Световая волна продольная или поперечная. Большая энциклопедия нефти и газа

    Слайд 1

    ПОПЕРЕЧНОСТЬ СВЕТОВЫХ ВОЛН. ПОЛЯРИЗАЦИЯ СВЕТА В поляризованном свете окружающий нас мир выглядит совершенно по другому. Чертежная линейка из прозрачной пластмассы оказывается разрисованной фантастическими цветными полосами. Кусочки целлофана между скрещенными поляроидами превращаются в ярко раскрашенный витраж. Учитель физики МОУ СОШ №5 г. Балтийска, Калининградской области Синева К. М.

    Слайд 2

    Явления интерференции и дифракции не оставляют сомнений в том, что распространяющийся свет обладает свойствами волн. Но каких волн – продольных или поперечных? Длительное время основатели волновой оптики Юнг и Френель считали световые волны продольными, т. е. подобными звуковым волнам. В то время световые волны рассматривались как упругие волны в эфире, заполняющем пространство и проникающем внутрь всех тел. Такие волны, казалось, не могли быть поперечными, так как поперечные волны могут существовать только в твердом теле. Но как могут тела двигаться в твердом эфире, не встречая сопротивления? Ведь эфир не должен препятствовать движению тел. В противном случае не выполнялся бы закон инерции. Однако постепенно набиралось все больше и больше экспериментальных фактов, которые никак не удавалось истолковать, считая световые волны продольными.

    Слайд 3

    Опыты с турмалином Рассмотрим подробно только один из экспериментов, очень простой и исключительно эффектный. Это опыт с кристаллами турмалина (прозрачными кристаллами зеленой окраски). Кристалл турмалина имеет ось симметрии и принадлежит к числу так называемых одноосных кристаллов. Возьмем прямоугольную пластину турмалина, вырезанную таким образом, чтобы одна из ее граней была параллельна оси кристалла. Если направить нормально на такую пластину пучок света от электрической лампы или солнца, то вращение пластины вокруг пучка никакого изменения интенсивности света, прошедшего через нее, не вызовет. Можно подумать, что свет только частично поглотился в турмалине и приобрел зеленоватую окраску. Больше ничего не произошло. Но это не так. Световая волна приобрела новые свойства.

    Слайд 4

    Эти новые свойства обнаруживаются, если пучок заставить пройти через второй точно такой же кристалл турмалина (рис, 35, а), параллельный первому. При одинаково направленных осях кристаллов опять ничего интересного не происходит: просто световой пучок еще более ослабляется за счет поглощения во втором кристалле. Но если второй кристалл вращать, оставляя первый неподвижным, то обнаружится удивительное явление - гашение света. По мере увеличения угла между осями интенсивность света уменьшается. И когда оси перпендикулярны друг другу, свет не проходит совсем. Он целиком поглощается вторым кристаллом. Как это можно объяснить?

    Слайд 5

    Поперечность световых волн Из описанных выше опытов следует два факта: во-первых, что световая волна, идущая от источника света, полностью симметрична относительно направления распространения (при вращении кристалла вокруг луча в первом опыте интенсивность не менялась) и, во-вторых, что волна, вышедшая из первого кристалла, не обладает осевой симметрией (в зависимости от поворота второго кристалла относительно луча получается та или иная интенсивность прошедшего света). Продольные волны обладают полной симметрией по отношению к направлению распространения (колебания происходят вдоль этого направления, и оно является осью симметрии волны). Поэтому объяснить опыт с вращением второй пластины, считая световую волну продольной, невозможно.

    Слайд 6

    Полное объяснение опыта можно получить, сделав два предположения. Первое предположение относится к самому свету. Свет – поперечная волна. Но в падающем от обычного источника пучке волн присутствуют колебания всевозможных направлений, перпендикулярных направлению распространения волн

    Слайд 7

    Согласно этому предположению световая волна обладает осевой симметрией, являясь в то же время поперечной. Волны, например, на поверхности воды такой симметрией не обладают, так как колебания частиц воды происходят только в вертикальной плоскости. Световая волна с колебаниями по всем направлениям, перпендикулярным направлению распространения, называется естественной. Такое название оправдано, так как в обычных условиях источники света создают именно такую волну. Данное предположение объясняет результат первого опыта. Вращение кристалла турмалина не меняет интенсивность прошедшего света, так как падающая волна обладает осевой симметрией (несмотря на то, что она поперечная).

    Слайд 8

    Слайд 9

    Второе предположение, которое необходимо сделать, относится к кристаллу. Кристалл турмалина обладает способностью пропускать световые волны с колебаниями, лежащими в одной определенной плоскости (плоскость Р на рис. 37). Такой свет называется поляризованным или, точнее, плоскополяризованным в отличие от естественного света, который может быть назван также неполяризованным. Это предположение полностью объясняет результаты второго опыта. Из первого кристалла выходит плоскополяризованная волна. При скрещенных кристаллах (угол между осями 90°) она не проходит сквозь второй кристалл. Если оси кристаллов составляют между собой некоторый угол, отличный от 90°. то проходят колебания, амплитуда которых равна проекции амплитуды волны, прошедшей через первый кристалл, на направление оси второго кристалла.

    Слайд 10

    Прямыми опытами доказано, что световая волна является поперечной. В поляризованной световой волне колебания происходят в строго определенном направлении.

    Слайд 11

    Работа ЖКД основана на явлении поляризации светового потока. Известно, что так называемые кристаллы-поляроиды способны пропускать только ту составляющую света, вектор электромагнитной индукции которой лежит в плоскости, параллельной оптической плоскости поляроида. Для оставшейся части светового потока поляроид будет непрозрачным. Таким образом поляроид как бы «просеивает» свет. Этот эффект называется поляризацией света. Когда были изучены жидкие вещества, длинные молекулы которых чувствительны к электростатическому и электромагнитному полю и способны поляризовать свет, появилась возможность управлять поляризацией. Эти аморфные вещества за их схожесть с кристаллическими веществами по электрооптическим свойствам, а также за способность принимать форму сосуда, назвали жидкими кристаллами.

    Слайд 12

    Поляризационный фильтр действует примерно как решётка с длинными и очень узкими отверстиями. Он пропускает только те волны, которые осциллируют вдоль направления этой решётки. Все остальные волны, осциллирующие в других направлениях, блокируются. Все волны, прошедшие сквозь решётку, осциллируют в одном и том же направлении - свет "поляризован". Поляризация света может быть различной - это зависит от угла, под которым светит солнце. Этот угол меняется в зависимости от вашего местоположения в мире и от времени дня. Когда солнце прямо над головой - эффект выражен слабее, чем когда солнце у горизонта. Очень впечатляющие результаты можно получить, когда солнце уже почти зашло за горизонт.

    Слайд 13

    Это интересно. Поиску обитаемых планет у ближайших звезд могут помочь радуги, пишет ABC со ссылкой на журнал Astrobiology. Спектральное разложение света может быть достоверным индикатором присутствия жидкой воды, необходимой для формирования жизни земного типа. Астробиолог Джереми Бэйли (Jeremy Bailey) из австралийского Macquarie University уточняет, что при исследовании планет ученые будут ориентироваться на поляризацию света – физическое явление, родственное его разложению при возникновении радуги как таковой. Определение угла поляризации позволяет с высокой точностью определять состав жидкости, преломляющей свет. Именно таким путем был установлен состав облаков на Венере, где свет проходил сквозь капли концентрированной серной кислоты. Поляриметрические исследования рассматриваются исследователями как дополнительный метод к спектроскопии – основному способу изучения экстрасолнечных планет, позволяющему получить данные об их составе, но не дающей возможности определить, в частности, находится вода на небесном теле в жидком или газообразном состоянии.

Посмотреть все слайды

Цель урока

Сформировать у школьников понятие «естественный и поляризованный свет»; познакомить с экспериментальным доказательством поперечности световых волн; изучить свойства поляризованного света, показать аналогию между поляризацией механических, электромагнитных и световых волн; сообщить о примерах использования поляроидов.

Урок по поляризации света является заключительными в теме «Волновая оптика». В связи с этим урок с использованием компьютерного моделирования можно построить как урок обобщающего повторения или часть урока отвести под решение задач по темам «Интерференция света», «Дифракция света». Мы предлагаем модель урока, на котором изучается новый материал по теме «Поляризация света», а затем проводится закрепление изученного материала на компьютерной модели. На данном уроке легко сочетать реальную демонстрацию с компьютерным моделированием, так как поляроиды можно дать детям в руки и показать гашение света при повороте одного из поляроидов.

№ п/п Этапы урока Время, мин Приемы и методы
1 Организационный момент 3
2 Объяснение нового материала по теме «Поляризация света» 28 Беседа, работа с учебником, демонстрация явления поляризации с помощью поляроидов и компьютерной модели «Закон Малюса»
3 Тест «Поляризация» 7 Работа на компьютере с тестом. Тест № 5
4 Анализ проделанной работы 5 Фронтальная беседа
5 Объяснение домашнего задания 2

Домашнее задание: § 74, задача № 1104, 1105.

Объяснение нового материала

Явления интерференции и дифракции не оставляют сомнений в том, что распространяющийся свет обладает свойствами волн. Но каких волн – продольных или поперечных?

Длительное время основатели волновой оптики Юнг и Френель считали световые волны продольными, то есть подобными звуковым волнам. В то время световые волны рассматривались как упругие волны в эфире, заполняющем пространство и проникающем внутрь всех тел. Такие волны, казалось, не могли быть поперечными, так как поперечные волны могут существовать только в твердом теле. Но как могут тела двигаться в твердом эфире, не встречая сопротивления? Ведь эфир не должен препятствовать движению тел. В противном случае не выполнялся бы закон инерции.

Однако постепенно набиралось все больше и больше экспериментальных фактов, которые никак не удавалось истолковать, считая световые волны продольными.

Опыты с турмалином

Рассмотрим подробно только один из экспериментов, очень простой и эффектный. Это опыт с кристаллами турмалина (прозрачными кристаллами зеленой окраски).

Продемонстрировать учащимся гашение света при повороте двух поляроидов. Кристалл турмалина имеет ось симметрии и принадлежит к числу так называемых одноосных кристаллов. Возьмем прямоугольную пластину турмалина, вырезанную таким образом, чтобы одна из ее граней была параллельна оси кристалла. Если направить нормально к такой пластине пучок света от электрической лампы или солнца, то вращение пластины вокруг пучка никакого изменения интенсивности света, прошедшего через нее, не вызовет (см. рис.). Можно подумать, что свет только частично поглотился в турмалине и приобрел зеленоватую окраску. Больше ничего не произошло. Но это не так. Световая волна приобрела новые свойства.

Эти новые свойства обнаруживаются, если пучок заставить пройти через второй точно такой же кристалл турмалина (см. рис. а), параллельный первому. При одинаково направленных осях кристаллов опять ничего интересного не происходит: просто световой пучок еще более ослабляется за счет поглощения во втором кристалле. Но если второй кристалл вращать, оставляя первый неподвижным (рис. б), то обнаружится удивительное явление – гашение света. По мере увеличения угла между осями интенсивность света уменьшается. И когда оси перпендикулярны друг другу, свет не проходит совсем (рис. в). Он целиком поглощается вторым кристаллом. Как это можно объяснить?

Поперечность световых волн

Из описанных выше опытов следует два факта: во-первых, что световая волна, идущая от источника света, полностью симметрична относительно направления распространения (при вращении кристалла вокруг луча в первом опыте интенсивность не менялась) и, во-вторых, что волна, вышедшая из первого кристалла, не обладает осевой симметрией (в зависимости от поворота второго кристалла относительно луча получается та или иная интенсивность прошедшего света).

Продольные волны обладают полной симметрией по отношению к направлению распространения (колебания происходят вдоль этого направления, и оно является осью симметрии волны). Поэтому объяснить опыт с вращением второй пластины, считая световую волну продольной, невозможно.

Полное объяснение опыта можно получить, сделав два предположения.

Первое предположение относится к самому свету. Свет – поперечная волна. Но в падающем от обычного источника пучке волн присутствуют колебания всевозможных направлений, перпендикулярных направлению распространения волн (см. рис.).

Продемонстрировать, что естественный свет содержит колебания во всех плоскостях.

Согласно этому предположению световая волна обладает осевой симметрией, являясь в то же время поперечной. Волны, например, на поверхности воды такой симметрией не обладают, так как колебания частиц воды происходят только в вертикальной плоскости.

Световая волна с колебаниями по всем направлениям, перпендикулярным направлению распространения, называется естественной . Такое название оправдано, так как в обычных условиях источники света создают именно такую волну. Данное предположение объясняет результат первого опыта. Вращение кристалла турмалина не меняет интенсивность прошедшего света, так как падающая волна обладает осевой симметрией (несмотря на то, что она поперечная).

Второе предположение, которое необходимо сделать, относится к кристаллу. Кристалл турмалина обладает способностью пропускать световые волны с колебаниями, лежащими в одной определенной плоскости (плоскость P на рисунке).


На компьютерной модели «Закон Малюса»

Продемонстрировать, что кристалл турмалина выделяет только одну плоскость колебаний света. Поворачивая поляризатор, а затем анализатор, можно показать, что интенсивность проходящего света меняется от максимального значения до нуля. Для гашения света угол между осями поляроидов должен быть 90° . Если оси поляроидов параллельны, то второй поляроид пропускает весь свет, прошедший сквозь первый.

Такой свет называется поляризованным , или, точнее, плоскополяризованным , в отличие от естественного света, который может быть назван также неполяризованным . Это предположение полностью объясняет результаты второго опыта. Из первого кристалла выходит плоскопо-ляризованная волна. При скрещенных кристаллах (угол между осями 90°) она не проходит сквозь второй кристалл. Если оси кристаллов составляют между собой некоторый угол, отличный от 90°, то проходят колебания, амплитуда которых равна проекции амплитуды волны, прошедшей через первый кристалл, на направление оси второго кристалла.

Итак, кристалл турмалина преобразует естественный свет в плоскополяризованный.

Механическая модель опытов с турмалином

Нетрудно построить простую наглядную механическую модель рассматриваемого явления. Можно создать поперечную волну в резиновом шнуре так, чтобы колебания быстро меняли свое направление в пространстве. Это аналог естественной световой волны. Пропустим теперь шнур сквозь узкий деревянный ящик (см. рис.). Из колебаний всевозможных направлений ящик «выделяет» колебания в одной определенной плоскости. Поэтому из ящика выходит поляризованная волна.


Если на ее пути имеется еще точно такой же ящик, но повернутый относительно первого на 90° , то колебания сквозь него не проходят. Волна целиком гасится.

Если в кабинете есть механическая модель поляризации можно, ее продемонстрировать. Если такой модели нет, то можно эту модель проиллюстрировать фрагментами видеофильма «Поляризация».

Поляроиды

Не только кристаллы турмалина способны поляризовать свет. Таким же свойством, например, обладают так называемые поляроиды . Поляроид представляет собой тонкую (0,1 мм) пленку кристаллов герапатита, нанесенную на целлулоид или стеклянную пластинку. С поляроидом можно проделать те же опыты, что и с кристаллом турмалина. Преимущество поляроидов в том, что можно создавать большие поверхности, поляризующие свет. К недостаткам поляроидов относится фиолетовый оттенок, который они придают белому свету.

Прямыми опытами доказано, что световая волна является поперечной. В поляризованной световой волне колебания происходят в строго определенном направлении.

В заключение можно рассмотреть применение поляризации в технике и проиллюстрировать этот материал фрагментами видиофильма «Поляризация».

И О. Френель знали, что световые волны являются продольными, то есть они подобны волнам звуковым. В то время световые волны воспринимались как упругие волны в эфире, которые заполняют все пространство и проникают внутрь каждого тела. Казалось, волны не могут называться поперечными.

Но все же понемногу набиралось все больше экспериментальных доказательств и фактов, которые не удавалось объяснить, предполагая, что световые волны - продольные. Ведь поперечные волны могли существовать исключительно в твердых телах. Но как может тело двигаться в твердом эфире без сопротивления? Эфир же никак не должен тормозить движение тел. Ведь в противном случае не выполнялся бы.

Можно рассмотреть один простой и полезный эксперимент с кристаллом турмалина. Он прозрачен и имеет зеленую окраску.

У кристалла турмалина имеется Этот кристалл причисляют к одноосным кристаллам. Берется прямоугольная пластина турмалина, вырезается так, чтобы одна ее грань находилась параллельно к оси самого кристалла. Если пучок электрического или солнечного света направлять нормально на эту пластину, то вращение пластины вокруг него не вызовет изменений в интенсивности света, который через нее проходит. Возникает ощущение, что проходящий свет в турмалине поглотился частично и приобрел светло-зеленую окраску. Больше ничего не происходит. Но это ошибочно. Волна света приобретает новые свойства.

Их можно обнаружить, если пучок света пройдет через такой же второй кристалл турмалина, который находится параллельно первому. При одинаковом направлении осей двух кристаллов также ничего любопытного не происходит, только пучок света все больше ослабляется из-за поглощения, проходя через второй кристалл. Но при вращении второго кристалла, если при этом первый оставить неподвижно, обнаружится интересное явление под названием «гашение света». В процессе увеличения угла между двумя данными осями уменьшается насыщенность пучка проходящего света. Когда две оси перпендикулярны по отношению одна к другой, свет не может пройти вообще. Он будет полностью поглощаться вторым кристаллом. Как это объясняется?

Поперечность световых волн

Из описания фактов, показанных ранее, следует:

1. Во-первых, световая волна, которая идет от источника света, абсолютно симметрична по отношению к направлению, по которому происходит распространение. При обороте данного кристалла вокруг проходящего луча света при первом проведенном опыте его интенсивность не изменялась.

2. Во-вторых, волна, выходящая из первого кристалла, не будет обладать осевой симметричностью. Интенсивность проходящего света через другой кристалл зависит от его поворота.

Продольные волны отличаются полной симметрией относительно направления распространения. Колебания продольных волн происходят вдоль такого направления, это колебание и является волны. Именно поэтому пояснить опыт с вращением второго кристалла, считая волну света продольной, не представляется возможным: это - поперечные волны.

Можно в полной мере объяснить опыт, делая два предположения:

Предположение номер один относится непосредственно к свету: световые волны - поперечные волны. Но в падающем от источника света пучке световых волн присутствуют колебания различных направлений, которые перпендикулярны направлению, по которому происходит распространение такой волны. В данном случае, рассматривая такое предположение, можно сделать вывод, что волна света имеет в это же время являясь поперечной. К примеру, волны на водной поверхности подобной симметрии не имеют, потому что колебания частиц воды происходят исключительно в вертикальной плоскости.

Волны света с колебаниями в различных направлениях, которые перпендикулярны направлениям распространения, называются естественными. Это название является оправданным, потому что в стандартных условиях разные источники освещения создают именно такие волны. Это предположение объясняется результатами первого проведенного опыта. Вращение турмалинового кристалла не изменяет насыщенности проходящего пучка света, потому что данная падающая волна имеет осевую симметрию, даже несмотря на то, что она - поперечная волна.

Второе предположение относится к самому кристаллу. Турмалин обладает свойством пропускать волны света с колебаниями, которые происходят в определенной плоскости. Этот свет называется поляризованным (или плоскополяризованным). Он отличается от естественного, неполяризованного.

Данное предположение объясняется вторым опытом. Из первого кристалла турмалина выходит плоскополяризованный свет (волна). При скрещении кристаллов под углом девяносто градусов волна не может пройти сквозь второй из них. Если угол скрещения другой, то будут проходить которых будет равна проекции амплитуды волны, прошедшей через первую пластину в направлении оси второй. Именно это и является доказательством теории о том, что световые волны - поперечные волны.

Эволюция физики Эйнштейн Альберт

Продольны или поперечны световые волны?

Все рассмотренные нами оптические явления говорят в пользу волновой теории. Искривление луча света у краев малых отверстий и препятствий и объяснение преломления - это самые сильные аргументы в ее пользу. Руководствуясь механистической точкой зрения, мы признаем, что остается еще один вопрос, на который следует ответить: определение механических свойств эфира. Для решения этой проблемы существенно знать, продольны или поперечны световые волны в эфире. Другими словами, распространяется ли свет подобно звуку? Вызвана ли волна изменением плотности среды, т. е. совершаются ли колебания частиц в направлении распространения? Или эфир похож на упругий студень - на среду, в которой могут распространяться лишь поперечные волны и в которой частицы движутся в направлении, перпендикулярном к направлению распространения самих волн?

Прежде чем решить эту проблему, попробуем определить, какой ответ следует предпочесть. Очевидно, мы должны были бы радоваться, если бы световые волны оказались продольными. В этом случае трудности в описании механического эфира были бы не так велики. Картина строения эфира могла бы, вероятно, быть чем-то вроде механической картины строения газа, которая объясняет распространение звуковых волн. Было бы гораздо труднее создать картину строения эфира, передающего поперечные волны. Представить себе среду в виде студня или желе, построенную из частиц таким образом, что через нее распространяются поперечные волны, - это нелегкая задача. Гюйгенс был убежден, что эфир скорее окажется «воздухообразным», чем «желеобразным». Но природа очень мало внимания обращает на наши трудности. Была ли природа в этом случае милосердна к попыткам физиков понять все явления с механистической точки зрения? Чтобы ответить на этот вопрос, мы должны обсудить некоторые новые эксперименты.

Мы рассмотрим подробно лишь один из многих экспериментов, который в состоянии дать нам ответ. Предположим, что мы имеем очень тонкую пластинку из турмалинового кристалла, вырезанную особым образом, в описании которого здесь нет необходимости. Пластинка кристалла должна быть настолько тонка, чтобы можно было видеть сквозь нее источник света. Возьмем теперь две такие пластинки и поместим их между глазами и источником света (рис. 48). Что мы увидим? Опять световую точку, если пластинки достаточно тонки. Очень велики шансы на то, что эксперимент подтвердит наши ожидания. Не задаваясь целью установить, каковы эти шансы, допустим, что мы уже видим световую точку через оба кристалла. Будем теперь постепенно изменять положение одного кристалла, поворачивая его. Это предложение будет иметь смысл лишь в том случае, если положение оси, вокруг которой происходит вращение, фиксировано. Мы возьмем в качестве оси линию, определяемую проходящим лучом.

Это означает, что мы перемещаем все точки одного кристалла, кроме тех, которые лежат на оси. Но что за странная вещь! Свет делается все слабее и слабее, пока не исчезает совершенно. Затем он вновь появляется, по мере того как продолжается вращение, и вновь приобретает первоначальный вид, когда достигается первоначальное положение.

Не входя в детали подобных экспериментов, мы можем задать следующий вопрос: можно ли объяснить эти явления, если световые волны продольны? Если бы волны были продольны, частицы эфира должны были бы двигаться вдоль оси, т. е. в том же направлении, в каком идет луч. Если кристалл вращается, ничего вдоль оси не изменяется. Точки на оси не передвигаются, и лишь очень небольшое смещение имеет место вблизи оси. Такого ясно различимого изменения, как исчезновение и появление новой картины, не могло бы возникнуть для продольной волны. Это, а также и многие другие подобные явления могут быть объяснены лишь в том случае, если предположить, что световые волны не продольны, а поперечны! Или, другими словами, нужно предположить «желеобразный» характер эфира.

Это очень печально! Мы должны подготовиться к встрече непреодолимых трудностей в попытке механического описания эфира.

Из книги Тайны пространства и времени автора Комаров Виктор

Из книги Эволюция физики автора Эйнштейн Альберт

Волны материи Как истолковать тот факт, что в спектрах элементов оказываются лишь определенные характерные длины волн?В физике часто случалось, что существенный успех был достигнут проведением последовательной аналогии между не связанными по виду явлениями. В этой

Из книги Физика на каждом шагу автора Перельман Яков Исидорович

Волны вероятности Согласно классической механике, если мы знаем положение и скорость данной материальной точки, а также внешние действующие силы, мы можем предсказать на основе законов механики весь ее будущий путь. В классической механике утверждение «Материальная

Из книги Движение. Теплота автора Китайгородский Александр Исаакович

Волны и качка Волны на море, бросающие корабль, то вздымающие его высоко на гребень, то погружающие в глубокую водяную долину, кажутся нам огромной высоты – выше многоэтажного дома. Однако это заблуждение: волны вовсе не так высоки, как кажется пассажиру корабля. Самые

Из книги Юный физик в пионерском лагере автора Перельман Яков Исидорович

Волны, идущие по поверхности Подводники не знают морских бурь. В самые сильные штормы на глубине в несколько метров под уровнем моря царит штиль. Морские волны – один из примеров волнового движения, захватывающего лишь поверхность тела.Иногда может показаться, что

Из книги О чем рассказывает свет автора Суворов Сергей Георгиевич

ВОЛНЫ НА ХЛЕБНОМ ПОЛЕ И НА ВОДЕ Бег волн по хлебному полю помогает понять, что происходит с водою в реке или озере, когда по их поверхности разбегаются волны от брошенного камня. Кажется, что вода бежит вместе с волнами. На самом деле частицы воды только качаются на месте,

Из книги История лазера автора Бертолотти Марио

Волны на поверхности воды Каждый знает, что водяные волны бывают разные. На поверхности пруда едва заметная зыбь слегка качает пробку рыболова, а на морских просторах огромные водяные валы раскачивают океанские пароходы. Чем же отличаются волны друг от друга?Посмотрим,

Из книги Твиты о вселенной автора Чаун Маркус

Электромагнитные волны В то же время, когда спектроскопия начала так бурно развиваться, английский физик Джемс Клерк Максвелл (1831 -1879) обобщал результаты опытных исследований электрических и магнитных свойств материи. При этом он вовсе не имел дела со светом и со всеми

Из книги Гравитация [От хрустальных сфер до кротовых нор] автора Петров Александр Николаевич

Освоение космоса и световые (фотонные) ракеты В будущем свету, возможно, придется играть и еще одну роль - роль движителя (рабочего вещества) в ракете. Пока человек осваивает космос в пределах солнечной системы, он, по-видимому, может обойтись реактивными двигателями, в

Из книги 4a. Кинетика. Теплота. Звук автора Фейнман Ричард Филлипс

Гравитационные волны В 1919 г. Эйнштейн предсказал, что движущиеся массы производят гравитационные волны, распространяющиеся со скоростью света. К сожалению, амплитуда такого гравитационного излучения, испускаемого любым источником, созданным в лаборатории, слишком

Из книги Интерстеллар: наука за кадром автора Торн Кип Стивен

140. Что такое гравитационные волны? Гравитационные волны являются гипотетическими волнами в структуре пространства-времени, движущимися со скоростью света, как рябь на поверхности пруда.Согласно общей теории относительности Эйнштейна, жесткое 4-мерное

Из книги автора

Глава 10 Гравитационные волны А синуса график волна за волной На ось ординат набегает. Студенческая песня Электромагнитные волны Развивая рассказ о создании новой теории гравитации ОТО, мы все время возвращались к идеям Ньютона и результатам его теории. Сейчас,

Из книги автора

Электромагнитные волны Развивая рассказ о создании новой теории гравитации ОТО, мы все время возвращались к идеям Ньютона и результатам его теории. Сейчас, начиная рассказ о гравитационных волнах, мы нарушим эту традицию и обратимся к электромагнетизму Максвелла.

Из книги автора

Глава 51 ВОЛНЫ § 1. Волна от движущегося предмета§ 2. Ударные волны§ 3. Волны в твердом теле§ 4. Поверхностные волны§ 1. Волна от движущегося предметаМы закончили количественный анализ волн, но посвятим еще одну дополнительную главу некоторым качественным оценкам различных

Из книги автора

Гравитационные волны от Большого взрыва В 1975 году Леонид Грищук, мой добрый приятель из России, сделал сенсационное заявление. Он сказал, что в момент Большого взрыва возникло множество гравитационных волн, причем механизм их возникновения (прежде неизвестный) был

Из книги автора

Гигантские волны на планете Миллер Откуда могли появиться две гигантские – в 1,2 километра вышиной – волны, которые норовят захлестнуть «Рейнджер» на планете Миллер (рис. 17.5)? Рис. 17.5. Гигантская волна обрушивается на «Рейнджер» (Кадр из «Интерстеллар», с разрешения

Свет - это форма энергии, видимая человеческим глазом, которую излучают движущиеся заряженные частицы.

Солнечный свет играет важную роль в жизни живой природы. Он необходим для роста растений. Растения преобразуют энергию солнечного света в химическую форму с помощью процесса фотосинтеза. Нефть, уголь и природный газ являются остатками растений, живших миллионы лет назад. Можно сказать, что это энергия преобразованного солнечного света.

Ученые с помощью экспериментов доказали, что время от времени свет ведет себя как частица, а в другое время как волна. В 1900 году квантовая теория Макса Планка объединила две точки зрения ученых на свет. И в современной физике свет рассматривают как поперечные электромагнитные волны, видимые человек, которые излучаются квантами света (фотонами) - частицами не имеющими массы и движущимися со скоростью

Характеристики света

Как любую волну, свет можно охарактеризовать длиной (λ), частотой (υ) и скоростью распространения в какой-либо среде (v). Связь между этими величинами демонстрирует формула:

Видимый свет лежит в диапазоне длин волн электромагнитного излучения от м (в порядке возрастания длины волны: фиолетовый, синий, зеленый, желтый, оранжевый, красный). Частота световой волны связана с его цветом.

Когда световая волна переходит из вакуума в среду, то происходит уменьшение ее длины и скорости распространения, частота световой волны остается неизменной:

n - показатель преломления среды, с - скорость света в вакууме.

Необходимо помнить, что скорость света:

  • в вакууме является универсальной постоянной во всех системах отчета;
  • в среде всегда меньше скорости света в вакууме;
  • зависит от среды, через которую он проходит;
  • в вакууме всегда больше скорости любой частицы, обладающей массой.

Волновая природа света

Волновая природа света была впервые проиллюстрирована с помощью экспериментов по дифракции и интерференции. Как и все электромагнитные волны, свет может проходить через вакуум, отражаться и преломляться. Поперечную природу света доказывает явление поляризации.

Интерференция

Световые волны, имеющие постоянную разность фаз и одинаковые частоты, производят видимый эффект интерференции, когда происходит усиление или ослабление результирующей волны.

Исаак Ньютон был одним из первых ученых, изучавших явление интерференции. В своем знаменитом эксперименте «Кольца Ньютона» он соединил выпуклую линзу с большим радиусом кривизны с плоской стеклянной пластиной. Если рассматривать эту оптическую систему через отраженный солнечный свет, наблюдается ряд концентрических светлых и темных сильно окрашенных кругов света. Кольца проявляются из-за тонкого слоя воздуха между линзой и пластиной. Свет, отраженный от верхней и нижней поверхности стекла, интерферирует и дает максимум интерференции в виде светлых, а минимум в виде темных колец.

Дифракция

Дифракция - это огибание световой волной препятствий. Явление можно наблюдать, когда препятствие по своим размерам сравнимо с длиной волны. Если объект намного больше длины волны от источника света, явление практически незаметно.

Результат дифракции - чередующиеся цветные и темные полосы света или концентрические окружности. Этот оптический эффект возникает в результате того, что волны, обогнувшие препятствие интерферируют. Такую картину дает отраженный от поверхности компакт-диска свет.