пропускании через растворы лучей, дающих сплошной спектр. Для… … Большая медицинская энциклопедия

    СПЕКТРАЛЬНЫЙ АНАЛИЗ - физический метод качественного и количественного определения состава вещества, проводимый по его спектрам оптическим. Различают атомный и молекулярный спектральный анализ, эмиссионный (по спектрам испускания) и абсорбционный (по спектрам… … Большой Энциклопедический словарь

    Спектральный анализ - математико статистический метод анализа временных рядов, при котором ряд рассматривется как сложная совокупность, смесь гармонических колебаний, накладываемых друг на друга. При этом основное внимание уделяется частоте… … Экономико-математический словарь

    СПЕКТРАЛЬНЫЙ АНАЛИЗ - физ. методы качественного и количественного определения хим. состава любых веществ на основе получения и исследования их оптического спектра. В зависимости от характера используемых спектров различают следующие их виды: испускания (эмиссионный С … Большая политехническая энциклопедия

    Спектральный анализ - I Спектральный анализ физический метод качественного и количественного определения атомного и молекулярного состава вещества, основанный на исследовании его спектров. Физическая основа С. а. Спектроскопия атомов и молекул, его… … Большая советская энциклопедия

    Спектральный анализ - Содержание статьи. I. Свечение тел. Спектр лучеиспускания. Солнечный спектр. Фраунгоферовы линии. Призматический и дифракционный спектры. Цветорассеяние призмы и решетки. II. Спектроскопы. Коленчатый и прямой спектроскоп à vision directe.… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Со дня открытия «спектрального анализа» вокруг этого термина велось много споров. Сначала физический принцип спектрального анализа подразумевал метод идентификации элементарного состава пробы по наблюдаемому спектру, который возбуждался в каком-нибудь высокотемпературном источнике пламени, искре или дуге.

В дальнейшем под спектральным анализом стали понимать другие методы аналитического изучения и возбуждения спектров:

  • методы комбинационного рассеяния,
  • методы поглощения и люминесценции.

В конце концов, были открыты рентгеновские и гамма спектры. Поэтому правильно, говоря о спектральном анализе, подразумевать совокупность всех существующих методов. Однако чаще явление идентификации по спектрам используют, понимая эмиссионные методы.

Способы классификации

Еще один вариант классификации – это разделение на молекулярные (определение молекулярного состава пробы) и элементарные (определение атомарного состава) исследования спектров.

Молекулярный метод основан на изучении спектров поглощения, комбинационного рассеяния и люминесценции; атомарный состав определяется по спектрам возбуждения в горячих источниках (молекулы в основном разрушаются) либо по данным рентгеноспектральных исследований. Но такая классификация не может быть строгой, потому что иногда оба эти метода совпадают.

Классификация методов спектрального анализа

Отталкиваясь от задач, которые решаются вышеописанными методами, изучение по спектрам делят на методы, применяемые для исследования сплавов, газов, руд и минералов, готовых изделий, чистых металлов и т.д. Каждый изучаемый объект обладает своими характерными особенностями и стандартами. Два основных направления анализа спектров:

  1. Качественный
  2. Количественный

Что изучается при их проведении, рассмотрим далее.

Диаграмма методов спектрального анализа

Качественный спектральный анализ

Качественный анализ служит для того, чтобы определить из каких элементов состоит анализируемый образец. Необходимо получить спектр пробы, возбужденный в каком-либо источнике, и по обнаруженным спектральным линиям определить каким элементам они принадлежат. Так станет понятно, из чего состоит образец. Сложность качественного анализа – это большое количество спектральных линий на аналитической спектрограмме, расшифровка и идентификация которых слишком трудоемка и не точна.

Количественный спектральный анализ

Метод количественного спектрального анализа основан на том, что интенсивность аналитической линии увеличивается с возрастанием содержания определяемого элемента в пробе. Эта зависимость строится на основе множества факторов, которые сложно численно рассчитать. Поэтому теоретически установить связь между интенсивностью линии и концентрацией элемента практически невозможно.

Поэтому проводятся относительные измерения интенсивностей одной и той же спектральной линии при изменении концентрации определяемого элемента. Так, при неизменности условий возбуждения и регистрации спектров, измеряемая энергия излучения пропорциональна интенсивности. Измерение этой энергии (либо зависящей от нее величины) дает нужную нам эмпирическую связь между измеряемой величиной и концентрацией элемента в пробе.

Химический состав вещества – важнейшая характеристика используемых человечеством материалов. Без его точного знания невозможно со сколько-нибудь удовлетворительной точностью спланировать технологические процессы в промышленном производстве. В последнее время требования к определению химического состава вещества еще более ужесточились: многие сферы производственной и научной деятельности требуют материалы определенной «чистоты» - это требования точного, фиксированного состава, а также жесткого ограничения на наличие примесей инородных веществ. Всвязи с этими тенденциями разрабатываются все боле прогрессивные методики определения химического состава веществ. К ним относится и метод спектрального анализа, обеспечивающий точное и быстрое изучение химии материалов.

Фантастика света

Природа спектрального анализа

(спектроскопия ) изучает химический состав веществ на основе их способностей по испусканию и поглощению света. Известно, что каждый химический элемент испускает и поглощает характерный только для него световой спектр, при условии, что его можно привести к газообразному состоянию.

В соответствии с этим, возможно определение наличия этих веществ в том или ином материале по присущему только им спектру. Современные методы спектрального анализа позволяют установить наличие вещества массой до миллиардных долей грамма в пробе – за это ответственен показатель интенсивности излучения. Уникальность испускаемого спектра атомом характеризует его глубокую взаимосвязь с физической структурой.

Видимый свет представляет собой излучение с от 3,8 *10 -7 до 7,6*10 -7 м, ответственной за различные цвета. Вещества могут излучать свет только лишь в возбужденном состоянии (это состояние характеризуется повышенным уровнем внутренней ) при наличии постоянного источника энергии.

Получая избыточную энергию, атомы вещества излучают ее в виде света и возвращаются в свое обычное энергетическое состояние. Именно этот испускаемый атомами свет и используется для спектрального анализа. К самым распространенным видам излучения относят: тепловое излучение, электролюминесценция, катодолюминесценция, хемилюминесценция.

Спектральный анализ. Окрашивание пламени ионами металлов

Виды спектрального анализа

Различают эмиссионную и абсорбционную спектроскопию. Метод эмиссионной спектроскопии основан на свойствах элементов к излучению света. Для возбуждения атомов вещества используются высокотемпературный нагрев, равный нескольким сотням или даже тысячам градусов, – для этого пробу вещества помещают в пламя или в поле действия мощных электрических разрядов. Под воздействием высочайшей температуры молекулы вещества разделяются на атомы.

Атомы, получая избыточную энергию, излучают ее в виде квантов света различной длины волны, которые регистрируются спектральными аппаратами – приборами, визуально изображающими получившийся световой спектр. Спектральные аппараты служат также и разделительным элементом системы спектроскопии, потому как световой поток суммируется от всех присутствующих в пробе веществ, и в его задачи входит разделение общего массива света на спектры отдельных элементов и определение их интенсивности, которая позволит в будущем сделать выводы о величине присутствующего элемента в общей массе веществ.

  • В зависимости от методов наблюдения и регистрации спектров различают спектральные приборы: спектрографы и спектроскопы. Первые регистрируют спектр на фотопленке, а вторые делают доступным просмотр спектра для прямого наблюдения человеком через специальные зрительные трубы. Для определения размеров используются специализированные микроскопы, позволяющие с высокой точностью определить длину волны.
  • После регистрации светового спектра он подвергается тщательному анализу. Выявляются волны определенной длины и их положение в спектре. Далее выполняется соотношение их положения с принадлежностью к искомым веществам. Делается это с помощью сравнения данных положения волн с информацией, расположенной в методических таблицах, указывающих на типичные длины волн и спектры химических элементов.
  • Абсорбционная спектроскопия проводится подобно эмиссионной. В этом случае вещество помещают между источником света и спектральным аппаратом. Проходя через анализируемый материал, испущенный свет достигает спектрального аппарата с «провалами» (линии поглощения) по некоторым длинам волн – они и составляют поглощенный спектр исследуемого материала. Дальнейшая последовательность исследования аналогична для приведенного выше процесса эмиссионной спектроскопии.

Открытие спектрального анализа

Значение спектроскопии для науки

Спектральный анализ позволил человечеству открыть несколько элементов, которые невозможно было определить традиционными методами регистрации химических веществ. Это такие элементы, как рубидий, цезий, гелий (он был открыт с помощью спектроскопииСолнца – задолго до его обнаружения на Земле), индий, галлий и другие. Линии этих элементов были обнаружены в спектрах излучения газов, и на момент их исследования были неидентифицируемы.

Стало понятно, что это и есть новые, доселе неизвестные элементы. Серьезное влияние спектроскопия оказала на становление нынешнего вида металлургической и машиностроительной промышленности, атомной индустрии, сельское хозяйство, где стала одним из главных инструментов систематического анализа.

Огромное значение спектроскопия приобрела в астрофизике

Спровоцировав колоссальный скачок в понимании структуры Вселенной и утверждении того факта, что все сущее состоит из одних и тех же элементов, которыми, в том числе, изобилует и Земля. Сегодня метод спектрального анализа позволяет ученым определять химический состав находящихся за миллиарды километров от Земли звезд, туманностей, планет и галактик – эти объекты, естественно, не доступны методикам прямого анализа ввиду своего большого удаления.

С помощью метода абсорбционной спектроскопии возможно изучение далеких космических объектов, не обладающих собственным излучением. Это знание позволяет устанавливать важнейшие характеристики космических объектов: давление, температуру, особенности структуры строения и многое другое.

Одним из основных методов анализа химического состава вещества является спектральный анализ. Анализ его состава производится, на основании изучения его спектра. Спектральный анализ — используется в различных исследованиях. С его помощью открыт комплекс химических элементов: Не, Ga, Cs. в атмосфере Солнца. А также Rb, Inи XI, определён состав Солнца и большинства других небесных тел.

Отрасли применения

Спектральная экспертиза, распространена в:

  1. Металлургии;
  2. Геологии;
  3. Химии;
  4. Минералогии;
  5. Астрофизике;
  6. Биологии;
  7. медицине и др.

Позволяет находить в изучаемых объектах малейшие количества устанавливаемого вещества (до 10 — MS) Спектральный анализ делится на качественный и количественный.

Методы

Способ установления химического состава вещества на основе спектра – это и есть основа спектрального анализа. Линейчатые спектры обладают неповторимой индивидуальностью, так же как и отпечатки пальцев у людей, или же узор снежинок. Неповторимость рисунков на коже пальца – это большое преимущество для розыска преступника. Поэтому благодаря особенности каждого спектра имеется — возможность установить химическое содержание тела, проведя анализ химического состава вещества. Даже если его масса элемента не превышает 10 — 10 г, с помощью спектрального анализа его можно обнаружить в составе сложного вещества. Это достаточно чувствительный метод.

Эмиссионный спектральный анализ

Эмиссионный спектральный анализ — это ряд методов установления химического состава вещества по его эмиссионному спектру. В основу способа установления химического состава вещества – спектральной экспертизы, положены закономерности в спектрах испускания и спектрах поглощения. Данный метод позволяет выявить миллионные доли миллиграмма вещества.

Существуют методы качественной и количественной экспертизы, в соответствии с установлением аналитической химии как предмета, целью которой является формирование способов установления химического состава вещества. Методы идентификации вещества, становятся крайне важными в пределах качественного органического анализа.

По линейчатому спектру паров какого-либо из веществ есть возможность установить, какие химические элементы содержаться в его составе, т.к. любой химический элемент имеет личный специфический спектр излучения. Подобный метод установления химического состава вещества именуется качественным спектральным анализом.

Рентгеноспектральный анализ

Существует еще один метод определения химического вещества, называемый рентгеноспектральным анализом. Рентгеноспектральный анализ основан на активации атомов вещества при облучении его рентгеновскими лучами, процесс называется вторичным или флуоресцентным. А также возможна активация при облучении электронами больших энергий, в этом случае процесс именуют прямым возбуждением. В результате перемещения электронов в более глубоких внутренних электронных слоях появляются линии рентгеновского излучения.

Формула Вульфа — Брэггов позволяет устанавливать длины волн, в составе рентгеновского излучения, при применении кристалла популярной структуры с известным расстоянием d. Это и есть основание метода определения. Изучаемое вещество бомбят стремительными электронами. Помещают его, к примеру, на анод разборной рентгеновской трубки, впоследствии чего оно источает характерные рентгеновские лучи, которые падают на кристалл известной структуры. Измеряют углы и рассчитывают по формуле соответствующие длины волн, после фотографирования возникающей при этом дифракционной картине.

Приемы

В настоящее время все методы химического анализа основаны на двух приемах. Либо на: физическом приеме, либо на химическом приеме сравнения устанавливаемой концентрации с ее единицей измерения:

Физический

Физический приём основан на способе соотнесения с эталоном единицы величины количества компонента путем измерения его физического свойства, который зависит от его содержания в пробе вещества. Пробно определяют функциональную зависимость «Насыщенность свойства – содержание компонента в пробе» способом градуировки средства измерения данного физического свойства по устанавливаемому компоненту. Из градуировочного графика получают количественные отношения, построенного в координатах: «насыщенность физического свойства — концентрация устанавливаемого компонента».

Химический

Химический приём используется в способе соотнесения с эталоном единицы величины количества компонента. Тут используются законы сохранения количества или массы компонента при химических взаимодействиях. На химических свойствах химических соединений, основаны химические взаимодействия. В пробе вещества осуществляют химическую реакцию, отвечающую поставленным требованиям, для определения искомого компонента, и производится замер объёма или массы, принимающих участие в конкретной химической реакции компонентов. Получают количественные отношения, далее записывается количества эквивалентов компонента для данной химической реакции или закон сохранения массы.

Приборы

Приборами для анализа физико-химического состава вещества являются:

  1. Газоанализаторы;
  2. Сигнализаторы предельно допустимых и до взрывоопасных концентраций паров и газов;
  3. Концентратомеры жидких растворов;
  4. Плотномеры;
  5. Солемеры;
  6. Влагомеры и др. схожие по назначению и комплектности приборы.

Со временем все более увеличивается круг анализируемых объектов и повышается скорость и правильность анализа. Одним из главнейших приборных методов установления атомного химического состава вещества становится спектральный анализ.

С каждым годом все больше появляются комплексы приборов, для количественного спектрального анализа. А также выпускают наиболее усовершенствованные виды аппаратуры и способы регистрации спектра. Организуются спектральные лаборатории первоначально в машиностроительной, металлургической, а затем и других областях промышленности. Со временем вырастает скорость и верность анализа. К тому же расширяется область анализируемых объектов. Одним из основных приборных методов установления атомного химического состава вещества становится спектральный анализ.