Свойства жидкостей. Свойства жидкого состояния

Рассмотрим выпуклую поверхность (рис. 5.18), кривизна ко­торой в точке О для каждого из двух взаимно перпендикуляр­ных нормальных сечений различна. Пусть я-внешняя нормаль

к поверхности в точке О; MN и Р г Р 2 -главные сечения. Вы­делим мысленно элемент поверхности AS U и рассчитаем силы поверхностного натяжения, действующие на отрезки АВ и CD, АС и BD, полагая, что АВ = CD и AC ~ BD. На каждую еди­ницу длины контура ABDC действует сила поверхностного на­тяжения а окружающей жидкости, стремящаяся растянуть элемент поверхности AS n во все стороны. Все силы, действую­щие на сторону АВ, заменим одной равнодействующей силой A.F, приложенной к середине отрезка АВ = А/ в перпендикуные параллельно п, только в них вместо R x будет радиус кри­визны £? 2 перпендикулярного сечения Р г Р. г. Радиус R 2 изобра­жен на рис. 5.18 отрезком P-fi". Отсюда равнодействующая AF-* всех нормальных сил, действующих на четыре стороны

элемента поверхности А5 П, AF~ = ДК. + AF, + af s f AF. = V af, да (rAS n | - -|- -V

Сила AF^ прижимает элемент поверхности А5 П к слоям, распо­ложенным ниже его. Отсюда среднее давление р ср, обусловлен­ное искривлением поверхности,

Чтобы получить давление р а в точке, устремим AS, к нулю. Переходя к пределу отношения AF^ к площади as n , на кото­рую действует эта сила, получим AF^ dF.

AS n -*o AS n dS n \ R, R 2

Но по определению

p. = о 14-+ 4-\ (5 - 8)

p„ = a I ■

где R lt R 2 - главные радиусы кривизны в данной точке по­верхности.

В дифференциальной геометрии выражение е = -~ ^--\-

J--) называют средней кривизной поверхности в точке Р.

Она имеет одно и то же значение для всех пар нормальных се­чений, перпендикулярных друг к другу.

Выражение (5.8), устанавливающее зависимость перепада гидростатического давления р а на поверхности раздела двух фаз (жидкость - жидкость, жидкость -■ газ или пар) от меж­фазного поверхностного натяжения а и средне!! кривизны по­верхности 8 в рассматриваемой точке называется формулой Лапласа в честь французского физика Лапласа.

Величина р а прибавляется к капиллярному давлению р ь соответствующему плоской поверхности. Если поверхность вог­нута, тогда в формуле (5.8) ставится знак минус. В общем случае произвольной поверхности радиусы кривизны R x и R 2 мо­гут отличаться друг от друга как по величине, так и по зна­ку. Так, например, у поверхности, изображенной на рис. 5.19, радиусы кривизны R x и R 2 в двух взаимно перпендикулярных нормальных сечениях различны по величине и знаку. Этот слу­чай может привести к положительным или отрицательным зна­чениям р а в зависимости от абсолютной величины R x и R 2 . Принято считать, что если центр кривизны нормального сече­ния находится под поверхностью, то соответствующий ей ра­диус кривизны является положительным, если над поверх­ностью - отрицательным. Поверхности, средняя кривизна которых



во всех точках равна нулю е == ~(~--1" - 0 , называ­ют минимальными поверхностями. Если в одной точке такой поверхности /? 1 >0, то автоматически /? 2 <С0.

Для сферы любое нормальное сечение представляет собой окружность радиуса R, поэтому в формуле (5.8) /? х = R 2 = R и добавочное капиллярное давление

Р. = ~. (5-9)

Для мыльного пузыря вследствие существования у него внеш­ней и внутренней поверхностей

Р*=-~- (5-Ю)

Если для кругового цилиндра одним из нормальных сечений считать сечение, идущее вдоль образующей, то R x = со. Второе, перпендикулярное к нему сечение дает окружность радиуса

R (R 2 = R). Поэтому в соответствии с формулой (5.8) добавочное капиллярное давление под цилиндрической поверхностью

Р. = -}|- (5-И)

Из выражений (5.9) - (5.11) видно, что при изменении фор­мы поверхности меняется лишь коэффициент перед отношением a/R. Если поверхность жидкости плоская, то R x ~ R 2 = со и, следовательно, р з = 0. В этом случае суммарное давление

Р = Pi ± р а = Pi ± 0 = p t .

Добавочное капиллярное давление, определяемое формулой Лапласа, всегда направлено к центру кривизны. Поэтому для выпуклой поверхности оно направлено внутрь жидкости, для вогнутой -наружу. В первом случае оно прибавляется к ка­пиллярному давлению p h во втором--вычитается из него. Ма­тематически это учитывается тем, что для выпуклой поверхности радиус кривизны считается положительным, для вогнутой - от­рицательным.



Качественную зависимость добавочного капиллярного давле­ния от кривизны поверхности можно наблюдать на следующем опыте (рис. 5.20). Концы А я В стеклянного тройника опускают в раствор мыльной воды. В результате оба конца тройника затя­гиваются мыльной пленкой. Вынув тройник из раствора, через отросток С выдувают два мыльных пузыря. Как правило, вслед­ствие различных причин пузыри имеют разные размеры. Если закрыть отверстие С, то пузырь большего размера будет постепен­но раздуваться, а меньшего-сокращаться. Это убеждает нас в том, что капиллярное давление, вызванное кривизной поверх­ности, растет с уменьшением радиуса кривизны.

Чтобы составить представление о величине добавочного ка: пиллярного давления, вычислим его для капли диаметра 1 мкм (примерно из таких капель часто состоят облака):

2а 2.72,75-Ю- 3 „ мгт

р --= -==-= 0,1455 МПа.

5.8. Смачивание

Поверхностным натяжением обладает не только свободная поверхность жидкости, но и граница раздела двух жидкостей, жидкости и твердого тела, а также свободная поверхность твердого тела. Во всех случаях поверхностная энергия опреде­ляется как разность между энергией молекул у поверхности раздела и энергией в объеме соответствующей фазы. При этом величина поверхностной энергии на границе раздела зависит от свойств обеих фаз. Так, например, на границе вода - воздух а = 72,75-10 ~ 3 Н/м (при 20 °С и нормальном атмосферном дав­лении), на границе вода-эфир а= 12-10 3 Н/м, а на границе вода - ртуть а = 427-10~ 3 Н/м.

Молекулы (атомы, ионы), находящиеся на поверхности твер­дого тела, испытывают притяжение с одной стороны. Поэтому твердые тела так же, как и жидкости, обладают поверхностным натяжением.

Опыт показывает, что капля жидкости, находящейся на по­верхности твердой подложки, приобретает ту или иную форму в зависимости от природы твердого тела, жидкости и среды, в ко­торой они находятся. Чтобы уменьшить потенциальную энергию в поле силы тяжести, жидкость всегда стремится принять такую форму, при которой центр ее массы занимает наинизшее положе­ние. Эта тенденция и приводит к растеканию жидкости по по­верхности твердого тела. С другой стороны, силы поверхностного натяжения стремятся придать жидкости форму, соответствующую минимуму поверхностной энергии. Конкуренция между этими силами и приводит к созданию той или иной формы.

Самопроизвольное увеличение площади фазовой границы твер­дое тело - жидкость или жидкость А - жидкость В под влияни­ем молекулярных сил сцепления называется растеканием.

Выясним причины, приводящие к растеканию капли по поверх­ности. На молекулу С (рис. 5.21, а), находящуюся в месте соприкосновения капли жидкости с твердой подложкой, с одной

стороны действуют силы притяжения молекул жидкости, равно­действующая которых Fj_ направлена по биссектрисе краевого угла с другой - молекулы твердого тела, равнодействующая которых F 2 перпендикулярна к его поверхности. Равнодействую­щая R этих двух сил наклонена влево от вертикали, как пока­зано на рисунке. В этом случае стремление жидкости расположить свою поверхность перпендикулярно к R приведет к ее растеканию (смачиванию).

Процесс растекания жидкости прекращается, когда угол Ф (его называют краевым) между касательной к поверхности жид­кости в точке С и поверхностью твердого тела достигает неко­торого предельного значения гт к, характерного для каждой пары жидкость -твердое тело. Если краевой угол острый

(0 ^ ■& ^ -), то жидкость смачивает поверхность твердого

тела и тем лучше, чем он меньше. При $ к = 0 имеет место полное Смачивание, при котором жидкость растекается по по­верхности до образования мономолекулярной пленки. Смачива­ние обычно наблюдается на границе соприкосновения трех фаз, одна из которых является твердым телом (фаза 3), а две дру­гие - несмешивающимися жидкостями или жидкостью и газом (фазы / и 2) (см. рис. 5.21, с).

Если сила F x больше, чем F. 2 , т. е. со стороны жидкости силы притяжения на выделенную молекулу больше, чем со стороны твердого тела, то краевой угол $ будет большим и картина вы­глядит так, как показано на рис. 5.21, б. В этом случае угол Ф тупой (я/2 < § ^ я) и жидкость частично (при неравенстве) или полностью (при равенстве) не смачивает твердую подложку. По отношению к стеклу такой несмачивающей жидкостью яв­ляется, например, ртуть, гдесозд = - 1. Однако та же самая ртуть хорошо смачивает другую твердую подложку, например цинк.

Количественно эти соображения могут быть выражены на

основе следующих представлений. Обозначим через o"i_ 2 , °1-з, 0-2-3 соответственно поверхностное натяжение на границе жидкость - газ, твердое вещество - газ и жидкость -■ твердая поверхность. Направления действия этих сил в сечении будем изображать стрелками (рис. 5.22). На каплю жидкости, нахо­дящуюся на твердой подложке, действуют следующие силы поверхностного натяжения: на границе /-3 -ffi-з, стремя­щаяся растянуть каплю, и на границе 2 - 3 -Ог-з. стремящая­ся стянуть ее к центру. Поверхностное натяжение 04-2 на гра­нице 1-2 направлено по касательной к поверхности капли в точке С. Если краевой угол Ф острый, то проекция силы cri_ 2 на плоскость твердой подложки (ov 2 cos Ф) совпадет по напра­влению с о 2 .-з (рис. 5.22 ; а). В этом случае действия обеих сил

будут складываться. Если же угол ft тупой, как показано на рис. 5.21, б, то cos ft отрицательный и проекция cri._ 2 cosft сов­падет по направлению с O1-.3. При равновесии капли на твер­дой подложке должно соблюдаться следующее равенство:

= 02-3 + СГ1-2 соэФ. (5.12)

Это уравнение было получено в 1805 г. Юнгом и названо его име­нем. Отношение

В = ---^- = cos ft

называют критерием смачивания.

Таким образом, краевой угол ft зависит лишь от поверх­ностных натяжений на границах соответствующих сред, опреде­ляемых их природой, и не зависит от формы сосуда и величи­ны силы тяжести. Когда равенство (5.12) не соблюдено, могут иметь место следующие случаи. Если 01-3 больше правой части уравнения (5.12), то капля будет растекаться, а угол ft-■ уменьшаться. Может случиться так, что cos ft увеличится настолько, что правая часть равенства (5,12) станет равной о"ь_ 3 , тогда наступит равновесие капли в растянутом состоянии. Если же ov_ 3 настолько велико, что даже при cos ft = 1 левая часть равенства (5.12) больше правой (01 _з > 0 2 -з + o"i_ 2)> то капля будет растягиваться в жидкую пленку. Если же правая часть равенства (5.12) больше, чем o"i 3 , то капля стягивается к центру, угол ft увеличивается, a cos ft соответственно умень­шается до тех пор, пока не наступит равновесие. Когда cos ft станет отрицательным, капля примет форму, показанную на рис. 5.22, б. Если окажется, что 0 2 - 3 настолько велико, что даже при cos ft = -1 (ft = я) правая часть равенства (5.12) бу­дет больше o"i (01 <02 з-01-2)1 то в отсутствие силы тя­жести капля стянется в шар. Этот случай можно наблюдать на маленьких каплях ртути на поверхности стекла.

Критерий смачивания можно выразить через работу адгезии и когезии. Адгезией А а называется возникновение связи между поверхностными слоями двух разнородных (твердых или жидких) тел (фаз), приведенных в соприкосновение. Частный случай ад­гезии, когда соприкасающиеся тела одинаковы, называют ко-гезией (обозначается А с). Адгезия характеризуется удельной ра­ботой, затрачиваемой на разделение тел. Эта работа рассчиты­вается на единицу площади соприкосновения поверхностей и зависит от того, как производится их разделение: сдвигом вдоль поверхности раздела или отрывом в направлении, перпендику­лярном к поверхности. Для двух различных тел (фаз) А и В ее можно выразить уравнением

А а = ста + а в -Од-в,

где а а , а в, а А -в - коэффициенты поверхностного натяжения фаз Л и В на границе с воздухом и между ними.

В случае когезии для каждой из фаз Л и В имеем:

АШ = 2аа , А <*> = 2а в.

Для рассматриваемой нами капли

Л С| =2а]_ 2 ; А а = ffi^ 3 -f ai_ 2 - сЬ-з-

Отсюда критерий смачивания можно выразить равенством

В - с

Таким образом, по мере увеличения разности 2А а -Л с смачива­ние улучшается.

Заметим, что коэффициенты cti-з и Оо„ 3 обычно отождест­вляются с поверхностным натяжением твердого тела на грани­цах с газом и жидкостью, тогда как в состоянии термодинами­ческого равновесия поверхность твердого тела обычно покры­та равновесным адсорбционным слоем вещества, образующего каплю. Поэтому при точном решении задачи для равновесных краевых углов величины cri_ 3 и (Тг-з. вообще говоря, следова­ло бы относить не к самому твердому телу, а к покрывающему его адсорбционному слою, термодинамические свойства кото­рого определяются силовым полем твердой подложки.

Явления смачивания особенно ярко проявляются в невесомости. Иссле­дование жидкости в состоянии космической невесомости впервые провел советский летчик-космонавт П. Р. Попович на корабле «Восток-4». В кабине корабля находилась сферическая стеклянная колба, наполовину заполненная водой. Поскольку вода полностью смачивает чистое стекло (О = 0), то в условиях невесомости она растеклась по всей поверхности и замкнула воз­дух внутри колбы. Таким образом, граница раздела между стеклом и воз­духом исчезла, что оказалось энергетически выгодным. Однако краевой угол i} между поверхностью жидкости и стенками колбы и в состоянии не­весомости оставался таким же, каким он был на Земле.

Явления смачивания и несмачивапия широко используются в техни­ке и быту. Например, чтобы сделать ткань водоотталкивающей, ее обра­батывают гидрофобизирующим (ухудшающим смачивание водой) веще­ством (мылонафт, олеиновая кислота и др.). Эти вещества образуют вокруг волокон тонкую пленку, увеличивающую поверхностное натяжение па границе вода - ткань, по лишь незначительно меняющую его на гра­нице ткань - воздух. При этом краевой угол О при контакте с водой воз­растает. В этом случае, если поры малы, вода в них не проникает, а за­держивается выпуклой поверхностной пленкой и собирается в капли, которые легко скатываются с материала.

Песмачивающая жидкость не вытекает через очень малые отверстия. Например, если нити, из которых сплетено решето, покрыть парафином, то в нем можно носить воду, если, конечно, слой жидкости невелик. Бла­годаря этому свойству водоплавающие насекомые, быстро бегающие по воде, не смачивают лапок. Хорошее смачивание необходимо при краше­нии, склеивании, пайке, при диспергировании твердых тел в жидкой сре­де и т. д.

При достаточно большом формула Бернулли дает громоздкие вычисления. Поэтому в таких случаях применяют локальную теорему Лапласа.

Теорема (локальная теорема Лапласа). Если вероятностьpпоявления события А в каждом испытании постоянна и отлична от 0 и 1, то вероятность
того, что событие А появится вnнезависимых испытаниях ровноkраз, приближенно равна значению функции:

,

.

Имеются таблицы, в которых находятся значения функции
, для положительных значенийx.

Заметим, что функция
четна.

Итак, вероятность того, что событие А появится в nиспытаниях ровноkраз приближенно равна

, где
.

Пример. На опытном поле посеяли 1500 семян. Найти вероятность того, что всходы дадут 1200 семян, если вероятность того, что зерно взойдет, равна 0,9.

Решение.

Интегральная теорема Лапласа

Вероятность того, что в nнезависимых испытаниях событие А появится не менееk1 раз и не болееk2 раз вычисляется по интегральной теореме Лапласа.

Теорема (интегральная теорема Лапласа). Если вероятность р наступления события а в каждом испытании постоянна и отлична от 0 и 1, то вероятность того, что событие А вnиспытаниях появится не менееk 1 раз и не болееk 2 раз приближенно равна значению определенного интеграла:

.

Функция
называется интегральной функцией Лапласа, она нечетна и ее значение находятся по таблице для положительных значенийx.

Пример. В лаборатории из партии семян, имеющих всхожесть 90%, высеяно 600 семян, давших всходы, не менее 520 и не более 570.

Решение.

Формула Пуассона

Пусть производится nнезависимых испытаний, вероятность появления события А в каждом испытании постоянна и равна р. Как мы уже говорили, вероятность появления события А вnнезависимых испытаниях ровноkраз можно найти по формуле Бернулли. При достаточно большомnиспользуют локальную теорему Лапласа. Однако, эта формула непригодна, когда вероятность появления события в каждом испытании мала или близка к 1. А при р=0 или р=1 вообще не применима. В таких случаях пользуются теоремой Пуассона.

Теорема (теорема Пуассона). Если вероятность р наступления события А в каждом испытании постоянна и близка к 0 или 1, а число испытаний достаточно велико, то вероятность того, что вnнезависимых испытаниях событие А появится ровноkраз находится по формуле:

.

Пример. Рукопись объемом в тысячу страниц машинописного текста содержит тысячу опечаток. Найти вероятность того, что наудачу взятая страница содержит хотя бы одну опечатку.

Решение.

Вопросы для самопроверки

    Сформулируйте классическое определение вероятности события.

    Сформулируйте теоремы сложения и умножения вероятностей.

    Дайте определение полной группы событий.

    Запишите формулу полной вероятности.

    Запишите формулу Бейеса.

    Запишите формулу Бернулли.

    Запишите формулу Пуассона.

    Запишите локальную формулу Лапласа.

    Запишите интегральную формулу Лапласа.

Тема 13. Случайная величина и ее числовые характеристики

Литература: ,,,,,.

Одним из основных понятий в теории вероятностей является понятие случайной величины. Так принято называть переменную величину, которая принимает свои значения в зависимости от случая. Различают два вида случайных величин: дискретные и непрерывные. Случайные величины принято обозначать X,Y,Z.

Случайная величина Х называется непрерывной (дискретной), если она может принимать лишь конечное или счетное число значений. Дискретная случайная величина Х определена, если даны все ее возможные значения х 1 , х 2 , х 3 ,…х n (число которых может быть как конечным, так и бесконечным) и соответствующие вероятности р 1 , р 2 , р 3 ,…р n .

Закон распределения дискретной случайной величины Х обычно задается таблицей:

Первая строка состоит из возможных значений случайной величины Х, а во второй строке указаны вероятности этих значений. Сумма вероятностей, с которыми случайная величина Х принимает все свои значения, равна единице, то есть

р 1 +р 2 + р 3 +…+р n =1.

Закон распределения дискретной случайной величины Х можно изобразить графически. Для этого в прямоугольной системе координат строят точки М 1 (х 1 ,р 1), М 2 (х 2 ,р 2), М 3 (х 3 ,р 3),…М n (x n ,p n) и соединяют их отрезками прямых. Полученную фигуру называют многоугольником распределения случайной величины Х.

Пример. Дискретная величина Х задана следующим законом распределения:

Требуется вычислить: а) математическое ожидание М(Х), б) дисперсию D(X), в) среднее квадратическое отклонение σ.

Решение. а) Математическое ожидание М(Х), дискретной случайной величины Х называется сумма попарных произведений всех возможных значений случайной величины на соответствующие вероятности этих возможных значений. Если дискретная случайная величина Х задана с помощью таблицы (1), то математическое ожидание М(Х) вычисляется по формуле

М(Х)=х 1 ∙р 1 +х 2 ∙р 2 +х 3 ∙р 3 +…+х n ∙p n . (2)

Математическое ожидание М(Х) называют также средним значением случайной величины Х. Применяя (2), получим:

М(Х)=48∙0,2+53∙0,4+57∙0,3 +61∙0,1=54.

б) Если М(Х) есть математическое ожидание случайной величины Х, то разность Х-М(Х) называется отклонением случайной величины Х от среднего значения. Эта разность характеризует рассеяние случайной величины.

Дисперсией (рассеянием) дискретной случайной величины Х называется математическое ожидание (среднее значение) квадрата отклонения случайной величины от ее математического ожидания. Таким образом, по самому определению имеем:

D(X)=M 2 . (3)

Вычислим все возможные значения квадрата отклонения.

2 =(48-54) 2 =36

2 =(53-54) 2 =1

2 =(57-54) 2 =9

2 =(61-54) 2 =49

Чтобы вычислить дисперсию D(X), составим закон распределения квадрата отклонения и затем применим формулу (2).

D(X)= 36∙0,2+1∙0,4+9∙0,3 +49∙0,1=15,2.

Следует отметить, что для вычисления дисперсии часто используют следующее свойство: дисперсия D(X) равна разности между математическим ожиданием квадрата случайной величины Х и квадратом ее математического ожидания, то есть

D(X)-M(X 2)- 2 . (4)

Чтобы вычислить дисперсию по формуле (4), составим закон распределения случайной величины Х 2:

Теперь найдем математическое ожидание М(Х 2).

М(Х 2)= (48) 2 ∙0,2+(53) 2 ∙0,4+(57) 2 ∙0,3 +(61) 2 ∙0,1=

460,8+1123,6+974,7+372,1=2931,2.

Применяя (4), получим:

D(X)=2931,2-(54) 2 =2931,2-2916=15,2.

Как видно, мы получили такой же результат.

в) Размерность дисперсии равна квадрату размерности случайной величины. Поэтому для характеристики рассеяния возможных значений случайной величины вокруг ее среднего значения более удобно рассматривать величину, которая равна арифметическому значению корня квадратного из дисперсии, то есть
. Эту величину называют средним квадратическим отклонением случайной величины Х и обозначают через σ. Таким образом

σ=
. (5)

Применяя (5), имеем: σ=
.

Пример. Случайная величина Х распределена по нормальному закону. Математическое ожидание М(Х)=5; дисперсияD(X)=0,64. Найти вероятность того, что в результате испытания Х примет значение в интервале (4;7).

Решение .Известно, что если случайная величина Х задана дифференциальной функциейf(x), то вероятность того, что Х примет значение, принадлежащее интервалу (α,β), вычисляется по формуле

. (1)

Если величина Х распределена по нормальному закону, то дифференциальная функция

,

где а =М(Х) и σ=
. В этом случае получаем из (1)

. (2)

Формулу (2) можно преобразовать, используя функцию Лапласа.

Сделаем подстановку. Пусть
. Тогда
илиdx =σ∙ dt .

Следовательно
, гдеt 1 иt 2 соответствующие пределы для переменнойt.

Сократив на σ, будем иметь

Из введенной подстановки
следует, что
и
.

Таким образом,

(3)

По условию задачи имеем: а=5; σ=
=0,8; α=4; β=7. Подставив эти данные в (3), получим:

=Ф(2,5)-Ф(-1,25)=

=Ф(2,5)+Ф(1,25)=0,4938+0,3944=0,8882.

Пример. Считается, что отклонение длины изготавливаемых деталей от стандарта является случайной величиной, распределенной по нормальному закону. Стандартная длина (математическое ожидание) а=40 см, среднее квадратическое отклонение σ=0,4 см. Найти вероятность того, что отклонение длины от стандартной составит по абсолютной величине не более 0,6 см.

Решение .Если Х – длина детали, то по условию задачи эта величина должна быть в интервале (а-δ,а+δ), где а=40 и δ=0,6.

Положив в формулу (3) α= а-δ и β= а+δ, получим

. (4)

Подставив в (4) имеющиеся данные, получим:

Следовательно, вероятность того, что изготавливаемые детали по длине будут в пределах от 39,4 до 40,6 см, составляет 0,8664.

Пример. Диаметр деталей, изготавливаемых заводом, является случайной величиной, распределенной по нормальному закону. Стандартная длина диаметраа=2,5 см, среднее квадратическое отклонение σ=0,01. В каких границах можно практически гарантировать длину диаметра этой детали, если за достоверное принимается событие, вероятность которого равна 0,9973?

Решение. По условию задачи имеем:

а=2,5; σ=0,01; .

Применяя формулу (4), получаем равенство:

или
.

По таблице 2 находим, что такое значение функция Лапласа имеет при х=3. Следовательно,
; откуда σ=0,03.

Таким образом, можно гарантировать, что длина диаметра будет изменяться в пределах от 2,47 до 2,53 см.

Известно, что поверхность жидкости около стенок сосуда искривляется. Свободная поверхность жидкости, искривлённая около стенок сосуда, называется мениском (рис. 145).

Рассмотрим тонкую жидкую плёнку, толщиной которой можно пренебречь. Стремясь минимизировать свою свободную энергию, плёнка создаёт разность давления с разных сторон. Из-за действия сил поверхностного натяжения в каплях жидкости и внутри мыльных пузырей возникает добавочное давление (плёнка сжимается до тех пор, пока давление внутри пузыря не будет превышать атмосферное на величину добавочного давления плёнки ).

Рис. 146.

Рассмотрим поверхность жидкости, опирающуюся на некоторый плоский контур (рис.146, а ). Если поверхность жидкости не плоская, то стремление ее к сокращению и приведет к возникновению давления , дополнительного к тому, которое испытывает жидкость с плоской поверхностью. В случае выпуклой поверхности это дополнительное давление положительно (рис. 146, б ), в случае вогнутой поверхности – отрицательно (рис. 146, в ). В последнем случае поверхностный слой, стремясь сократиться, растягивает жидкость.

Величина добавочного давления, очевидно, должна возрастать с увеличением коэффициента поверхностного натяжения и кривизны поверхности .

Рис. 147.
Вычислим добавочное давление для сферической поверхности жидкости. Для этого рассечем мысленно сферическую каплю жидкости диаметральной плоскостью на два полушария (рис. 147). Из-за поверхностного натяжения оба полушария притягиваются друг к другу с силой, равной:

.

Эта сила прижимает друг к другу оба полушария по поверхности и, следовательно, обусловливает дополнительное давление:

Кривизна сферической поверхности всюду одинакова и определяется радиусом сферы . Очевидно, что чем меньше , тем больше кривизна сферической поверхности.

Избыточное давление внутри мыльного пузыря в два раза больше, так как пленка имеет две поверхности:

Добавочное давление обусловливает изменение уровня жидкости в узких трубках (капиллярах), вследствие чего называется иногда капиллярным давлением .

Кривизну произвольной поверхности принято характеризовать так называемой средней кривизной , которая может оказаться различной для разных точек поверхности.

Величина дает кривизну сферы. В геометрии доказывается, что полусумма обратных радиусов кривизны для любой пары взаимно перпендикулярных нормальных сечений имеет одно и то же значение:

. (1)

Эта величина и есть средняя кривизна поверхности в данной точке. В этой формуле радиусы – алгебраические величины. Если центр кривизны нормального сечения находится под данной поверхностью, соответствующий радиус кривизны положителен; если центр кривизны лежит над поверхностью, радиус кривизны отрицателен (рис.148).

Рис. 148.
Таким образом, неплоская поверхность может иметь среднюю кривизну, равную нулю. Для этого нужно, чтобы радиусы кривизны были одинаковы по величине и противоположны по знаку.

Например, для сферы центры кривизны в любой точке поверхности совпадают с центром сферы, поэтому и . Для случая поверхности кругового цилиндра радиуса имеем: , и .

Можно доказать, что для поверхности любой формы справедливо соотношение:

Подставив в формулу (2) выражение (1), получим формулу добавочного давления под произвольной поверхностью, называемую формулой Лапласа (рис. 148):

. (3)

Радиусы и в формуле (3) – алгебраические величины. Если центр кривизны нормального сечения находится под данной поверхностью, соответствующий радиус кривизны положителен; если центр кривизны лежит над поверхностью, радиус кривизны отрицателен.

Пример. Если в жидкости имеется пузырек газа, то поверхность пузырька, стремясь сократиться, будет оказывать на газ дополнительное давление . Найдем радиус пузырька в воде, при котором добавочное давление равно1 aтм . .Коэффициент поверхностного натяжения воды при равен . Следовательно, для получается следующее значение: .

давление непосредственно под выпуклой поверхностью жидкости больше давления под плоской поверхностью жидкости, а давление под вогнутой поверхностью жидкости меньше давления, чем под плоской поверхностью.

Расчет давления под сферической поверхностью жидкости

Она представляет из себя тонкий слой воды, который имеет две ограничивающие поверхности: внутреннюю и внешнюю. Радиусы кривизны этих поверхностей можно считать одинаковыми, так как толщина пленки в тысячи раз меньше радиуса пузыря. Вода из этого слоя постепенно стекает, слой утончается и, наконец, рвется. Так что пузыри по воде плавают не очень долго: от долей секунды до десятка секунд. Надо отметить, что по мере утончения водяной пленки размер пузыря практически не меняется.

Рассчитаем избыточное давление в таком пузыре. Для простоты рассмотрим однослойную полусферу радиуса r, располагающуюся на горизонтальной поверхности, будем так же считать, что снаружи воздуха нет. Пленка удерживается на заштрихованной поверхности за счет смачивания (рис. 2.3). При этом на нее вдоль границы контакта с поверхностью действует сила поверхностного натяжения, равная

где - коэффициент поверхностного натяжения жидкости,

Длина границы раздела пленка-поверхность равная .

Т. е. имеем:

.

Эта сила, действующая на пленку, а через нее и на воздух, направлена перпендикулярно поверхности (см. рис 2.3). Так что давление воздуха на поверхность и, следовательно, внутри пузыря можно рассчитать так:

Где F - сила поверхностного натяжения, равная ,

S - площадь поверхности: .

Подставляя значение силы F и площади S в формулу расчета давления получим:

и окончательно .

В нашем примере с воздушным пузырем на поверхности воды пленка двойная и, следовательно, избыточное давление равно .

На рисунке 2.4 приведены примеры однослойных сферических поверхностей, которые могут образоваться на поверхности жидкости. Над жидкостью находится газ, имеющий давление .

Капилля́рность (от лат. capillaris - волосяной), капиллярный эффект - физическое явление, заключающееся в способности жидкостей изменять уровень в трубках, узких каналах произвольной формы, пористых телах. Поднятие жидкости происходит в случаях смачивания каналов жидкостями, например воды в стеклянных трубках, песке, грунте и т. п. Понижение жидкости происходит в трубках и каналах, не смачиваемых жидкостью, например ртуть в стеклянной трубке.

На основе капиллярности основана жизнедеятельность животных и растений, химические технологии, бытовые явления (например, подъём керосина по фитилю в керосиновой лампе, вытирание рук полотенцем). Капиллярность почвы определяется скоростью, с которой вода поднимается в почве и зависит от размера промежутков между почвенными частицами.



Формула Лапласа

Рассмотрим тонкую жидкую плёнку, толщиной которой можно пренебречь. Стремясь минимизировать свою свободную энергию, плёнка создаёт разность давления с разных сторон. Этим объясняется существование мыльных пузырей: плёнка сжимается до тех пор, пока давление внутри пузыря не будет превышать атмосферное на величину добавочного давления плёнки. Добавочное давление в точке поверхности зависит от средней кривизны в этой точке и даётся формулой Лапласа:

Здесь R 1,2 - радиусы главных кривизн в точке. Они имеют одинаковый знак, если соответствующие центры кривизны лежат по одну сторону от касательной плоскости в точке, и разный знак - если по разную cторону. Например, для сферы центры кривизны в любой точке поверхности совпадают с центром сферы, поэтому

Для случая поверхности кругового цилиндра радиуса R имеем

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ДИЗАЙНА И ТЕХНОЛОГИИ

КАФЕДРА ФИЗИКИ

С.М. РАЗИНОВА, В.Г. СИДОРОВ

Молекулярная физика определение коэффициента поверхностного натяжения жидкости методом поднятия жидкости в капиллярах

Методические указания к лабораторной работе № 23

Утверждено в качестве методического пособия

Редакционно-издательским советом МГУДТ

Куратор РИС Козлов А.С.

Работа рассмотрена на заседании кафедры физики и рекомендована к печати.

Сидоров В.Г., доц. к.т.н.

Рецензент: доц. Родэ С.В., к.ф.-м.н.

Р-23 Разинова С.М. Молекулярная физика. Определение коэффициента поверхностного натяжения жидкости методом поднятия жидкости в капиллярах .: методические указания к лабораторной работе № 23/ Разинова С.М., Сидоров В.Г. - М.: ИИЦ МГУДТ, 2004 – 11 стр.

Методические указания к выполнению лабораторной работы № 23 по теме «Молекулярная физика.Определение коэффициента поверхностного натяжения жидкости методом поднятия жидкости в капиллярах» содержит теоретический раздел, посвященный проявлениям сил поверхностного натяжения, механизму возникновения добавочного давления и расчет его величины, явлениям на границе жидкости и твердого тела, а также описание установки и принципа измерений, порядка выполнения работы, контрольные вопросы для допуска и защиты лабораторной работы.

Предназначен для студентов специальностей: 06.08, 17.07, 21.02, 22.03, 25.06, 25.08, 25.09, 28.10, 28.11, 28.12, 33.02.

© Московский государственный университет

дизайна и технологии, 2004

Лабораторня работа № 23.

ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ПОВЕРХНОСТНОГО НАТЯЖЕНИЯ ЖИДКОСТИ МЕТОДОМ ПОДНЯТИЯ ЖИДКОСТИ В КАПИЛЛЯРАХ”.

ЦЕЛЬ РАБОТЫ: ознакомление с теоретическими основами явления поверхностного натяжения и определение коэффициента поверхностного натяжения.

ПРИБОРЫ И ПРИНАДЛЕЖНОСТИ: измерительный микроскоп, сосуд с водой, два капилляра, штатив с держателем.

Введение

1. Давление под изогнутой поверхностью воды. Формула Лапласа.

Одним из проявлений сил поверхностного натяжения является возникновение добавочного давления под искривленной поверхностью жидкости.

Рассмотрим механизм возникновения этого давления и рассчитаем его величину.

Представим себе изогнутую сферическую поверхность с радиусом кривизны R и центром кривизны в т. О. Выделим на этой поверхности участок, ограниченный круговым контуром c радиусом r (рис. 1). На каждый отрезок контурабудет действовать сила поверхностного натяженияF  i , направленная по касательной к поверхности перпендикулярно отрезку контура .

Добавочное давление создается за счёт составляющей силы F  i , перпендикулярной поверхности сечения радиуса r площадью S= r 2 .

.

Силу F поверхностного натяжения можно выразить из определения коэффициента поверхностного натяжения, как F= = 2 r , тогда

.

Так как cos=r/R , то

Если в формуле (1) подставить вместо радиуса R значение кривизны поверхности H=1/R , то получим:

Лаплас доказал, что формула (2) для поверхности любой формы, если под Н понимать среднюю кривизну поверхности в той точке, под которой определяется дополнительное давление. В геометрии доказывается, что величина, равная

, (3)

остается постоянной для любой пары взаимно перпендикулярных нормальных сечений, проведенных через точку произвольной поверхности. Эту величину назвали средней кривизной поверхности в данной точке. Радиусы R 1 и R 2 могут иметь разные знаки в зависимости от того, где лежит центр кривизны: если центр кривизны лежит под поверхностью (рис.2, а), то радиус положителен, составляющие силы поверхностного натяжения направлены вниз и, следовательно, возникающая добавочная сила давления направлена также вниз; если центр кривизны лежит над поверхностью (рис.2, б), то радиус отрицателен, составляющиесилы поверхностного натяжения будут направлены вверх, они и создают силу давления, направленную вверх. В случае плоской поверхности (рис.2,в) добавочное давление отсутствует (у касательной к поверхности силы натяжения нет перпендикулярной к ней составляющей).

Если в формулу (2) подставить (3), то получим:

(4)

Эта формула носит название ФОРМУЛЫ ЛАПЛАСА , она дает возможность рассчитать добавочное давление, возникающее под произвольно изогнутой поверхностью жидкости.

2.Явления на границе жидкости и твердого тела . При соприкосновении жидкости и твердого тела с твердым телом необходимо учитывать как силы взаимодействия между молекулами жидкости, так и силы взаимодействия между молекулами жидкости и твердого тела. Если силы сцепления жидкости и твердого тела больше сил сцепления частиц жидкости, жидкость называется СМАЧИВАЮЩЕЙ данное твердое тело, если наоборот, то жидкость будет НЕСМАЧИВАЮЩЕЙ это тело. Одно и то же тело может смачиваться одной жидкостью и не смачиваться другой. Например, стекло смачивается водой и не смачивается ртутью.

Посмотрим, как ведет себя смачивающая жидкость около стенок сосуда (рис. 3, а). Рассмотрим сферу молекулярного действия ближайшей к стенке молекулы поверхности жидкости. На эту молекулу будут действовать силы F 1 - со стороны молекул твердого тела и F 2 - со стороны молекул жидкости. Так как для смачивающей жидкости F 1 F 2 , то равнодействующая F будет направлена вглубь жидкости, перпендикулярно ее поверхности, поэтому поверхность жидкости вблизи стенки не горизонтальна, а изгибается вверх. В случае несмачивающей жидкости, по аналогии, поверхность жидкости вблизи стенок изгибается вверх (рис.3, б). Итак, поверхность свободной жидкости вблизи стенок искривляется.

Степень смачиваемости жидкостей характеризуется КРАЕВЫМ УГЛОМ, равным углу между касательными к поверхности жидкости и поверхности твердого тела. В случае смачивания этот угол (рис.3, а) , если, то говорят о полном смачивании жидкостью твердого тела. В случае не смачивания краевой уголтупой:(рис.3, б), если, то говорят о полном несмачивании.

Рисунок 4,а показывает вид капли смачивающей жидкости на горизонтальной поверхности, рисунок 4,б - вид капли жидкости, не смачивающей поверхности.

3. Капиллярность. Если в жидкость погрузить широкую трубу, то в соответствии с рис. 3 поверхность жидкости у стенок искривится. Такого рода изогнутые поверхности носят название менисков.

Если же трубка будет достаточно узкой, то поверхность мениска примет сферическую форму, или ближайшую к ней, при этом радиус кривизны поверхности жидкости будет того же порядка, что и радиус трубки. Образующееся искривление поверхности жидкости вызовет появление добавочного давления, величина которого определяется в самом общем случае формулой (4) Лапласа. Возникшее дополнительное давление в случае смачивания приведет к подъему жидкости в узкой трубке на некоторую высоту (Рис.5, а), а в случае не смачивания - к ее опусканию (Рис.5, б).

Рассмотрим это явление подробно.

Если, например, жидкость в трубке смачивающая, то добавочное давление жидкости под поверхностью мениска будет направлено вверх (рис.2, б), а величина его в соответствии с (1) будет равна

где  - коэффициент поверхностного натяжения, R - радиус кривизны поверхности жидкости (как указывалось выше, поверхность жидкости в узкой трубке можно считать частью сферы радиуса R).

Так как в сосуде, в который опущена трубка, под плоской поверхностью добавочное давление равно нулю, то в трубке жидкость поднимается на такую высоту, при которой гидростатическое давление столба жидкости уравновесит лапласовское добавочное давление р. Гидростатическое давление, создаваемое столбом жидкости высотой h, равно gh, где  - плотность жидкости, g - ускорение свободного падения, тогда условие равновесия примет вид:

Из рисунка (5) видно, что , где - краевой угол смачивания, тогда из формулы (5) можно найти связь между высотой h подъема жидкости по узкой трубки и радиусом трубки r.

Из (6) видно, что высота поднятия в узкой трубке тем больше, чем меньше ее радиус, поэтому поднятие жидкостей особенно заметно в узких трубках. Такие трубки носят название КАПИЛЛЯРОВ , а само явление поднятия или опускания в них жидкостей - КАПИЛЛЯРНОСТЬЮ.

Основываясь на изложенной теории можно экспериментально определить коэффициент поверхностного натяжения жидкости.