Способы числовой последовательности. Числовые последовательности и способы их задания

Вида y = f (x ), x О N , где N – множество натуральных чисел (или функция натурального аргумента), обозначается y = f (n ) или y 1 , y 2 ,…, y n ,…. Значения y 1 , y 2 , y 3 ,… называют соответственно первым, вторым, третьим, … членами последовательности.

Например, для функции y = n 2 можно записать:

y 1 = 1 2 = 1;

y 2 = 2 2 = 4;

y 3 = 3 2 = 9;…y n = n 2 ;…

Способы задания последовательностей. Последовательности можно задавать различными способами, среди которых особенно важны три: аналитический, описательный и рекуррентный.

1. Последовательность задана аналитически, если задана формула ее n -го члена:

y n = f (n ).

Пример. y n = 2n – 1 последовательность нечетных чисел: 1, 3, 5, 7, 9, …

2. Описательный способ задания числовой последовательности состоит в том, что объясняется, из каких элементов строится последовательность.

Пример 1. «Все члены последовательности равны 1». Это значит, речь идет о стационарной последовательности 1, 1, 1, …, 1, ….

Пример 2. «Последовательность состоит из всех простых чисел в порядке возрастания». Таким образом, задана последовательность 2, 3, 5, 7, 11, …. При таком способе задания последовательности в данном примере трудно ответить, чему равен, скажем, 1000-й элемент последовательности.

3. Рекуррентный способ задания последовательности состоит в том, что указывается правило, позволяющее вычислить n -й член последовательности, если известны ее предыдущие члены. Название рекуррентный способ происходит от латинского слова recurrere – возвращаться. Чаще всего в таких случаях указывают формулу, позволяющую выразить n -й член последовательности через предыдущие, и задают 1–2 начальных члена последовательности.

Пример 1. y 1 = 3; y n = y n –1 + 4, если n = 2, 3, 4,….

Здесь y 1 = 3; y 2 = 3 + 4 = 7; y 3 = 7 + 4 = 11; ….

Можно видеть, что полученную в этом примере последовательность может быть задана и аналитически: y n = 4n – 1.

Пример 2. y 1 = 1; y 2 = 1; y n = y n –2 + y n –1 , если n = 3, 4,….

Здесь: y 1 = 1; y 2 = 1; y 3 = 1 + 1 = 2; y 4 = 1 + 2 = 3; y 5 = 2 + 3 = 5; y 6 = 3 + 5 = 8;

Последовательность, составленную в этом примере, специально изучают в математике, поскольку она обладает рядом интересных свойств и приложений. Ее называют последовательностью Фибоначчи – по имени итальянского математика 13 в. Задать последовательность Фибоначчи рекуррентно очень легко, а аналитически – очень трудно. n -е число Фибоначчи выражается через его порядковый номер следующей формулой .

На первый взгляд, формула для n -го числа Фибоначчи кажется неправдоподобной, так как в формуле, задающей последовательность одних только натуральных чисел, содержатся квадратные корни, но можно проверить «вручную» справедливость этой формулы для нескольких первых n .

Свойства числовых последовательностей.

Числовая последовательность – частный случай числовой функции, поэтому ряд свойств функций рассматриваются и для последовательностей.

Определение. Последовательность {y n } называют возрастающей, если каждый ее член (кроме первого) больше предыдущего:

y 1 y 2 y 3 y n y n +1

Определение.Последовательность {y n } называют убывающей, если каждый ее член (кроме первого) меньше предыдущего:

y 1 > y 2 > y 3 > … > y n > y n +1 > … .

Возрастающие и убывающие последовательности объединяют общим термином – монотонные последовательности.

Пример 1. y 1 = 1; y n = n 2 – возрастающая последовательность.

Таким образом, верна следующая теорема (характеристическое свойство арифметической прогрессии). Числовая последовательность является арифметической тогда и только тогда, когда каждый ее член, кроме первого (и последнего в случае конечной последовательности), равен среднему арифметическому предшествующего и последующего членов.

Пример. При каком значении x числа 3x + 2, 5x – 4 и 11x + 12 образуют конечную арифметическую прогрессию?

Согласно характеристическому свойству, заданные выражения должны удовлетворять соотношению

5x – 4 = ((3x + 2) + (11x + 12))/2.

Решение этого уравнения дает x = –5,5. При этом значении x заданные выражения 3x + 2, 5x – 4 и 11x + 12 принимают, соответственно, значения –14,5, –31,5, –48,5. Это – арифметическая прогрессия, ее разность равна –17.

Геометрическая прогрессия.

Числовую последовательность, все члены которой отличны от нуля и каждый член которой, начиная со второго, получается из предыдущего члена умножением на одно и то же число q , называют геометрической прогрессией, а число q – знаменателем геометрической прогрессии.

Таким образом, геометрическая прогрессия – это числовая последовательность {b n }, заданная рекуррентно соотношениями

b 1 = b , b n = b n –1 q (n = 2, 3, 4…).

(b и q – заданные числа, b ≠ 0, q ≠ 0).

Пример 1. 2, 6, 18, 54, … – возрастающая геометрическая прогрессия b = 2, q = 3.

Пример 2. 2, –2, 2, –2, … геометрическая прогрессия b = 2, q = –1.

Пример 3. 8, 8, 8, 8, … геометрическая прогрессия b = 8, q = 1.

Геометрическая прогрессия является возрастающей последовательностью, если b 1 > 0, q > 1, и убывающей, если b 1 > 0, 0 q

Одно из очевидных свойств геометрической прогрессии состоит в том, что если последовательность является геометрической прогрессией, то и последовательность квадратов, т.е.

b 1 2 , b 2 2 , b 3 2 , …, b n 2,… является геометрической прогрессией, первый член которой равен b 1 2 , а знаменатель – q 2 .

Формула n- го члена геометрической прогрессии имеет вид

b n = b 1 q n– 1 .

Можно получить формулу суммы членов конечной геометрической прогрессии.

Пусть дана конечная геометрическая прогрессия

b 1 , b 2 , b 3 , …, b n

пусть S n – сумма ее членов, т.е.

S n = b 1 + b 2 + b 3 + … + b n .

Принимается, что q № 1. Для определения S n применяется искусственный прием: выполняются некоторые геометрические преобразования выражения S n q .

S n q = (b 1 + b 2 + b 3 + … + b n –1 + b n )q = b 2 + b 3 + b 4 + …+ b n + b n q = S n + b n q b 1 .

Таким образом, S n q = S n + b n q – b 1 и, следовательно,

Это формула суммы n членов геометрической прогрессии для случая, когда q ≠ 1.

При q = 1 формулу можно не выводить отдельно, очевидно, что в этом случае S n = a 1 n .

Геометрической прогрессия названа потому, что в ней каждый член кроме первого, равен среднему геометрическому предыдущего и последующего членов. Действительно, так как

b n = b n- 1 q;

b n = b n+ 1 /q,

следовательно, b n 2= b n– 1 b n+ 1 и верна следующаятеорема(характеристическое свойство геометрической прогрессии):

числовая последовательность является геометрической прогрессией тогда и только тогда, когда квадрат каждого ее члена, кроме первого (и последнего в случае конечной последовательности), равен произведению предыдущего и последующего членов.

Предел последовательности.

Пусть есть последовательность {c n } = {1/n }. Эту последовательность называют гармонической, поскольку каждый ее член, начиная со второго, есть среднее гармоническое между предыдущим и последующим членами. Среднее геометрическое чисел a и b есть число

В противном случае последовательность называется расходящейся.

Опираясь на это определение, можно, например, доказать наличие предела A = 0 у гармонической последовательности {c n } = {1/n }. Пусть ε – сколь угодно малое положительное число. Рассматривается разность

Существует ли такое N , что для всех n ≥ N выполняется неравенство 1/N ? Если взять в качестве N любое натуральное число, превышающее 1, то для всех n ≥ N выполняется неравенство 1/n ≤ 1/N ε , что и требовалось доказать.

Доказать наличие предела у той или иной последовательности иногда бывает очень сложно. Наиболее часто встречающиеся последовательности хорошо изучены и приводятся в справочниках. Имеются важные теоремы, позволяющие сделать вывод о наличии предела у данной последовательности (и даже вычислить его), опираясь на уже изученные последовательности.

Теорема 1. Если последовательность имеет предел, то она ограничена.

Теорема 2. Если последовательность монотонна и ограничена, то она имеет предел.

Теорема 3. Если последовательность {a n } имеет предел A , то последовательности {ca n }, {a n + с} и {| a n |} имеют пределы cA , A + c , |A | соответственно (здесь c – произвольное число).

Теорема 4. Если последовательности {a n } и {b n } имеют пределы, равные A и B pa n + qb n } имеет предел pA + qB .

Теорема 5. Если последовательности {a n } и {b n }имеют пределы, равные A и B соответственно, то последовательность {a n b n } имеет предел AB.

Теорема 6. Если последовательности {a n } и {b n } имеют пределы, равные A и B соответственно, и, кроме того, b n ≠ 0 и B ≠ 0, то последовательность {a n / b n } имеет предел A/B .

Анна Чугайнова

Практическая работа № 13

Задание числовых последовательностей различными способами, вычисление членов последовательности. Нахождение пределов последовательностей и функций

Цель: научиться записывать числовые последовательности различными способами, описывать их свойства; находить пределы последовательностей и функций.

Краткая теория

Функция у=f (n) натурального аргумента n (n=1; 2; 3; 4;...) называется числовой последовательностью.

Существуют следующие способы задания числовой последовательности:

    Словесный способ. Представляет собой закономерность или правило расположения членов последовательности, описанный словами.

    Аналитический способ. Последовательность задается формулой n-го члена: у n =f(n). По этой формуле можно найти любой член последовательности.

    Рекуррентный способ. Задается формула, по которой каждый следующий член находят через предыдущие члены. В случае рекуррентного способа задания функции всегда дополнительно задается один или несколько первых членов последовательности.

Числовую последовательность называют возрастающей , если ее члены возрастают (у n+1 у n) и убывающей, если ее члены убывают (у n+1 n).

Возрастающая или убывающая числовые последовательности называются монотонными .

Пусть – точка прямой, а – положительное число. Интервал называется окрестностью точки , а число − радиусом окрестности.

Рассмотрим числовую последовательность, общий член которой приближается к некоторому числу b при увеличении порядкового номера n . В этом случае говорят, что числовая последовательность имеет предел. Это понятие имеет более строгое определение.

Число b называют пределом последовательности (у n), если в любой заранее выбранной окрестности точки b содержат все члены последовательности, начиная с некоторого номера

Теорема 1 Если , , то:

    Предел суммы/разности двух последовательностей равен сумме/разности пределов от каждой из них, если последние существуют:

    Предел произведения двух последовательностей равен произведению пределов от каждой из них, если пределы сомножителей существуют:

    Предел отношения двух последовательностей равен отношению пределов от каждой из них, если эти пределы существуют и предел знаменателя не равен нулю:

Для любого натурального показателя m и любого коэффициента k справедливо соотношение:

Теорема 1 Если , , то:

    Предел суммы/разности двух функций равен сумме/разности пределов от каждой из них, если последние существуют:

;

    Предел произведения двух функций равен произведению пределов от каждой из них, если пределы сомножителей существуют:

    Предел отношения двух функций равен отношению пределов от каждой из них, если эти пределы существуют и предел знаменателя не равен нулю:

    Постоянный множитель можно вынести за знак предела:

Функцию у=f(x) называют непрерывной в точке x=a, если предел функции у=f(x) при стремлении x к a равен значению функции в точке х=а.

Первый замечательный предел: .

Практические задания для аудиторной работы

    Задайте последовательность аналитически и найдите пять первых членов этой последовательности:

а) каждому натуральному числу ставится в соответствие противоположное ему число;

б) каждому натуральному числу ставится в соответствие квадратный корень из этого числа;

в) каждому натуральному числу ставится в соответствие число -5;

г) каждому натуральному числу ставится в соответствие половина его квадрата.

2. По заданной формуле n-го члена вычислите пять первых членов последовательности (y n):

3. Является ли последовательность ограниченной?

4. Является ли последовательность убывающей или возрастающей?

5. Запишите окрестность точки a=-3 радиуса r=0,5 в виде интервала.

6. Окрестностью какой точки и какого радиуса является интервал (2,1;2,3).

7. Вычислите предел последовательности:

8. Вычислите:

Самостоятельная работа

Вариант 1

Часть А

Часть В

Часть С

7. Вычислите:

Вариант 2

Часть А

Часть В

6. Вычислите предел последовательности:

Часть С

7. Вычислите:

Вариант 3

Часть А

Часть В

6. Вычислите предел последовательности:

Часть С

7. Вычислите:

Вариант 4

Часть А

Часть В

6. Вычислите предел последовательности:

Часть С

7. Вычислите:

Контрольные вопросы

    Что называют числовой последовательностью?

    Какими способами можно задавать числовую последовательность?

    Какая последовательность называется ограниченной сверху?

    Какая последовательность называется ограниченной снизу?

    Какая последовательность называется возрастающей?

    Какая последовательность называется убывающей?

    Что называют пределом числовой последовательности?

    Перечислите правила вычисления пределов последовательностей.

    Перечислите правила вычисления пределов функций.

Если каждому натуральному числу n поставлено в соответствие некоторое действительное число x n , то говорят, что задана числовая последовательность

x 1 , x 2 , … x n , …

Число x 1 называют членом последовательности с номером 1 или первым членом последовательности , число x 2 - членом последовательности с номером 2 или вторым членом последовательности, и т.д. Число x n называют членом последовательности с номером n .

Существуют два способа задания числовых последовательностей – с помощью и с помощью рекуррентной формулы .

Задание последовательности с помощью формулы общего члена последовательности – это задание последовательности

x 1 , x 2 , … x n , …

с помощью формулы, выражающей зависимость члена x n от его номера n .

Пример 1 . Числовая последовательность

1, 4, 9, … n 2 , …

задана с помощью формулы общего члена

x n = n 2 , n = 1, 2, 3, …

Задание последовательности с помощью формулы, выражающей член последовательности x n через члены последовательности с предшествующими номерами, называют заданием последовательности с помощью рекуррентной формулы .

x 1 , x 2 , … x n , …

называют возрастающей последовательностью, больше предшествующего члена.

Другими словами, для всех n

x n + 1 > x n

Пример 3 . Последовательность натуральных чисел

1, 2, 3, … n , …

является возрастающей последовательностью .

Определение 2. Числовую последовательность

x 1 , x 2 , … x n , …

называют убывающей последовательностью, если каждый член этой последовательности меньше предшествующего члена.

Другими словами, для всех n = 1, 2, 3, … выполнено неравенство

x n + 1 < x n

Пример 4 . Последовательность

заданная формулой

является убывающей последовательностью .

Пример 5 . Числовая последовательность

1, - 1, 1, - 1, …

заданная формулой

x n = (- 1) n , n = 1, 2, 3, …

не является ни возрастающей, ни убывающей последовательностью.

Определение 3. Возрастающие и убывающие числовые последовательности называют монотонными последовательностями .

Ограниченные и неограниченные последовательности

Определение 4. Числовую последовательность

x 1 , x 2 , … x n , …

называют ограниченной сверху, если существует такое число M, что каждый член этой последовательности меньше числа M .

Другими словами, для всех n = 1, 2, 3, … выполнено неравенство

Определение 5. Числовую последовательность

x 1 , x 2 , … x n , …

называют ограниченной снизу, если существует такое число m, что каждый член этой последовательности больше числа m .

Другими словами, для всех n = 1, 2, 3, … выполнено неравенство

Определение 6. Числовую последовательность

x 1 , x 2 , … x n , …

называют ограниченной, если она ограничена и сверху, и снизу.

Другими словами, существуют такие числа M и m, что для всех n = 1, 2, 3, … выполнено неравенство

m < x n < M

Определение 7. Числовые последовательности, которые не являются ограниченными , называют неограниченными последовательностями .

Пример 6 . Числовая последовательность

1, 4, 9, … n 2 , …

заданная формулой

x n = n 2 , n = 1, 2, 3, … ,

ограничена снизу , например, числом 0. Однако эта последовательность неограничена сверху .

Пример 7 . Последовательность

заданная формулой

является ограниченной последовательностью , поскольку для всех n = 1, 2, 3, … выполнено неравенство

На нашем сайте можно также ознакомиться с разработанными преподавателями учебного центра «Резольвента» учебными материалами для подготовки к ЕГЭ и ОГЭ по математике .

Для школьников, желающих хорошо подготовиться и сдать ЕГЭ по математике или русскому языку на высокий балл, учебный центр «Резольвента» проводит

подготовительные курсы для школьников 10 и 11 классов

ЧИСЛОВЫЕ ПОСЛЕДОВАТЕЛЬНОСТИ VI

§ 127. Числовые последовательности и способы их задания. Конечныеи бесконечные последовательности.

Рассмотрим следующие три совокупности чисел:

Естественно считать, что каждое число в любой из этих совокупностей снабжено номером в соответствии с тем местом, которое оно занимает в этой совокупности. Например, во второй совокупности число 1 имеет номер 1, число - 1 / 2 номер 2, число 1 / 3 номер 3 и т. д.

Наоборот, какой бы номер мы ни указали, в каждой из этих совокупностей найдется число, снабженное этим номером. Например, номер 2 в первой последовательности имеет число 2, во второй - число - 1 / 2 , в третьей - число sin 2. Аналогично номер 10 имеют: в первой последовательности - число 10, во второй - число - 1 / 10 , в третьей - число sin 10 и т. д. Таким образом, в приведенных выше совокупностях каждое число имеет вполне определенный номер и полностью определяется этим номером.

Совокупность чисел, каждое из которых снабжено своим номером п (п = 1, 2, 3, ...), называется числовой последовательностью.

Отдельные числа последовательности называются ее членами и обозначаются обычно так: первый член a 1 , второй a 2 , .... п -й член a n и т. д. Вся числовая последовательность обозначается

a 1 , a 2 , a 3 , ... , a n , ... или {a n }.

Задать числовую последовательность - это знанит указать, как отыскивается тот или иной ее член, если известен номер занимаемого им места. Существует много различных способов задания числовых последовательностей. Ниже мы остановимся на некоторых из них.

1. Обычно числовая последовательность задается с помощью формулы, позволяющей по номеру члена последовательности определить этот член. Например, если известно, что при любом п

a n = n 2 ,

a 1 = 1, a 2 = 4, a 3 = 9

и т. д. При a n = sin π / 2 п мы получим: a 1 = sin π / 2 = 1, a 2 = sin π = 0, a 3 = sin 3 π / 2 = - 1, a 4 = sin 2π = 0 и т. д.

Формула, позволяющая найти любой член числовой последовательности по его номеру, называется формулой общего члена числовой последовательности.

2. Бывают случаи, когда последовательность задается посредством описания ее членов. Например, говорят, что последовательность

1,4; 1,41; 1,414; 1,4142; ...

составлена из приближенных значений √2 с недостатком с точностью до 0,1; 0,01; 0,001; 0,0001 и т. д. В подобных случаях иногда вообще нельзя установить формулу общего члена; тем не менее последовательность оказывается полностью определенной.

3. Иногда указывается несколько первых членов последовательности, а все остальные члены определяются этими заданными членами по тому или иному правилу. Пусть, например,

a 1 = 1, a 2 = 1,

а каждый последующий член определяется как сумма двух предыдущих. Другими словами, при любом п > 3

a n = a n - 1 + a n - 2

Так определяется числовая последовательность 1, 1, 2, 3, 5, 8, 13, 21, 34, .... члены которой носят название «чисел Фибоначчи» [по имени итальянского математика Леонарда Пизанского (около 1170-1250), которого называли также Фибоначчи, что означает «сын Боначчо»].Они обладают многими интересными свойствами, рассмотрение которых, однако, выходит за пределы нашей программы.

Последовательность может содержать как конечное, так и бесконечное число членов.

Последовательность, состоящая из конечного числа членов, называется конечной, а последовательность, состоящая из бесконечного числа членов, - бесконечной последовательностью.

Например, последовательность всех четных положительных чисел 2, 4, 6, 8, 10, 12, ... бесконечна, а последовательность однозначных четных положительных чисел 2, 4, 6, 8 конечна.

Упражнения

932. Написать 4 первых числа последовательности с общим членом:

933. Найти формулу общего члена для каждой из данных последовательностей:

а) 1, 3, 5, 7, 9, ... ; . д) tg 45°, tg 22°30", tg 11°15", ... ;

б) 2, 4, 6, 8, 10, ... ; е) 1, - 1 / 2 , 1 / 4 , - 1 / 8 , 1 / 16 , ... ;

в) 3, -3, 3, -3, 3, ... ; ж) 1, 9, 25, 49, 81.....

г) 1 / 3 , 1 / 9 , 1 / 27 , 1 / 81 , ....;

934. Является ли конечной последовательность всех положительных корней уравнения:

а) sin х = х - 1; б) tg х = х ; в) sin х = ах + b ?