Способ моментов в статистике пример. Свойства средней арифметической

Признаки единиц статистических совокупностей различны по своему значению, например, заработная плата рабочих одной профессии какого-либо предприятия не одинакова за один и тот же период времени, различны цены на рынке на одинаковую продукцию, урожайность сельскохозяйственных культур в хозяйствах района и т.д. Поэтому, чтобы определить значение признака, характерное для всей изучаемой совокупности единиц, рассчитывают средние величины.
Средняя величина это обобщающая характеристика множества индивидуальных значений некоторого количественного признака.

Совокупность, изучаемая по количественному признаку, состоит из индивидуальных значений; на них оказывают влияние, как общие причины, так и индивидуальные условия. В среднем значении отклонения, характерные для индивидуальных значений, погашаются. Средняя, являясь функцией множества индивидуальных значений, представляет одним значением всю совокупность и отражает то общее, что присуще всем ее единицам.

Средняя, рассчитываемая для совокупностей, состоящих из качественно однородных единиц, называется типической средней . Например, можно рассчитать среднемесячную заработную плату работника той или иной профессиональной группы (шахтера, врача библиотекаря). Разумеется, уровни месячной заработной платы шахтеров в силу различия их квалификации, стажа работы, отработанного за месяц времени и многих других факторов отличаются друг от друга, так и от уровня средней заработной платы. Однако в среднем уровне отражены основные факторы, которые влияют на уровень заработной платы, и взаимно погашаются различия, которые возникают вследствие индивидуальных особенностей работника. Средняя заработная плата отражает типичный уровень оплаты труда для данного вида работников. Получению типической средней должен предшествовать анализ того, насколько данная совокупность качественно однородна. Если совокупность состоит их отдельных частей, следует разбить ее на типические группы (средняя температура по больнице).

Средние величины, используемые в качестве характеристик для неоднородных совокупностей, называются системными средними . Например, средняя величина валового внутреннего продукта (ВВП) на душу населения, средняя величина потребления различных групп товаров на человека и другие подобные величины, представляющие обобщающие характеристики государства как единой экономической системы.

Средняя должна вычисляться для совокупностей, состоящих из достаточно большого числа единиц. Соблюдение этого условия необходимо для того, чтобы вошел в силу закон больших чисел, в результате действия которого случайные отклонения индивидуальных величин от общей тенденции взаимно погашаются.

Виды средних и способы их вычисления

Выбор вида средней определяется экономическим содержанием определенного показателя и исходных данных. Однако любая средняя величина должна вычисляться так, чтобы при замене ею каждой варианты осредняемого признака не изменился итоговый, обобщающий, или, как его принято называть, определяющий показатель , который связан с осредняемым показателем. Например, при замене фактических скоростей на отдельных отрезках пути их средней скоростью не должно измениться общее расстояние, пройденное транспортным средством за одно и тоже время; при замене фактических заработных плат отдельных работников предприятия средней заработной платой не должен измениться фонд заработной платы. Следовательно, в каждом конкретном случае в зависимости от характера имеющихся данных, существует только одно истинное среднее значение показателя, адекватное свойствам и сущности изучаемого социально-экономического явления.
Наиболее часто применяются средняя арифметическая, средняя гармоническая, средняя геометрическая, средняя квадратическая и средняя кубическая.
Перечисленные средние относятся к классу степенных средних и объединяются общей формулой:
,
где – среднее значение исследуемого признака;
m – показатель степени средней;
– текущее значение (варианта) осредняемого признака;
n – число признаков.
В зависимости от значения показателя степени m различают следующие виды степенных средних:
при m = -1 – средняя гармоническая ;
при m = 0 – средняя геометрическая ;
при m = 1 – средняя арифметическая ;
при m = 2 – средняя квадратическая ;
при m = 3 – средняя кубическая .
При использовании одних и тех же исходных данных, чем больше показатель степени m в вышеприведенной формуле, тем больше значение средней величины:
.
Это свойство степенных средних возрастать с повышением показателя степени определяющей функции называется правилом мажорантности средних .
Каждая из отмеченных средних может приобретать две формы: простую и взвешенную .
Простая форма средней применяется, когда средняя вычисляется по первичным (несгруппированными) данным. Взвешенная форма – при расчете средней по вторичным (сгруппированным) данным.

Средняя арифметическая

Средняя арифметическая применяется, когда объем совокупности представляет собой сумму всех индивидуальных значений варьирующего признака. Следует отметить, что если вид средней величины не указывается, подразумевается средняя арифметическая. Ее логическая формула имеет вид:

Средняя арифметическая простая рассчитывается по несгруппированным данным по формуле:
или ,
где – отдельные значения признака;
j – порядковый номер единицы наблюдения, которая характеризуется значением ;
N – число единиц наблюдения (объем совокупности).
Пример. В лекции «Сводка и группировка статистических данных» рассматривались результаты наблюдения стажа работы бригады из 10 человек. Рассчитаем средний стаж работы рабочих бригады. 5, 3, 5, 4, 3, 4, 5, 4, 2, 4.

По формуле средней арифметической простой вычисляются также средние в хронологическом ряду , если интервалы времени, за которое представлены значения признака, равны.
Пример. Объем реализованной продукции за первый квартал составил 47 ден. ед., за второй 54, за третий 65 и за четвертый 58 ден. ед. Среднеквартальный оборот составляет (47+54+65+58)/4 = 56 ден. ед.
Если в хронологическом ряду приведены моментные показатели, то при вычислении средней они заменяются полусуммами значений на начало и конец периода.
Если моментов больше двух и интервалы между ними равны, то средняя вычисляется по формуле средней хронологической

,
где n- число моментов времени
В случае, когда данные сгруппированы по значениям признака (т. е. построен дискретный вариационный ряд распределения) средняя арифметическая взвешенная рассчитывается с использовании либо частот , либо частостей наблюдения конкретных значений признака , число которых (k) значительно меньше числа наблюдений (N) .
,
,
где k – количество групп вариационного ряда,
i – номер группы вариационного ряда.
Поскольку , а , получаем формулы, используемые для практических расчетов:
и
Пример. Рассчитаем средний стаж рабочих бригад по сгруппированному ряду.
а) с использованием частот:

б) с использованием частостей:

В случае, когда данные сгруппированы по интервалам , т.е. представлены в виде интервальных рядов распределения, при расчете средней арифметической в качестве значения признака принимают середину интервала, исходя из предположения о равномерном распределении единиц совокупности на данном интервале. Расчет ведется по формулам:
и
где - середина интервала: ,
где и – нижняя и верхняя границы интервалов (при условии, что верхняя граница данного интервала совпадает с нижней границей следующего интервала).

Пример. Рассчитаем среднюю арифметическую интервального вариационного ряда, построенного по результатам исследования годовой заработной платы 30 рабочих (см. лекцию «Сводка и группировка статистических данных»).
Таблица 1 – Интервальный вариационный ряд распределения.

Интервалы, грн.

Частота, чел.

Частость,

Середина интервала,

600-700
700-800
800-900
900-1000
1000-1100
1100-1200

3
6
8
9
3
1

0,10
0,20
0,267
0,30
0,10
0,033

(600+700):2=650
(700+800):2=750
850
950
1050
1150

1950
4500
6800
8550
3150
1150

65
150
226,95
285
105
37,95

грн. или грн.
Средние арифметические, вычисленные на основе исходных данных и интервальных вариационных рядов, могут не совпадать из-за неравномерности распределения значений признака внутри интервалов. В этом случае для более точного вычисления средней арифметической взвешенной следует использовать не средины интервалов, а средние арифметические простые, рассчитанные для каждой группы (групповые средние ). Средняя, вычисленная по групповым средним с использованием взвешенной формулы расчета, называется общей средней .
Средняя арифметическая обладает рядом свойств.
1. Сумма отклонений вариант от средней равна нулю:
.
2. Если все значения вариант увеличиваются или уменьшаются на величину А, то и средняя величина увеличивается или уменьшается на ту же величину А:

3. Если каждую варианту увеличить или уменьшить в В раз, то средняя величина также увеличится или уменьшатся в то же количество раз:
или
4. Сумма произведений вариант на частоты равна произведению средней величины на сумму частот:

5. Если все частоты разделить или умножить на какое-либо число, то средняя арифметическая не изменится:

6) если во всех интервалах частоты равны друг другу, то средняя арифметическая взвешенная равна простой средней арифметической:
,
где k – количество групп вариационного ряда.

Использование свойств средней позволяет упростить ее вычисление.
Допустим, что все варианты (х) сначала уменьшены на одно и то же число А, а затем уменьшены в В раз. Наибольшее упрощение достигается, когда в качестве А выбирается значение середины интервала, обладающего наибольшей частотой, а в качестве В – величина интервала (для рядов с одинаковыми интервалами). Величина А называется началом отсчета, поэтому этот метод вычисления средней называется спосо бом отсчета от условного нуля или способом моментов .
После такого преобразования получим новый вариационный ряд распределения, варианты которого равны . Их средняя арифметическая, называемая моментом первого порядка, выражаетсяформулой и согласно второго и третьего свойств средней арифметической равна средней из первоначальных вариант, уменьшенной сначала на А, а потом в В раз, т. е. .
Для получения действительной средней (средней первоначального ряда)нужно момент первого порядка умножить на В и прибавить А:

Расчет средней арифметической по способу моментов иллюстрируется данными табл. 2.
Таблица 2 – Распределение работников цеха предприятия по стажу работы


Стаж работников, лет

Количество работников

Середина интервала

0 – 5
5 – 10
10 – 15
15 – 20
20 – 25
25 – 30

12
16
23
28
17
14

2,5
7,5
12,7
17,5
22,5
27,5

15
-10
-5
0
5
10

3
-2
-1
0
1
2

36
-32
-23
0
17
28

Находим момент первого порядка . Затем, зная, что А=17,5, а В=5, вычисляем средний стаж работы работников цеха:
лет

Средняя гармоническая
Как было показано выше, средняя арифметическая применяется для расчета среднего значения признака в тех случаях, когда известны его варианты x и их частоты f.
Если статистическая информация не содержит частот f по отдельным вариантам x совокупности, а представлена как их произведение , применяется формула средней гармонической взвешенной . Чтобы вычислить среднюю, обозначим , откуда . Подставив эти выражения в формулу средней арифметической взвешенной, получим формулу средней гармонической взвешенной:
,
где - объем (вес) значений признака показателя в интервале с номером i (i=1,2, …, k).

Таким образом, средняя гармоническая применяется в тех случаях, когда суммированию подлежат не сами варианты, а обратные им величины: .
В тех случаях, когда вес каждой варианты равен единице, т.е. индивидуальные значения обратного признака встречаются по одному разу, применяется средняя гармоническая простая :
,
где – отдельные варианты обратного признака, встречающиеся по одному разу;
N – число вариант.
Если по двум частям совокупности численностью и имеются средние гармонические, то общая средняя по всей совокупности рассчитывается по формуле:

и называется взвешенной гармонической средней из групповых средних .

Пример. В ходе торгов на валютной бирже за первый час работы заключены три сделки. Данные о сумме продажи гривны и курсе гривны по отношению к доллару США приведены в табл. 3 (графы 2 и 3). Определить средний курс гривны по отношению к доллару США за первый час торгов.
Таблица 3 – Данные о ходе торгов на валютной бирже

Средний курс доллара определяется отношением суммы проданных в ходе всех сделок гривен к сумме приобретенных в результате этих же сделок долларов. Итоговая сумма продажи гривны известна из графы 2 таблицы, а количество купленных в каждой сделке долларов определяется делением суммы продажи гривны к ее курсу (графа 4). Всего в ходе трех сделок куплено 22 млн. дол. Значит, средний курс гривны за один доллар составил
.
Полученное значение является реальным, т.к. замена им фактических курсов гривны в сделках не изменит итоговой суммы продаж гривны, выступающей в качестве определяющего показателя : млн. грн.
Если бы для расчета была использована средняя арифметическая, т.е. гривны, то по обменному курсу на покупку 22 млн. дол. нужно было бы затратить 110,66 млн. грн., что не соответствует действительности.

Средняя геометрическая
Средняя геометрическая используется для анализа динамики явлений и позволяет определить средний коэффициент роста. При расчете средней геометрической индивидуальные значения признака представляют собой относительные показатели динамики, построенные в виде цепных величин, как отношения каждого уровня к предыдущему.
Средняя геометрическая простая рассчитывается по формуле:
,
где – знак произведения,
N – число осредняемых величин.
Пример. Количество зарегистрированных преступлений за 4 года возросло в 1,57 раза, в т. ч. за 1-й – в 1,08 раза, за 2-й – в 1,1 раза, за 3-й – в 1,18 и за 4-й – в 1,12 раза. Тогда среднегодовой темп роста количества преступлений составляет: , т.е. число зарегистрированных преступлений ежегодно росло в среднем на 12%.

1,8
-0,8
0,2
1,0
1,4

1
3
4
1
1

3,24
0,64
0,04
1
1,96

3,24
1,92
0,16
1
1,96

Для расчета средней квадратической взвешенной определяем и заносим в таблицу и . Тогда средняя величина отклонений длины изделий от заданной нормы равна:

Средняя арифметическая в данном случае была бы непригодна, т.к. в результате мы получили бы нулевое отклонение.
Применение средней квадратической будет рассмотрено далее в показателях вариации.

Формулы по статистике

Тема 1: Группировка статистических данных

Определение числа групп (если группи-ка по непрер. приз-ку или дискрет. со многими знач-ями)

Определение величины равного интервала :

Тема 2: Абсолютные и относительные величины

Относительные величины :

1) относит. вел-на структуры :

2) относит. вел-на планового задания :

3) относит. вел-на выполнения плана :

4) относит. вел-на динамики или темп роста :

5) относит. вел-на сравнения

6) относит. вел-на интенсивности (пример: фондоотдача = объем/стоимость (один год))

Тема 3: Средние величины и показатели вариации

Средняя арифметическая

простая :

взвешенная :

Средняя гармоническая

простая :

взвешенная : , сумма значений признака по группе

Свойства средн. арифметической:

    если каждую вари-ту х умен-ть или увел-ть на одно и то же число, то ср. вел-на умен-ется или увел-ется на это же число;

    если каждую вари-ту х умен-ть или увел-ть в одно и то же число раз, то ср. вел-на умен-ется или увел-ется в одно и то же число раз;

    если каждую частоту f умен-ть или увел-ть в одно и то же число раз, то ср. вел-на не изменится.

Ср. вел-на зависит от вар-ты х и структуры совок-сти , кот. харак-ется долями d .

Ряд распределения имеет 3 центра :

1) ср. аримет-кое ;

2) мода – наиболее часто встречающаяся вар-та ;

3) медиана – вар-та, стоящая в середине ряда распре-ния. Сначала находят N медианы, кот. равен n/2, если число еди-ц совок-сти n – чётное, или , если число еди-ц совок-сти нечетное .

Осн. пока-ли вариации :

1) размах вариации :

2) ср. линейное отклонение (ср. арифм-кая из абсолют. откл-ний отдел. значений)

Для несгруппир. данных:

Для сгруппир. данных:

3) ср. квадратическое отклонение (хар-ет ср. абсол. откл-ние вар-ты от ср. вел-ны)

Для несгруппир. данных :

Для сгруппир. данных :

4) Дисперсия – квадрат среднеквадр-ного откл-ния

Для несгруппир. данных :

Для сгруппир. данных :

Общая дисперсия: (для сгрупп.) (для несгрупп.)

ср. вел-на резул. приз-ка в сово-сти, - частота (в совокупности!)

Внутригрупповая дисперсия: - кол-во вариант в группе i

Междугрупповая дисперсия: - кол-во вариант в группе i

Правило сложения дисперсий:

Не имеет еди-ц измерения.

5) Коэффициент вариации хар-ет ср. относит. откл-ние вар-ты от ср. вел-ны.

Способ моментов

Часто мы сталкиваемся с расчетом средней арифметической упрощенным способом.

В этом случае используются свойства средней величины. Метод упрощенного расчета называется способом моментов, либо способом отсчета от условного нуля.

Способ моментов предполагает следующие действия :

1) Выбирается начало отсчета (из х ) – условный нуль (A ). Обычно как можно ближе к середине распре-ния.

2) Находятся отклонения вариантов от условного нуля ().

4) Если эти отклонения содержат общий множитель (k ), то рассчитанные

отклонения делятся на этот множитель.

Способ моментов :

Средняя:

Дисперсия:

Тема 4: Выборочное наблюдение

Обозначения в теории выборки:

N – числи-ль генер. выборки

n – числи-ль генер. выборки

Генер. средняя (оценивают)

– выбор. средняя (рассчитывают)

p – генер. доля (оценивают)

w – выбор. доля (рассчитывают)

P (t ) – задаваемый уровень веро-сти

Генер. средняя: с задан. уровнем вероя-сти P(t)

– ошибка выборки для ср. вел-ны

, t – критерий надеж-сти, его вел-на зав-т от уровня задан. вероя-сти P(t)

Если 1) P (t ) = 0,683, то t =1 ; 2) P (t ) = 0,954, то t =2 ; 3) P (t ) = 0,997, то t =3

– среднеквадр. ошибка выборки

– верна для повторного отбора в выборке.

- для бесповторного отбора

Доказано: с задан. уровнем вероя-сти P(t)

– ошибка выборки для доли

, – среднеквадр. ошибка выборки для доли

–для повторного отбора

- для бесповторного отбора

Тема 5: Ряды динамики

Аналит. пока-ли:

1) Абсолют. прирост (разница уровней)

(цепной) ; (базисный)

2) Темп роста (отношение уровней)

(цепной) ; (базисный)

3) Темп прироста

(цепной) ; (базисный)

4) Абсолютное значение 1% прироста

(цепной) ; (базисный)

Средние показатели:

1) ср. уровни динам. ряда ;

2) ср. аналитич. показ-ли динам. ряда .

Расчет ср. уровня зав-т от вида РД:

а) для интерв. РД с равн. периодами вре-ни ср. арифмет. простая

б) для интерв. РД с неравн. периодами вре-ни ср. арифмет. взвешенная

в) для моментных РД с равноотстоящими датами ср. хронологическая

г) для моментных РД с неравноотстоящими датами ср. арифмет. взвешенная

Расчет ср. аналит. показ-лей:

а) ср. абсолют. прирост

б) ср. темп роста

в) ср. темп прироста

Смыкание РД

Для проведения смыкания РД в смыкаемых рядах находится временной момент (дата, период), когда им-ся сведения об изучаемом признаке как в прежних, так и в новых условиях. Рассчитывается коэфф-т, дальнейш. расчеты – по сомкнутом. ряду.

В ходе обработки РД важн. задачей яв-ся выявление основ. тенденции раз-тия явления (тренда) и сглаживание случ. колебаний. Для решения этой задачи сущ-ют особые способы, кот. наз-ют методами выравнивания.

3 основн. способа обработки динамического ряда:

а) укрупнение интервалов РД и расчет средних для кажд. укрупненного интервала;

(переход от менее продолжит.инт-лов к более продолжит. Средняя, рассчитанная по укрупненным инт-лам, позволяет выявить направление и характер (ускорение или замедление) основ. тенденции развития. Средняя рассчитывается по формулам простой средней арифметической.

б) метод скользящей средней;

(вычисл-ся ср. уровень из опред. числа, обычно нечетного, первых по счету уровней ряда. Затем - из такого же числа уровней, но начиная со второго по счету, далее - начиная с третьего и т. д. Т/о, средняя как бы «скользит» по временному ряду от его начала к концу, каждый раз отбрасывая один уровень в начале и добавляя один следующий.

в) аналитическое выравнивание.

Сезонные колебания и волны

Индексами сезонности яв-ся процентные отношения фактических внутригодовых уровней к постоянной или переменной средней. Совокупность этих показателей отражает сезонную волну.

Для выявления сезон. колебаний обычно испо-ют данные за несколько лет, распределенные по месяцам. Для каждого месяца рассчитывается средняя величина уровня, например за 3 года ( ), затем из них вычисляется средний уровень для всего ряда ( ), далее определяется процентное отношение средних для каждого месяца к общему среднемесячному уровню ряда:

где - средний уровень для каждого месяца;

Среднемесячный уровень для всего ряда.

Для наглядного представления сезонной волны индексы сезонности изображают в виде графиков.

Индивидуальные индексы:

себестоимости

стоимости

денежных затрат

затрат труда

i q

i p

i z

i pq

i qz

i qt

Общие индексы:

Общий индекс физического объема

(как в среднем изм-лось кол-во товаров на рынке)

Абсолютное изм-ние стои-сти за счет изм-ния кол-ва товаров

Общий индекс цен

(агрегатный) (как в среднем изм-лись цены на рынке)

Абсолютное изм-ние стои-сти за счет изм-ния цен

Общий индекс товарооборота (стоимости)

общ. относит. изме-ния стои-сти товаров на рынке

Общ. абсолют. изм-ние стои-сти товаров на рынке

Взаимосвязь индексов

I pq = I p I q

Общий индекс себестоимости

Общий индекс физич. объема (по себестоимости)

Взаимосвязь между индексами

Общий индекс затрат на производство

1.имеется абстрактный характер так как является обобщающей величиной, в ней стираются

случайные колебания

2.занимает срединное положение в ряду (в строго симметричном ряду)

3.сумма отклонений всех вариант от средней величины равна нулю. Данное свойство средней

величины используется для проверки правильности расчета средней величины.

Виды средних величин

1. Мода (Мо) - варианта, наиболее часто встречающая и в вариационном ряду.

2. Медиана (Ме) - варианта занимающая в вариационном ряду срединное

положение, т.е., центральная варианта, делящая вариационный ряд на две

равные части.

М о и М е - условные средние.

3. Средняя арифметическая:

а).Средняя арифметическая простая

б).Средняя арифметическая взвешенная

в). Средняя арифметическая, вычисленная по способу моментов.

Вычисление средней арифметической, простой и взвешенной

В случаях, когда мы имеем простой вариационный ряд, в котором каждой варианте

соответствует частота (Р) равная 1, вычисляется средняя арифметическая простая по

где М средняя арифметическая - знак суммирования V - варианта, n - число наблюдений

Таким образом, средняя арифметическая простая равна сумме всех вариант, деленной на число

наблюдений.

Пример: Определение средней массы тела юношей в возрасте 18 лет (в кг)

Однако чаще всего приходится вычислять среднюю арифметическую взвешенную, которая

получается из взвешенных рядов, где каждая вариантавстречается различное количество раз

или, как говорят, имеет различный вес.

Средняя арифметическая взвешенная вычисляется по формуле:

М = ,

n где М средняя арифметическая - знак суммирования, V - варианта,

Р -частота встречаемости, n - число наблюдений

Таким образом, средняя арифметическая взвешенная равна сумме произведений вариант на их

частоты, деленной на число всех наблюдений.

Пример: определение средней массы тела юношей в возрасте 18 лет (в кг.)

кг.

Вычисление средней арифметической по способу моментов

При большом числе наблюдений или при большом числовом значении вариант применяют

упрощенный способ вычисления средней арифметической- способ моментов.

М = А+ i ар

где М - средняя арифметическая; А - условная средняя; i - интервал между группами вариант;

 - знак суммирования.; а- условное отклонение каждой варианты от условной средней;

р - частота встречаемости вариант; n - число наблюдений.

Пример вычисления средней арифметической по способу моментов (средней массы тела

юношей в возрасте 18 лет)

ар = - 10кг

Этапы расчета средней по способу моментов:

2) определяем "а" - условное отклонение варианты от условной средней, для этого из каждой варианты вычитаем условную среднюю: а = V - А, (например, а = 64 - 62 = +2 и т.д.).

3) умножаем условное отклонение "а" на частоту "р" каждой варианты и получаем произведение а р;

4) находим сумму а. р = - 10кг

5) рассчитываем среднюю арифметическую по способу моментов:

М = А + i аР = 62 - 10,4 = 61,6кг

Таким образом, можно сделать вывод, что в изучаемой нами группе юношей средняя масса тела

Средняя арифметическая сама по себе ничего не говорит о том вариационном ряде, из которого

она была вычислена. На ее типичность (достоверность) влияет однородность рассматриваемого

материала и колеблемость ряда.

Пример: даны два одинаковых по числу наблюдений вариационных ряда, в которых

представлены данные измерений окружности головы детей в возрасте от 1 года до 2-х лет

Имея одинаковое число наблюдений и одинаковые средние арифметические (М= 46 см), ряды

имеют различия в распределении внутри. Так варианты первого ряда отклоняются в целом от

средней арифметической с меньшим значением, чем варианты второго ряда, что дает

возможность предположить, что средняя арифметическая (46 см) более типична для первого

ряда, чем для второго.

В статистике для характеристики разнообразия вариационного ряда употребляют среднее

квадратическое отклонение ()

Существует два способа расчета среднего квадратического отклонения: среднеарифметический

способ и способ моментов. При среднеарифметическом способе расчета применяют формулу:

где d истинное отклонение каждой варианты от истиной средней М. Формула используется при

небольшом числе наблюдений (п 30)

Формула для определения по способу моментов:

где а - условное отклонение варианты от условной средней
;

момент второй степени, а
момент первой степени, возведенный в квадрат.

Теоретически и практически доказано, что если при большом числе наблюдений к средней

арифметической прибавить и отнять от нее 1(М1), то в пределах полученных величин

будет находится 68,3% всех вариант вариационного ряда. Если к средней арифметической

прибавить и отнять 2(М2), то в пределах полученных величин будет находиться 95,5%

всех вариант. М 3включает в себя 99,7% всех вариант вариационного ряда.

Исходя из этого положения можно проверить типичность средней арифметической для

вариационного ряда, из которого она была вычислена. Для этого надо к средней

арифметической прибавить и от нее отнять утроенную (М3). Если в полученные пределы

данный вариационный ряд укладывается, то средняя арифметическая типична, т.е. она

выражает основную закономерность ряда и ей можно пользоваться.

Указанное положение широко применяется при выработке различных стандартов (одежды,

обуви, школьной мебели и т.д).

Степень разнообразия признака в вариационном ряду можно оценить покоэффициенту

вариации (отношение среднего квадратического отклонения к средней арифметической,

умноженное на 100%)

С v = х 100

При С v менее 10% отмечается слабое разнообразие, при С v 10-20% - среднее, а при более 20% -

сильное разнообразие признака.

Средняя арифметическая обладает рядом математических свойств, которые можно использовать, чтобы упростить ее расчеты. Основные свойства средней арифметической такие.

1. Средняя арифметическая постоянной величины равна этой постоянной:

2. Сумма квадратов отклонений от средней арифметической всегда меньше, чем сумма квадратов отклонений от любой другой величины:

X (х X)2 / < (х-А)2 /.

3. Величина средней не изменится, если частоты ряда распределения заменить частостями.

4. Сумма отклонений отдельных значений признака от средней, перемножених на веса (частоты), равна нулю:

£ (х - х) = х - пх = 0 - для простой средней;

£ (х - х)/ = £ х/ - х£ / = 0 - для взвешенной средней.

5. Если все значения признаков увеличить или уменьшить в одинаковое число раз (к), то средняя (х) увеличится или уменьшится во столько же раз:

/ и у_/ ь-

то есть средняя уменьшилась в (к) раз.

6. Если из всех значений вариант (х) отнять или добавить к ним ту же постоянную величину (х0), то средняя (х) уменьшится или увеличится на такую же величину (хо):

В, (х-хо)/ = 2Х В, хо/ = -_ хо В, / = -_ И/ И/ И/ х И/ х°"

то есть средняя уменьшилась на постоянное число х0.

7. Если частоты (веса) разделить или умножить на какое-либо постоянное число ), то средняя не изменится:

Вхк/ кУх/ Ух/ -2Ж / £ /

то есть значение средней не изменилось.

8. Произведение средней на сумму частот равно сумме произведений вариант на частоты:

XI / = £X/.

Это равенство вытекает из определяющей свойства средней арифметической, согласно которой, сравнивая варианты, предоставляя им одинаковые значения путем замены их средним значением, неизменным остается общий объем признака.

9. Общая средняя равна средней из частных средних, взвешенных по численности соответствующих частей (групп) совокупности:

Изложенные выше свойства средней арифметической позволяют упростить ее расчеты: можно из всех значений признака вычесть произвольную постоянную величину, полученную разницу разделить на величину интервала, а затем вычисленную среднюю умножить на величину интервала и добавить произвольную постоянную величину, которая принята за начало отсчета.

Формула вычисления средней арифметической упрощенным способом имеет такой вид:

где х = --уменьшена средняя арифметическая;

ф

х= х к° - отклонения в интервалах; х0 - начало отсчета;

к - величина интервала.

Средняя х с значение - называется моментом первого порядка, а к способ вычисления средней способом моментов или способом отсчета от условного начала.

За условное начало отсчета (х0) обычно принимают одно из значений варіючої признаки, которое, как правило, находится в центре ряда распределения или такое, которое имеет наибольшую частоту.

Рассмотрим пример определения средней арифметической в интервальном ряду распределения способом моментов, используя данные о распределении 100 хозяйств по надою молока на корову (табл. 4.7).

За условное начало отсчета (х0) возьмем одно из значений интервала, расположенного в центре ряда распределения и которое имеет наибольшую частоту. В нашей задаче таким значением х0 = 33 ц. Величина интервала к = 2 ц.

По данным таблицы определим условную (уменьшенную) среднюю арифметическую:

Таблица 4.7. Данные для расчета средней арифметической в интервальном ряду распределения способом моментов

Чтобы получить действительную среднюю продуктивность коров, необходимо внести соответствующие поправки:

Таким образом получен такой же результат как и по данным табл. 4.2. Результаты расчетов средней арифметической двумя способами полностью совпали.

В процессе вычисления средней арифметической и использования ее в анализе социально-экономических процессов может оказаться полезным знание ряда ее математических свойств, которые мы приведем без развернутых доказательств.

Свойство 1. Средняя арифметическая постоянной величины равна этой постоянной: при

Свойство 2. Алгебраическая сумма отклонений индивидуальных значений признака от средней арифметической равна нулю: для несгруппированных данных и для рядов распределения.

Это свойство означает, что сумма положительных отклонений равна сумме отрицательных отклонений, т.е. все отклонения, обусловленные случайными причинами взаимно погашаются.

Свойство 3. Сумма квадратов отклонений индивидуальных значений признака от средней арифметической есть число минимальное: для несгруппировочных данных и для рядов распределения. Это свойство означает, что сумма квадратов отклонений индивидуальных значений признака от средней арифметической всегда меньше суммы отклонений вариантов признака от любого другого значения, даже мало отличающегося от средней.

Второе и третье свойство средней арифметической применяются для проверки правильности расчета средней величины; при изучении закономерностей изменения уровней ряда динамики; для нахождения параметров уравнения регрессии при изучении корреляционной связи между признаками.

Все три первых свойства выражают сущностные черты средней как статистической категории.

Следующие свойства средней рассматриваются как вычислительные, поскольку они имеют некоторое прикладное значение.

Свойство 4. Если все веса (частоты) разделить на какое-либо постоянное число d, то средняя арифметическая не изменится, поскольку это сокращение в равной степени коснется и числителя и знаменателя формулы расчета средней.

Из этого свойства вытекают два важных следствия.

Следствие 1. Если все веса равны между собой, то вычисление средней арифметической взвешенной можно заменить вычислением средней арифметической простой.

Следствие 2. Абсолютные значения частот (весов) можно заменять их удельными весами.

Свойство 5. Если все варианты разделить или умножить на какое-либо постоянное число d, то средняя арифметическая уменьшиться или увеличиться в d раз.

Свойство 6. Если все варианты уменьшить или увеличить на постоянной число A, то и со средней произойдут аналогичные изменения.

Прикладные свойства средней арифметической можно проиллюстрировать, применив способ расчета средней от условного начала (способ моментов).

Средняя арифметическая способом моментов вычисляется по формуле:

где А – середина какого-либо интервала (предпочтение отдается центральному);



d – величина равновеликого интервала, или наибольший кратный делитель интервалов;

m 1 – момент первого порядка.

Момент первого порядка определяется следующим образом:

.

Технику применения этого способа расчета проиллюстрируем по данным предшествующего примера.

Таблица 5.6

Стаж работы, лет Число рабочих Середина интервала x
до 5 2,5 -10 -2 -28
5-10 7,5 -5 -1 -22
10-15 12,5
15-20 17,5 +5 +1 +25
20 и выше 22,5 +10 +2 +22
Итого Х Х Х -3

Как видно из расчетов, приведенных в табл. 5.6 из всех вариантов вычитается одно из их значений 12,5, которое приравнивается нулю и служит условным началом отсчета. В результате деления разностей на величину интервала – 5 получают новые варианты.

Согласно итогу табл. 5.6 имеем: .

Результат вычислений по способу моментов аналогичен результату, который был получен применением основного способа расчета по средней арифметической взвешенной.