Стохастические модели отображают. Стохастическая модель

Особенности стохастического моделирования.

Особенности стохастического мод-ия: стохастическое моделирование – моделирование случайных воздействий.

Стохастическое моделирования (СМ) - м оделирование случайных процессов и случайных событий.

Суть СМ – многократное повторение модельных экспериментов с целью получения статистики о свойствах системы, получения данных о свойствах случайных событий и величин.

Цель – в результате СМ для параметров объектов должна быть получена оценка мат ожидания, дисперсии и закона распределения случайной величины.

Понятие случайного события и случайной величины.

Случайным событием называется любой факт, который в результате опыта может произойти или не произойти. Случайные события могут быть: Достоверными (событие, которое происходит в каждом опыте). Невозможными (событие, которое в результате опыта произойти не может).

Числовая величина, принимающая то или иное значение в результате реализации опыта случайным образом, называется случайной величиной .

Характеристики случайных величин и случайных событий.

Характеристики случайного события:

Частота появления события - вероятность появления того или иного события при неограниченном количестве опытов.

Характеристики случайной величины:

    Математическое ожидание - число, вокруг которого сосредоточены значения случайной величины.

    Дисперсия случайной величины характеризует меру разброса случайной величины около ее математического ожидания.

Плотности распределения вероятности - вид функции, которой определяет закон распределения случайных величин.

Моделирование случайных событий.

Исходные данные:

Вероятность события Pa;

Требуется построить модель события A, которое происходит с вероятностью Pa.

Алгоритм моделирования:

Используется датчик случайных чисел с равномерным законом распределения от 0 до 1:

Randomize(RND)  x i . 0<=x i <=1

Если выполняется Xi<=Pa то событие A произошло. В противном случае произошло событие не A.

Моделирование полной группы случайных событий.

Группа несовместимых событий называется полной, если при испытаниях только одно событие произойдет обязательно (алгоритм).

Примеры стохастических моделей.

Модели для прогнозирования изменений состояния автотр. предприятия .

Литература: , .

3. Имитационное моделирование

Понятие имитационного моделирования.

Суть ИМ – компьютерный эксперимент – исследования свойств объекта путем экспериментирования с его компьютерной моделью.

Актуальность имитационного моделирования.

1)моделирование сложных систем (когда аналитически использовать объект невозможно)

2)моделирование действия случайных факторов (необходимо многократное повторение)

3)отсутствие математической модели (при исследовании неизвестных явлений).

4)необходимость получения результатов к определенному сроку (скорее всего самая главная причина)

Примеры задач имитационного моделирования: модели систем массового обслуживания, модели случайных событий, клеточные автоматы, модели сложных систем и т.д.

1. Модели систем массового обслуживания

Схема СМО

Цель СМО : определение оптимальных параметров системы

Пример: очередь в супермаркете

На обслуживание могут поступать заявки с более высоким приоритетом. Пример: бензоколонка (скорая, полиция).

2. Модели случайных событий

Случайным называют событие, которое в результате испытания может наступить, а может и не наступить. Исчерпывающей характеристикой случайного события является вероятность его наступления. Примеры: объемы выпускаемой продукции предприятием каждый день; котировки валют в обменных пунктах; интервал времени до появления очередного клиента, длительность проведения технического обслуживания автомобиля.

3. Клеточные автоматы

Клеточный автомат – система, представляющая собой совокупность одинаковых клеток. Все клетки образуют, так называемую, решетку клеточного автомата. Каждая клетка является конечным автоматом, состояния которого определяются состояниями соседних клеток и ее собственным состоянием. Впервые, идея таких автоматов отмечена в работах Неймана в 1940-х годах.

Пример: игра «Жизнь». Была в 1970 году Джоном Конвэем.

Стохастические модели описывают случайные процессы или ситуации, при этом подразумевается, что случайность тех или иных явлений выражается в терминах вероятности. Так же, как и детерминированные, стохастические модели бывают дискретные и непрерывные.

      1. Непрерывно-стохастические модели

Основной схемой формализованного описания систем, для которых характерны

1) непрерывный характер изменения времени и

2) наличие случайностей в поведении,

служит аппарат систем массового обслуживания. То есть это план математических схем, разработанных для формализации процессов функционирования систем, которые являются процессами обслуживания. Именно для таких систем характерны стохастический характер функционирования (случайное появление заявок на обслуживание), завершение обслуживания в случайные моменты времени, наличие входного и выходного потока заявок, наличие приборов обслуживания, поток событий, существование очереди на обслуживание, определение некоторого порядка обслуживания и т.п.

Как видно из описания моделей такого рода, непрерывно-стахостические модели нам не подходят.

      1. Дискретно-стохастические модели

Данный тип моделей подходит для тех объектов, которые обладают следующими характеристиками:

    время в них дискретно

    они проявляют статически закономерное случайное поведение.

По данному определению наша модель полностью подходит под описание дискретно-стохастических моделей: по условию время у нас дискретно и мы сделали вывод, что в модели присутствуют случайности. Модели систем такого рода могут быть построены на основе двух схем формализованного описания:

Конечно-разностные уравнения, среди переменных которых используют функции, задающие случайные процессы

Вероятностные автоматы

“Вероятностным автоматом называется дискретный прелбразователь информации, имеющий более одного состояния, функционирование которого в каждом такте зависит только от состояния памяти в нем и может быть описано статически” 3

Задание вероятностных автоматов осуществляется таблично или с помощью графов, но их использование на практике возможно лишь путем реализации имитационной модели на ЭВМ (за исключением небольших и несложных моделях, при которых возможны и аналитические расчеты).

Проверим возможность применения вероятностных автоматов к нашей модели:

Случайности в нашей модели есть, но представляется ли возможным вычислить закон распределения?

1.В случае случайной цены?

Да, это равномерное распределение и вероятности всех состояний при определении цены равны.

    В случае случайного распределения непроданной продукции?

Это опять равномерное распределение и вероятности найти можно.

Посмотрим, какие входные состояния может принимать система...Оказывается таких состояний бесконечно много, следовательно, вероятностный автомат построить нельзя. А если сделать ограничения на объем выпуска? Это множество будет конечным и вероятностный автомат можно будет построить, но полученная модель, как и в случае предположения о детерминированности системы, будет плохо отражать реальность. Поэтому откажемся от построения вероятностного автомата.

Наиболее удобным в случае дискретно-стохастической схемы формализованного описания представляется решение задачи с помощью конечно-разностных уравнений.

МАТЕМАТИЧЕСКИЕ МОДЕЛИ

2.1. Постановка задачи

Детерминированные модели описывают процессы в детерминированных системах.

Детерминированные системы характеризуются однозначным соответствием (соотношением) между входными и выходными сигналами (процессами).

Если задан входной сигнал такой системы, известны ее характеристика y = F(x), а также ее состояние в начальный момент времени, то значение сигнала на выходе системы в любой момент времени определяется однозначно (рис. 2.1).

Существует два подхода к исследованию физических систем: детерминированный и стохастический.

Детерминированный подход основан на применении детерминированной математической модели физической системы.

Стохастический подход подразумевает использование стохастической математической модели физической системы.

Стохастическая математическая модель наиболее адекватно (достоверно) отображает физические процессы в реальной системе, функцио-нирующей в условиях влияния внешних и внутренних случайных факторов (шумов).

2.2. Случайные факторы (шумы)

Внутренние факторы

1) температурная и временная нестабильность электронныхкомпонентов;

2) нестабильность питающего напряжения;

3) шум квантования в цифровых системах;

4) шумы в полупроводниковых приборах в результате неравномерности процессов генерации и рекомбинации основных носителей заряда;

5) тепловой шум в проводниках за счет теплового хаотического движения носителей заряда;

6) дробовой шум в полупроводниках, обусловленный случайным характером процесса преодоления носителями потенциального барьера;

7) фликкер – шум, обусловленный медленными случайными флуктуациями физико-химического состояния отдельных областей материалов электронных устройств и т. д.

Внешние факторы

1) внешние электрические и магнитные поля;

2) электромагнитные бури;

3) помехи, связанные с работой промышленности и транспорта;

4) вибрации;

5) влияние космических лучей, тепловое излучение окружающих объектов;

6) колебания температуры, давления, влажности воздуха;

7) запыленность воздуха и т. д.

Влияние (наличие) случайных факторов приводит к одной из ситуаций, приведенных на рис. 2.2:

С ледовательно, предположение о детерминированном характере физической системы и описание ее детерминированной математической моделью является идеализацией реальной системы. Фактически имеем ситуацию, изображенную на рис. 2.3.

Детерминированная модель допустима в следующих случаях:

1) влияние случайных факторов столь незначительно, что пренебрежение ими не приведет к ощутимому искажению результатов моделирования.

2) детерминированная математическая модель отображает реальные физические процессы в усредненном смысле.

В тех задачах, где не требуется высокой точности результатов моделирования, предпочтение отдается детерминированной модели. Это объясняется тем, что реализация и анализ детерминированной математической модели много проще, чем стохастической.

Детерминированная модель недопустима в следующих ситуациях: случайные процессы ω(t) соизмеримы с детерминированными x(t). Результаты, полученные с помощью детерминированной математической модели, будут неадекватными реальным процессам. Это относится к системам радиолокации, к системам наведения и управления летательными аппаратами, к системам связи, телевидению, к системам навигации, к любым системам, работающим со слабыми сигналами, в электронных устройствах контроля, в прецизионных измерительных устройствах и т. д.

В математическом моделировании случайный процесс часто рассматривают как случайную функцию времени, мгновенные значения которой являются случайными величинами.

2.3. Суть стохастической модели

Стохастическая математическая модель устанавливает вероятностные соотношения между входом и выходом системы . Такая модель позволяет сделать статистические выводы о некоторых вероятностных характеристиках исследуемого процесса y(t):

1) математическое ожидание (среднее значение):

2) дисперсия (мера рассеивания значений случайного процесса y(t) относительно его среднего значения):

3) среднее квадратичное отклонение:

(2.3)

4) корреляционная функция (характеризует степень зависимости – корреляции – между значениями процесса y(t), отстоящими друг от друга на время τ):

5) спектральная плотность случайного процесса y(t) описывает его частотные свойства:

(2.5)

преобразование Фурье.

Стохастическаямодель формируется на основе стохастического дифференциального либо стохастического разностного уравнения.

Различают три типа стохастических дифференциальных уравнений: со случайными параметрами, со случайными начальными условиями, со случайным входным процессом (случайной правой частью). Приведем пример стохастического дифференциального уравнения третьего типа:

, (2.6)

где
аддитивный случайный процесс – входной шум.

В нелинейных системах присутствуют мультипликативные шумы .

Анализ стохастических моделей требует использования довольно сложного математического аппарата, особенно для нелинейных систем.

2.4. Понятие типовой модели случайного процесса. Нормальный (гауссовский) случайный процесс

При разработке стохастической модели важное значение имеет определение характера случайного процесса
. Случайный процесс может быть описан набором (последовательностью) функций распределения – одномерной, двумерной, … , n-мерной или соответствующими плотностями распределения вероятности. В большинстве практических задач ограничиваются определением одномерного и двумерного законов распределения.

В некоторых задачах характер распределения
априорно известен.

В большинстве случаев, когда случайный процесс
представляет собой результат воздействия на физическую систему совокупности значительного числа независимых случайных факторов, полагают, что
обладает свойствами нормального (гауссовского) закона распределения . В этом случае говорят, что случайный процесс
заменяется его типовой моделью – гауссовским случайным процессом. Одномерная плотность распределения вероятности нормального (гауссовского)случайного процесса приведена на рис. 2.4.

Нормальное (гауссовское) распределение случайного процесса обладает следующими свойствами .

1. Значительное количество случайных процессов в природе подчиняются нормальному (гауссовскому) закону распределения.

2. Возможность достаточно строго определить (доказать) нормальный характер случайного процесса.

3. При воздействии на физическую систему совокупности случайных факторов с различными законами распределения их суммарный эффект подчиняется нормальному закону распределения (центральная предельная теорема ).

4. При прохождении через линейную систему нормальный процесс сохраняет свои свойства в отличие от других случайных процессов.

5. Гауссовский случайный процесс может быть полностью описан с помощью двух характеристик – математического ожидания и дисперсии.

В процессе моделирования часто возникает задача – определить характер распределения некоторой случайной величины x по результатам её многократных измерений (наблюдений)
. Для этого составляют гистограмму – ступенчатый график, позволяющий по результатам измерения случайной величины оценить её плотность распределения вероятности.

При построении гистограммы диапазон значений случайной величины
разбивают на некоторое количество интервалов, а затем подсчитывают частоту (процент) попадания данных в каждый интервал. Таким образом, гистограмма отображает частоту попадания значений случайной величины в каждый из интервалов. Если аппроксимировать построенную гистограмму непрерывной аналитической функцией, то эта функция может рассматриваться как статистическая оценка неизвестной теоретической плотности распределения вероятности.

При формировании непрерывных стохастических моделей используется понятие «случайный процесс». Разработчики разностных стохастических моделей оперируют понятием «случайная последовательность».

Особую роль в теории стохастического моделирования играют марковские случайные последовательности. Для них справедливо следующее соотношение для условной плотности вероятности:

Из него следует, что вероятностный закон, описывающий поведение процесса в момент времени , зависит только от предыдущего состояния процесса в момент времени
и абсолютно не зависит от его поведения в прошлом (т. е. в моменты времени
).

Перечисленные выше внутренние и внешние случайные факторы (шумы) представляют собой случайные процессы различных классов. Другими примерами случайных процессов являются турбулентные течения жидкостей и газов, изменение нагрузки энергосистемы, питающей большое количество потребителей, распространение радиоволн при наличии случайных замираний радиосигналов, изменение координат частицы в броуновском движении, процессы отказов аппаратуры, поступления заявок на обслуживание, распределение числа частиц в малом объеме коллоидного раствора, задающее воздействие в радиолокационных следящих системах, процесс термоэлектронной эмиссии с поверхности металла и т. д.

До сих пор мы рассматривали модели с детерминированной топологией сети. При моделировании сложного проекта нередко наиболее гибкими и полезными оказываются сетевые модели со стохастической структурой. Стохастическую сеть определяют как сеть, содержащую альтернативные узлы (состояния), при этом дуги (работы) характеризуются не только вероятностным распределением продолжительности, но и вероятностью их выполнения.

Стохастическая сетевая модель с множеством возможных исходов, являясь дальнейшим развитием традиционных сетей, дает возможность полнее отобразить процесс разработки и создания сложного проекта. Применяемый для анализа стохастических сетевых моделей математический аппарат позволяет вычислять вероятности различных альтернативных исходов, оценивать время их возможной реализации.

Стохастическая сетевая модель есть конечный граф G=(W,А), где W– есть множество детерминированных и альтернативных вершин, отождествляемых с событиями, а технологическая матрица А={p ij } задает множество ориентированных дуг, отождествляемых с работами (или связями). Для стохастических сетей 0£ p ij £ 1, причем p ij =1 определяет работу (i,j) аналогично принятым в традиционных сетях определениям, а

0 < p ij < 1 соответствует альтернативному событию i, из которого с вероятностью p ij «выходит» работа (i,j). Другими словами p ij – вероятность того, что работа (i,j) будет выполнена при условии, что узел i выполнен.

Пусть j(t ij) – плотность распределения времени выполнения работы (i,j). М[х] – математическое ожидание случайной величины х.

Вводится условная производящая функция моментов случайной величины t ij как М ij (s)=М[е st ij ], т е.


М ij (s)= ò е st ij j(t ij)dt ij (для непрерывной случайной величины),

å е st ij j(t ij) (для дискретной случайной величины).

В частности, М ij (s)=М[е sа ] = е sа при t ij =а=const, М ij (0)=1.

Для каждой дуги (i,j) определяется Y–функция как

Y ij (s) = p ij М ij (s).

Исходная сеть преобразуется в эквивалентную, используя три базисных преобразования:

· последовательные дуги,

· параллельные дуги,



Для последовательных дуг (рис.7)

Y ik (s) = Y ij (s)Y jk (s).

Для параллельных дуг (рис.8)

Y ij (s) = Y a (s) +Y b (s).

Для петель вида (рис. 9)

Y ij (s) = Y b (s)/.

Комбинируя базисные преобразования, любую сеть можно преобразовать в эквивалентную сеть, состоящую из одной дуги (Е-дуги).

Цель временного анализа стохастической сети состоит в вычислении математического ожидания и дисперсии времени выполнения сети (или любого ее фрагмента) и вероятности выполнения заключительного (или любого другого события) сети.

Здесь используется теория замкнутых потоковых графов, где введенная выше Y–функция трактуется как соответствующий коэффициент пропускания дуги. Для применения результатов этой теории к открытой сети с искомым параметром Y Е (s) вводится дополнительная дуга с параметром Y А (s), соединяющая конечное событие (сток) с начальным (источником).

Затем используется топологическое уравнение для замкнутых графов, известное как правило Мейсона, следующего вида:

1 – åТ(L 1) + åТ(L 2) – åТ(L 3) +…+ (-1) m åT(L m) + … =0, (10)

где åT(L m) – сумма эквивалентных коэффициентов пропускания для всех возможных петель m–го порядка.

Эквивалентный коэффициент пропускания для петли m–го порядка равен произведению коэффициентов пропускания m не связанных между собой петель первого порядка, т.е.

T(L m)=Õ m k=1 T k .

Непосредственно из правила Мейсона следует, что 1–Y А (s)Y Е (s)=0 или Y А (s)=1/Y Е (s). Используя данный результат, в топологическом уравнении (10) Y А (s) заменяется на 1/Y Е (s) и затем оно решается относительно Y Е (s), тем самым получается эквивалентная Y–функция для исходной стохастической сети.

Поскольку Y Е (s) = p Е М Е (s), а М Е (0)=1, то p Е =Y Е (0), откуда следует, что

М Е (s)= Y Е (s)/p Е =Y Е (s) /Y Е (0). (11)

После получения аналитического выражения для М Е (s), вычисляют первую и вторую частную производную по s функции М Е (s) в точке s=0, т.е.

m 1E =¶/¶s[М Е (s)] s=0 (12)

m 2E =¶ 2 /¶s 2 [М Е (s)] s=0 (13)

Первый момент m 1E относительно начала координат есть математическое ожидание времени выполнения сети (преобразованной в эквивалентную ей Е-дугу), а дисперсия времени выполнения сети равна разности между вторым моментом m 2E и квадратом первого, т.е.

s 2 = m 2E – (m 1E) 2 . (14)

Таким образом, описанный выше аппарат позволяет вычислять временные параметры любых интересующих пользователя событий стохастической сети, а также определять вероятность их наступления.

Используя полученную информацию, можно с помощью неравенства Чебышева оценивать вероятность любых доверительных интервалов времени окончания проекта при произвольных законах распределения времени выполнения отдельных операций. Если время выполнения каждой операции имеет нормальное распределение, то результирующее время также нормально распределено. В этом случае можно получить вероятностные оценки времени выполнения проекта, используя интегральную теорему Муавра-Лапласа. Кроме того, при достаточно большом числе работ в сети и выполнении некоторых условий (в частности, независимость работ) можно использовать предельную теорему Ляпунова и считать результирующее время выполнения проекта нормально распределенной случайной величиной с характеристиками, вычисленными по выше описанной методике.

Таким образом, стохастическая сетевая модель включает все случайные отклонения и неопределенность, возникающие непосредственно во время выполнения каждой отдельной работы.

3.4. Формализация общей постановки задачи планирования работ при управлении проектами и описание универсальной сетевой модели и задач временного анализа, решаемых на ее основе

В результате анализа и синтеза вышерассмотренных моделей предложена универсальная математическая модель, при этом классические, обобщенные и стохастические сетевые модели являются ее частными случаями.

Данная модель (названная циклическая стохастическая сетевая модель - ЦССМ ) является более гибким и адекватным инструментом для описания процесса управления разработкой сложного проекта.

ЦССМ представляет собой конечный, ориентированный, циклический граф G(W,A), состоящий из множества событий W и дуг (i,j)(события i, jОW), определяемых матрицей смежности А={p ij }. 0Ј p ij Ј1, причем p ij =1 задает детерминированную дугу (i,j), а 0< p ij <1 определяет альтернативное событие i, которое с вероятностью p ij связано дугой с событием j. Множество дуг подразделяется на дуги-работы и дуги-связи. Первые реализуют определенный объем производственной деятельности во времени, второй тип дуг отражает исключительно логические связи между последними. Событиями могут быть как начала и окончания выполняемых работ, так некоторые их промежуточные состояния.

Обозначим через Т i время свершения i-го события, тогда соотношение между сроками свершения событий, связанных дугой (i,j), задается неравенством:

Т j – Т i і y ij , (15)

где y ij в общем случае случайная величина, распределенная по некоторому закону в интервале от – Ґ до 0 или от 0 до +Ґ.

Кроме того, возможны абсолютные ограничения на момент реализации события i:

l i Ј Т i ЈL i . (16)

Соотношения (15)-(16) являются обобщением соответствующих неравенств при описании обобщенных сетевых моделей, где параметр y ij и матрица смежности А носят детерминированный характер.

Рассмотрим смысловую нагрузку соотношения (15) при вероятностном характере параметра y ij .

Если (i,j) есть дуга-работа (или ее часть), то положительно распределенная случайная величина y ij задает распределение минимальной продолжительности этой работы (связанной с максимальным насыщением ее определяющим ресурсом). В работе показано, что распределение величины y ij является унимодальным и асимметричным, а данным требованиям удовлетворяет бета-распределение, таким образом, минимальная продолжительность работы есть случайная величина y ij =t min (i,j), распределенная по закону бета-распределения на отрезке [а, b] с плотностью

j(t)=С(t – a) p-1 (b – t) q-1 , (17)

где С определяется из условия

Если же случайная величина y ij в (15), соответствующая дуге-работе (i,j), распределена в интервале от – Ґ до 0, то –y ij =t max (j,i) задает распределение длины максимального временного интервала, на протяжении которого работа (i,j) должна быть начата и окончена даже при минимальном насыщении ее определяющим ресурсом. Для этой величины получили ее распределение аналогичного вида (17). Зная распределение случайной величины y ij для каждой работы (i,j), по соответствующим формулам вычисляются ее математическое ожидание и дисперсия.

Введение в (15) отрицательно распределенных величин y ij для дуг-работ (i,j) существенно расширяет возможности описания временных характеристик работ, делая широко используемую вероятностную модель лишь одним из частных случаев.

Для дуг-связей (i,j) величина y ij задает распределение временной зависимости между событиями i и j, причем положительно распределенная величина y ij определяет взаимосвязь типа «не ранее» (событие j может наступить не раньше, чем через y ij дней после свершения события i), а отрицательно распределенная величина y ij определяет взаимосвязь типа «не позднее» (событие i может наступить не позже, чем через –y ij дней после свершения события j). В последнем случае такие связи называют «обратными».

Таким образом, здесь мы получили обобщение этих связей с учетом возможно вероятностного их характера.

Так как сроки свершения событий Т i определяются суммой продолжительностей работ, технологически им предшествующих, то при достаточно большом числе таких работ в соответствии с центральной предельной теоремой распределение случайной величины Т i стремится к нормальному с параметрами – математическое ожидание MТ i и дисперсия DТ i . Нормальное распределение имеет и параметр y ij , соответствующий «обратным» дугам, что также подтверждается статистическим анализом.

Абсолютные ограничения на сроки свершения событий, заданные (16), отражают соответствующие директивные, организационные и технологические ограничения на сроки выполнения работ или их частей, заданные в «абсолютной» (реальной или условной) шкале времени. Абсолютные ограничения также характеризуются типом «не ранее» или «не позднее» и принимает вид: Т i – Т 0 і l i , Т 0 – Т i і –L i . Таким образом, абсолютные ограничения вида (16) являются частным случаем ограничений вида (15) для определенных дуг-связей.

Введение стохастической матрицы смежности А в сочетании с обобщенными связями дает дополнительные возможности для описания процесса создания сложного проекта.

Пусть L(i,j) – некоторый путь, соединяющий события i и j:

L(i,j)={i=i 0 ®i 1 ®i 2 ®…®i v =j}. (18)

Этот путь детерминированный , если для всех kО справедливо pi k-1 i k =1, и стохастический , в противном случае. Таким образом, стохастический путь содержит хотя бы одну дугу, вероятность «исполнения» которой строго меньше 1.

Аналогично определяется детерминированный и стохастический контур К(i)={i=i 0 ®i 1 ®i 2 ®…®i v =i}. (такие события i называются «контурными»).

Если события i и j соединены путем L(i,j), то вероятность свершения события j при условии, что событие i произошло Р(j/i) есть произведение коэффициентов матрицы смежности А, соответствующих дугам связующего пути:

Р(j/i)=Х v k=1 p i k-1 i k . (19)

Если события i и j соединены несколькими путями, то выполняется эквивалентное GERT-преобразование данного фрагмента сети в соответствии с приведенными в работе формулами, вычисляется производящая функция Y ij (s) преобразованного фрагмента, и вероятность свершения события j при условии, что событие i произошло Р(j/i)= Y ij (0).

Первая производная функции Y ij (s)/ Y ij (0) по s в точке s=0 (первый момент m 1 (j/i)) определяет математическое ожидание М(j/i) времени свершения события j относительно времени свершения события i. Вторая производная функции Y ij (s)/ Y ij (0) по s в точке s=0 (второй момент m 2 (j/i)) позволяет вычислить дисперсию времени свершения события j относительно времени свершения события i по формуле

s 2 (j/i) =m 2 (j/i) – (m 1 (j/i)) 2 . (20)

Длина пути L(i,j) есть случайная величина, математическое ожидание которой МL(i,j) есть сумма математических ожиданий длин всех дуг, составляющих данный путь, а дисперсия DL(i,j) равна сумме дисперсий.

При этих условиях длина пути (контура) может принимать отрицательные значения, что интерпретируется следующим образом:

если L(i,j)<0 и дуга (j,i) имеет отрицательно распределенный параметр y ji , то событие j должно свершиться не позднее чем через –y ji дней после наступления события i. Параметр y ji носит вероятностный характер, что позволяет более гибко (по отношению к циклическим сетевым моделям) описывать логико-временные связи между событиями.

В качестве параметра дуги y ij можно рассматривать также любой характерный параметр, который обладает аддитивностью по дугам любого пути (например, стоимость работы), при этом с помощью эквивалентного GERT-преобразования получим математическое ожидание и дисперсию стоимости фрагмента сети или проекта в целом.

Задачи временного анализа ЦССМ (и алгоритмы их решения) так же, как и временной анализ классических, обобщенных или стохастических сетевых моделей, лежат в основе решения всех задач планирования и управления проектом. Они имеют самостоятельное значение при решении задач управления проектом без учета ограничений на ресурсы.

Задачи временного анализа также необходимы для генерирования различных вариантов плана при определенных значениях вектора наличия ресурсов с целью их последующего сопоставления, оценки качества вариантов плана и выбора направления его дальнейшего улучшения.

При решении задач оптимального планирования работ при управлении проектами алгоритмы временного анализа ЦССМ применяются как инструмент для вычисления необходимых параметров, используемых в соответствующих оптимизационных алгоритмах с целью обеспечения выполнения ограничений технологического характера.

Задача временного анализа ЦССМ сводится к нахождению случайного вектора Т=(Т 0 ,Т 1 ,…,Т n), где Т i есть время свершения i-го события, координаты которого удовлетворяют неравенствам (15),(16) и обращают в экстремум некоторую целевую функцию f(T).

Выделены три класса задач временного анализа :

· классические , в которых для вычисления {Т i } используются математические ожидания продолжительностей всех дуг;

· вероятностные, в которых на основании предельной теоремы Ляпунова или другими аналитическими средствами вычисляются математические ожидания сроков свершения i–х событий – {МТ i }, являющиеся аргументами целевой функции f(T);

· статистические , в которых для заданного уровня достоверности р по методике, описанной в работе, определяются р-квантильные оценки эмпирических распределений как сроков свершения i-х событий – {W p (Т i)}, так и производных от них величин, в том числе и значений целевой функции f(W p (T)), где W p (Т)={W p (Т 0),W p (Т 1),…,W p (Т n)}.

Вводится понятие непротиворечивости ЦССМ.

Циклическая стохастическая сетевая модель называется непротиворечивой, если найдется хотя бы один допустимый план, вычисленный для соответствующего класса задач временного анализа (классического, вероятностного или статистического), удовлетворяющий системе неравенств (15),(16).

Разберем эти три понятия.

Классическая непротиворечивость модели.

Вычисляются математические ожидания продолжительностей всех дуг, после чего образуется сеть с постоянными длинами дуг. Учитывая стохастический характер рассматриваемой модели и наличие обобщенных связей, в ЦССМ после проведенных выше вычислений могут иметь место стохастические и детерминированные контуры. Доказывается следующая теорема:

Теорема 1 . Для того, чтобы циклическая стохастическая модель, в которой продолжительности дуг вычислены по классической схеме, была непротиворечивой с заданной вероятностью a, необходимо и достаточно, чтобы длины всех детерминированных контуров были не положительны.

Вероятностная непротиворечивость модели .

Вычисляются аналитическим способом математическое ожидание МТ i и дисперсия s 2 Т i сроков свершения событий. Вычисленные подобным способом параметры на 15-20% отличаются по величине от вычисленных классическим способом (по математическим ожиданиям продолжительностей дуг).

Будем говорить о вероятностной непротиворечивости модели в среднем , если полученный таким образом набор удовлетворяет неравенствам (15)-(16), где в качестве значения y ij взято ее математическое ожидание. Доказана справедливость следующей теоремы:

Теорема 2 . Для того, чтобы циклическая стохастическая модель была вероятностно непротиворечивой в среднем, необходимо и достаточно, чтобы математические ожидания длин всех детерминированных контуров были не положительны.

В предположении, что Т i имеют нормальное распределение с параметрами: математическое ожидание – МТ i и дисперсия – s 2 Т i , введем более широкое понятие e-вероятностная непротиворечивость модели .

Будем говорить, что ЦССМ e-вероятностно непротиворечива, если существует e > 0, такое, что для всех Т i , удовлетворяющих неравенству

|Т i –МТ i | < e, справедливы соотношения (15)-(16). В работе доказано следующее:

Теорема 3 . Для того, чтобы циклическая альтернативная модель была e-вероятностно непротиворечивой, необходимо и достаточно, чтобы математические ожидания длин всех детерминированных контуров удовлетворяли соотношению МL(K(i)) Ј –4e.

Вероятностная непротиворечивость модели в среднем является частным случаем e-вероятностной непротиворечивости при e=0.

Статистическая непротиворечивость модели.

При статистическом методе расчета параметров сетевой модели мы имеем дело с их р-квантильными оценками значений, которые являются теоретико-вероятностными аналогами соответствующих показателей. Говорится, что циклическая стохастическая модель статистически непротиворечива с вероятностью р , если для каждого события i существуют р-квантильные оценки сроков свершения событий W p (Т i), удовлетворяющие неравенствам:

W p (Т j) – W p (Т i)і W p (y ij), (21)

l i ЈW p (Т i)ЈL i . (22)

Здесь соотношения (21)-(22) являются вероятностными аналогами (15)-(16), W p (y ij) есть р-квантильная оценка длины дуги (i,j). Доказано следующее:

Теорема 4 . Для того, чтобы циклическая альтернативная модель была статистически непротиворечивой с вероятностью р, необходимо и достаточно, чтобы р-квантильные оценки длин всех детерминированных контуров удовлетворяли соотношению W p (L(K(i))) Ј 0.

Алгоритмы расчета временных параметров ЦССМ.

Планы ранних и поздних сроков.

Для расчета ранних и поздних сроков свершения событий предлагается модифицированный алгоритм «Маятник». Идея модификации заключается в синтезе статистического метода расчета параметров, применяемого для вероятностных сетей, и алгоритма «Маятник», используемого в обобщенных сетях, и последующего применения его для ЦССМ.





Рис.10. Принципиальная блок-схема алгоритма для расчета

р-квантильных оценок ранних сроков свершения событий

Блок 1 . Ввод исходных данных (коэффициентов матрицы А, параметров распределения y ij , уровня достоверности р).

Блок 2 . Вычисление необходимого числа «розыгрышей» N для обеспечения заданной точности результатов. Проделанные расчеты показали, что при р=0.95, e=0.05 получаем N»270.

Блок 3 . v:=v+1 (v – номер «розыгрыша»).

Блок 4 . Розыгрыш v-го варианта случайных величин y ij , каждой в соответствии с ее законом распределения, получение констант y ij (v) – длина дуги (i,j) при v-м розыгрыше.

Блок 5 . Розыгрыш для каждой альтернативной вершины i перехода в смежную вершину j (разыгрывается дискретная случайная величина р ij , представленная i-й строкой матрицы смежности А, 0< р ij <1 и е j р ij =1). Выбранная дуга помечается, остальные из графа исключаются. Если в полученном графе образовался контур К(i), содержащий хотя бы одну помеченную дугу, это есть стохастический контур, вычисляем его длину L (v) K(i) и опять для вершины i разыгрываем дискретную случайную величину р ij . В соответствие с доказанной в работе леммой 1 один и тот же стохастический контур при заданном уровне достоверности р может образоваться не более k раз, где k оценивается по соответствующей формуле. k-кратную длину контура прибавляем к длине дуги, которую мы «разыграли» на (k+1)-м шаге и переходим к анализу другого стохастического контура (если он есть). При этом могут образоваться противоречия в сети (положительные детерминированные контуры), тогда в соответствие с приведенными в работе формулами прибавляем d-кратную длину контура, оценивая тем самым время свершения «выходного» из контура события в среднем.

Блок 6 . Полученную детерминированную обобщенную сеть G (v) разбиваем на две сети G 1 (v) и G 2 (v) , так, чтобы ни G 1 (v) , ни G 2 (v) не содержали контуров. Вершины в сети G 1 (v) упорядочиваем по рангам и в соответствие с ними устанавливаем «правильную» нумерацию. Переносим эту нумерацию на сеть G 2 (v) и на исходную G (v) .

Блок 7 . Для всех вершин i сети G 1 (v) вычисляем ранние сроки свершения

Т i 0(v) :=мах j {Т i 0(v) , Т j 0(v) + y ij (v) }.

Блок 8 . Проделываем процедуры, аналогичные блоку 7, для вершин сети G 2 (v) .

Блок 9 . Если результаты блоков 7 и 8 хоть на одном показателе не совпадают, то возвращаемся к блоку 7 (таких возвратов не более, чем число обратных дуг в G 2 (v)), иначе блок 10.

Блок 10 . Если номер розыгрыша vЈN, то переходим к блоку 4, иначе к блоку 11.

Блок 11 . Из полученной совокупности {Т i 0(v) } для каждой вершины i строим вариационный ряд. Фиксируем такое значение Т i 0(x) , что N x /N=р, где N x – число членов вариационного ряда, меньших Т i 0(x) . Величина Т i 0(x) является искомым р-квантилем раннего срока свершения i-го события – W p (Т i 0). Аналогично, по вариационным рядам {y ij (v) } строим р-квантильные оценки длин дуг – W p (y ij).

На вход блока 6 поступает v-й вариант обобщенной сетевой модели G (v) , и, собственно, блоки 6 – 9 представляют собой укрупненную блок-схему алгоритма «Маятник» для вычисления ранних сроков свершения событий в ОСМ. Применяя соответствующий алгоритм для вычисления поздних сроков свершения событий в блоках 7 и 8, мы получаем Т i 1(v) – поздние сроки свершения событий для v-го варианта обобщенной сетевой модели, при этом блок 11 нам дает W p (Т i 1) – р-квантильные оценки поздних сроков свершения событий.

Планы минимальной продолжительности .

Продолжительность L(Т (v)) любого допустимого плана Т (v) ={Т i (v) } v-го варианта сети G (v) определяется по формуле:

L(Т (v))=мах ij |Т i (v) – Т j (v) |. (23)

Заменяя в блок-схеме на рис. 10 блоки 6 – 9 на блок нахождения минимума функции (23), получаем план минимальной продолжительности для сети G (v) (или «сжатый» план). Величина

L(Т* (v))=min мах ij |Т i (v) – Т j (v) | (24)

является критическим временем сети G (v) .

Используя в блоках 6-9 метод нахождения сжатого плана для ОСМ и пропуская полученные планы через блок 11, получаем вероятностные р-квантильные оценки сжатых планов.

Резервам времени для работы (i,j) соответствуют их р-квантильные аналоги, вычисляемые по формулам:

R п p (i,j)= W p (Т j 1) - W p (Т i 0) - W p (y ij) для полного резерва , (25)

R с p (i,j)= W p (Т j 0) - W p (Т i 0) - W p (y ij) для свободного резерва . (26)

По соответствующим формулам вычисляются р-квантильные коэффициенты напряженности работ W p (k н (i,j)), затем определяются р-квантильная критическая зона , р-квантильная зона резервов и р-квантильная промежуточная зона .

В качестве параметра дуги мы рассматривали время выполнения операции (работы). Можно рассматривать также любой характерный параметр, который обладает аддитивностью по дугам любого пути. Это может быть стоимость работы, количество потребного накапливаемого ресурса и т.п.

Следует отметить, что до настоящего времени широкое практическое применение нашли только методы детерминированного сетевого моделирования, некоторые эвристические методы оптимального распределения ресурсов и параметрические методы оценки затрат (преимущественно в сфере воздушных и космических полетов). Хотя точное решение стоимостных задач календарного планирования на основе классических сетевых моделей теоретически найдено (описано в), но его практическое использование сопряжено с трудностью получения фактических данных о зависимостях «время-стоимость».

Каждая из рассмотренных выше моделей имеет свою предметную область, по своему (более или менее полно) реализует базовые функции управления проектом, и только синтез анализируемых моделей и методов позволяет построить модель, адекватно отражающую процесс реализации сложного проекта в условиях неопределенности, и при этом получить приемлемое в решение сформулированной задачи.

Тема 4. ОПТИМИЗАЦИЯ ПОТРЕБЛЕНИЯ РЕСУРСОВ НА ОСНОВЕ СЕТЕВЫХ МОДЕЛЕЙ

Общие понятия.

Выше были рассмотрены сетевые модели без учета ограниченности ресурсов, т.е. задача наилучшего распределения ресурсов как таковая не ставилась. В рассмотренных нами методах использования сетевых моделей основное внимание уделялось срокам выполнения отдельных работ и выявлению наиболее важных (критических и подкритических) цепочек работ, от которых зависит своевременное окончание проекта (ввод объекта в эксплуатацию). Таким образом, характерной особенностью этих методов является классификация информации по степени ее важности с точки зрения завершения всего комплекса работ в установленный срок.

Количественной мерой важности информации являются резервы времени работ или коэффициенты напряженности

К ij =1 – R п ij /(T n 0 –Т кр (i,j)), (25)

где R п ij – полный резерв работы (i,j), T n 0 – критическое время выполнения проекта, Т кр (i,j) – продолжительность совпадающего с критическим путем отрезка максимального пути, содержащего работу (i,j). 0 £ К ij £ 1, причем, чем ближе К ij к 1, тем относительно меньше резерва в запасе у работы (i,j), следовательно, выше риск ее невыполнения в заданные сроки. Например, у работы (2,5) (рис.5) Т кр (2,5)=5, R п 25 =3, откуда К 25 =1 –3/(22 – 5)=0.82, а у работы (5,8) Т кр (5,8)=0, R п 58 =12, откуда К 58 =1 –12/(22 – 0)=0.45. Работы могут обладать одинаковыми полными резервами, но степень напряженности сроков их выполнения может быть различна. И наоборот, различным полным резервам могут соответствовать одинаковые коэффициенты напряженности. Имея информацию, классифицированную подобным образом, руководитель проекта в каждый момент времени может определить, на каком участке следует сосредоточить внимание (и ресурсы) для ликвидации намечающихся отклонений от заданного срока завершения всех работ.

Прежде чем наметить дальнейшие пути совершенствования методов сетевого планирования и управления, остановимся подробнее на некоторых основных недостатках, присущих методам, рассмотренным выше.

Давая временную оценку продолжительности какой-либо работы, мы предполагали использование для выполнения этой работы определенных ресурсов с определенной интенсивностью (интенсивность потребления ресурса – это количество ресурса, потребляемое в единицу времени).

В момент назначения временной оценки неизвестно, когда эта работа должна будет выполняться, какие другие работы проекта, потребляющие тот же вид ресурса, будут вестись одновременно. Более того, как правило, одни и те же ресурсы могут потребоваться одновременно на разных проектах. Поэтому не исключено, что суммарная потребность в том или ином ресурсе в отдельные моменты времени может превосходить их наличный уровень. В этих случаях придется или уменьшать интенсивность потребления ресурсов на отдельных работах, либо отложить выполнение ряда работ на более поздние сроки, зачастую за пределы полных резервов этих работ. Это приводит в процессе выполнения проекта к частым корректировкам исходного плана, иными словами, к неустойчивости плана.

Очевидно, если заранее при планировании процесса выполнения проекта учесть ограниченность ресурсов, то можно получить гораздо более надежный план.

Наличный уровень ресурсов и возможные сроки завершения проекта взаимосвязаны. Время завершения всего проекта будет зависеть от того, когда и какое количество ресурсов будет выделено на каждую работу, а это в значительной мере определяется их предполагаемым наличием в каждый момент времени.

Таким образом, возникает задача о распределении ресурсов в сетевой постановке.

Вообще говоря, любой процесс производственного планирования есть ни что иное, как решение задачи об эффективном использовании ресурсов.

Критерии эффективности могут быть различны, на этом важном моменте планирования (выборе и обосновании критерия) мы остановимся несколько ниже при рассмотрении конкретных задач.

Введем некоторые понятия и определения.

· Программой работ назовем определенное множество операций (работ), которое нужно выполнить для достижения одной или нескольких целей, причем выполнение работ программы подчинено единому руководящему центру. Можно говорить о программе работ по пусковому комплексу, программе работ участка, строительной организации, проектного института и т.п.

· Однотемной программой работ будем называть программу, состоящую из одного комплекса технологически взаимосвязанных работ, направленных на достижение одной (одноцелевая тема) или нескольких целей (многоцелевая тема).

· Многотемной программой работ будем называть программу, состоящую из нескольких комплексов работ, технологически взаимосвязанных внутри каждого комплекса. Каждый комплекс работ может иметь одну или несколько конечных целей. Работы, принадлежащие разным комплексам, технологически между собой не связаны. Принадлежность тем одной многотемной программе обуславливается единством управляющего центра и общностью резервуара ресурсов.

Рассмотрим сначала различные постановки задач распределения ресурсов для однотемной одноцелевой программы .

Исходя из двух возможных целевых установок при управлении проектом, описанным сетевой моделью, возможны два основных типа постановки задач. Первый тип ориентирован на жесткое соблюдение ограничений по ресурсам, тогда как второй тип предполагает строгое выполнение сроков завершения проекта.

Формулировка первого типа постановки задачи («калибровка»).

При заданных ограничениях в потреблении ресурсов найти такое их распределение с учетом технологической последовательности ведения работ, определенной топологией сетевого графика, которое обеспечивает завершение всей программы за минимальное время.

Формулировка второго типа постановки задачи («сглаживание»).

При соблюдении заданной продолжительности выполнения программы требуется так распределить ресурсы по отдельным работам, чтобы их потребление было оптимальным. Вопрос о выборе критерия оптимальности для этой постановки будет нами рассмотрен специально.

В силу разного механизма удовлетворения потребности в ресурсах их принято разделять на две группы: накапливаемые (складируемые) и ненакапливаемые (нескладируемые). Вторую группу ресурсов часто называют «ресурсы типа мощности».

К первой группе относятся ресурсы, которые по своему характеру допускают накопление с возможностью их последующего использования, например, денежные средства, различные материалы и конструкции и т.п. Ресурсные ограничения в этом случае могут быть заданы интегральной неубывающей функцией, показывающей в каждый момент времени суммарную величину поставок ресурса за весь предшествующий период.

Ко второй группе относятся ресурсы, накопление которых для последующего использования невозможно. Например, ресурсы рабочего и машинного времени. Простой рабочих и механизмов является безвозвратной потерей. Ресурсные ограничения для этой группы задаются функцией наличия ресурса в каждый момент времени.

При создании моделей технологических операций и процессов приходится сталкиваться с такими случаями, когда моделируемое яв- ление не удается описать в виде детерминированных функциональ- ных связей. Причиной этому могут быть как сильное влияние различ- ных случайных возмущений, так и принципиально случайный характер самого явления, т.е. интересующее нас явление не искажено помехами, а вызвано совместным действием различных случайных факторов.

Наиболее типичным случайным явлением являются отказы обо- рудования и элементов автоматики в период их нормальной эксплуа-

тации. С одной стороны, опыт показывает, что рано или поздно, с

большей или меньшей интенсивностью отказывают большинство де- талей или электронных узлов, а с другой - совершенно невозможно предсказать точно момент времени, когда произойдет отказ.

Очевидно, можно говорить лишь о вероятности наступления од- ного или нескольких отказов в определенном интервале времени либо

o том, что время безотказной работы (число отказов равно нулю) не

превысит определенного значения.

Аналогичная постановка вопроса справедлива применительно к погрешностям измерения параметра. В силу целого ряда случайных

факторов невозможно предсказать, какова будет погрешность при

конкретном измерении, хотя ясно, что она не бывает больше какого- то значения и что существует понятие средней погрешности по конечной совокупности измерений. Случайным можно также представить отклонение параметров заготовок и даже готовых деталей от нормативных. При этом для годных изделий эти отклонения находятся в пределах допусков, для бракованных превышают допуск.

В рассмотренных случаях, особенно при взаимодействии и взаи- мовлиянии различных случайных факторов, поведение интересующе- го нас параметра и его значение не могут быть представлены как функция взаимодействия средних значений определяющих его факто- ров. Конечный результат должен быть получен в виде случайной ве- личины как результат взаимодействия случайных факторов в повто- ряющихся реализациях процесса. Только после статистической обработки полученных результатов можно говорить об оценке сред- него значения и разброса. Такая модель процесса в отличие от детер- минированной называется стохастической (случайной).

Стохастические модели также отражают объективные законо- мерности, присущие данному процессу, однако представление их в

виде детерминированных функций либо невозможно, либо нецелесо-

образно на данном этапе. Для их представления используется аппарат случайных функций, когда случайные явления и процессы характери- зуются случайными величинами, подчиняющимися вероятностным законам.


Статистически устойчивые (достоверные) результаты модели- рования случайных явлений и процессов могут быть получены лишь по достаточно большому числу реализаций (опытов), причем, чем больше разброс значений случайной величины, тем большее число реализаций требуется. Реально такое моделирование возможно лишь с использованием быстродействующих ЭВМ.

Для этой цели ЭВМ должна иметь возможность:

Генерировать последовательность случайных чисел с за- данными законом распределения и параметрами (матема-

тическое ожидание, дисперсия и т.п.);

Вычислять вероятность наступления случайного события, подчиняющегося определенному закону, в заданном ин-

тервале времени;

Воспроизводить факт наступления случайного события и т.д.

Во всех указанных случаях необходимо знать закон распределе- ния случайной величины или события и его параметры. Необходимые

для этого данные получают, проводя натурный эксперимент по реализации подобного явления. Статистическая обработка такого эксперимента позволяет не только выявить статистические закономерности случайного явления, но и оценить достоверность результатов в зависимости от объема эксперимента (числа реализаций).

Начальным этапом обработки экспериментальных данных явля- ется построение вариационного ряда и гистограммы. Для этого фик- сируется ряд значений дискретной случайной величины х (например, число бракованных деталей за одну смену) в течение п смен. Сово- купность значений называется выборкой или статистическим рядом.

Располагая разные измеренные значения в порядке возрастания, получаем вариационный ряд. Далее составляем таблицу частот, в ко- торой каждому значению из вариационного ряда хi, ставится в соот- ветствие экспериментальная частота наблюдавшегося явления:




Число смен, когда было хi , бракованных деталей;

Общее число смен, когда проводились наблюдения.


Если случайная величина непрерывна (погрешность измерения), то ее экспериментальные значения представляются в виде интерваль-


ной таблицы частот, в которой указаны интервалы


сi ci +1 значений


случайной величины, а также, как и для дискретной величины, часто-

ты попадания ее в этот интервал




- число значений случайной величины, не выходящих


за пределы i -го интервала;


величины.


Общее число зафиксированных значений случайной


По данным интервальной таблицы строят гистограмму, пред- ставляющую собой ряд сопряженно-расположенных на горизонталь- ной оси прямоугольников, основание которых равно интервалу


сi ci +1


значений случайной величины, а площадь равна



Построив графики по данным таблицы частот или гистограммы, можно по их виду предложить гипотезу о соответствии данных опыта тому или иному закону. После этого проводится проверка степени со- ответствия экспериментальных данных предполагаемому закону. Проверка производится с использованием различных критериев со- гласия. Наиболее распространенным является критерий χ2 (хи- квадрат) Пирсона.