Сжижение газов и использование жидких газов в технике. Как сжижать газы? Производство и использование сжиженного газа

Более 30 лет в СССР, затем в России сжиженные и сжатые газы применяются в народном хозяйстве. За это время пройден достаточно трудный путь по организации учета сжиженных газов, разработке технологий по их перекачке, измерению, хранению, транспортировке.

От сжигания до признания

Исторически сложилось, что потенциал газа как источника энергии был недооценен в нашей стране. Не видя экономически обоснованных сфер применения, нефтепромышленники старались избавиться от легких фракций углеводородов, сжигали их без пользы. В 1946 году выделение газовой промышленности в самостоятельную отрасль революционно изменило ситуацию. Объём добычи этого типа углеводородов резко увеличился, как и соотношение в топливном балансе России.

Когда ученые и инженеры научились сжижать газы, стало возможным строить газосжижающие предприятия и доставлять голубое топливо в отдаленные районы, не оборудованные газопроводом, и использовать в каждом доме, в качестве автомобильного топлива, на производстве, а также экспортировать его за твердую валюту.

Что такое сжиженные углеводородные газы

Они делятся на две группы:

  1. Сжиженные углеводородные газы (СУГ) - представляют собой смесь химических соединений, состоящую в основном из водорода и углерода с различной структурой молекул, то есть смесь углеводородов различной молекулярной массы и различного строения.
  2. Широкие фракции легких углеводородов (ШФЛУ) - включают большей частью смеси легких углеводородов гексановой (С6) и этановой (С2) фракций. Их типичный состав: этан 2-5 %, сжиженный газ фракций С4-С5 40-85%, гексановая фракция С6 15-30%, на пентановую фракцию приходится остаток.

Сжиженный газ: пропан, бутан

В газовом хозяйстве именно СУГ применяются в промышленном масштабе. Их основными компонентами являются пропан и бутан. Также в виде примесей в них содержатся более легкие углеводороды (метан и этан) и более тяжелые (пентан). Все перечисленные компоненты являются предельными углеводородами. В состав СУГ могут входить также непредельные углеводороды: этилен, пропилен, бутилен. Бутан-бутилены могут присутствовать в виде изомерных соединений (изобутана и изобутилена).

Технологии сжижения

Сжижать газы научились в начале XX века: в 1913 году за сжижение гелия вручена Нобелевская премия голландцу К. О. Хейке. Некоторые газы доводятся до жидкого состояния простым охлаждением без дополнительных условий. Однако большинство углеводородных «промышленных» газов (углекислый, этан, аммиак, бутан, пропан) сжижаются под давлением.

Производство сжиженного газа осуществляется на газосжижающих заводах, расположенных либо около месторождений углеводородов, либо на пути магистральных газопроводов около крупных транспортных узлов. Сжиженный (или сжатый) природный газ можно легко доставить автомобильным, железнодорожным или водным транспортом к конечному потребителю, где его можно хранить, после чего снова преобразовать в газообразное состояние и подавать в сеть газоснабжения.

Специальное оборудование

Для того чтобы сжижать газы, используются специальные установки. Они значительно уменьшают объём голубого топлива и повышают плотность энергии. С их помощью можно осуществлять различные способы переработки углеводородов в зависимости от последующего применения, свойств исходного сырья и условий окружающей среды.

Установки по сжижению и сжатию предназначены для обработки газа и имеют блочное (модульное) исполнение либо полностью контейнеризированы. Благодаря регазификационным станциям становится возможным обеспечение дешёвым природным топливом даже самых отдалённых регионов. Система регазификации также позволяет хранить природный газ и подавать его необходимое количество в зависимости от потребности (например, в периоды пикового потребления).

Большинство различных газов в сжиженном состоянии находят практическое применение:

  • Жидкий хлор используют для дезинфекции и отбеливания тканей, применяется как химическое оружие.
  • Кислород - в лечебных учреждениях для пациентов с проблемами дыхания.
  • Азот - в криохирургии, для замораживания органических тканей.
  • Водород - как реактивное топливо. В последнее время появились автомобили на водородных двигателях.
  • Аргон - в промышленности для резки металлов и плазменной сварки.

Также можно сжижать газы углеводородного класса, наиболее востребованные из которых - пропан и бутан (н-бутан, изобутан):

  • Пропан (C3H8) является веществом органического происхождения класса алканов. Получают из природного газа и при крекинге нефтепродуктов. Бесцветный газ без запаха, малорастворим в воде. Применяют как топливо, для синтеза полипропилена, производства растворителей, в пищевой промышленности (добавка E944).
  • Бутан (C4H10), класс алканов. Бесцветный горючий газ без запаха, легко сжижаемый. Получают из газового конденсата, нефтяного газа (до 12%), при крекинге нефтепродуктов. Используют как топливо, в химической промышленности, в холодильниках как хладоген, в пищевой промышленности (добавка E943).

Характеристики СУГ

Основное преимущество СУГ - возможность их существования при температуре окружающей среды и умеренных давлениях как в жидком, так и в газообразном состоянии. В жидком состоянии они легко перерабатываются, хранятся и транспортируются, в газообразном имеют лучшую характеристику сгорания.

Состояние углеводородных систем определяется совокупностью влияний различных факторов, поэтому для полной характеристики необходимо знать все параметры. К основным из них, поддающимся непосредственному измерению и влияющим на режимы течения, относятся: давление, температура, плотность, вязкость, концентрация компонентов, соотношение фаз.

Система находится в равновесном состоянии, если все параметры остаются неизменными. При таком состоянии в системе не происходит видимых качественных и количественных метаморфоз. Изменение хотя бы одного параметра нарушает равновесное состояние системы, вызывая тот или иной процесс.

Свойства

При хранении сжиженных газов и транспортировании их агрегатное состояние меняется: часть вещества испаряется, трансформируясь в газообразное состояние, часть конденсируется - переходит в жидкое. Это свойство сжиженных газов является одним из определяющих при проектировании систем хранения и распределения. При отборе из резервуаров кипящей жидкости и транспортировании ее по трубопроводу часть жидкости испаряется из-за потерь давления, образуется двухфазный поток, упругость паров которого зависит от температуры потока, которая ниже температуры в резервуаре. В случае прекращения движения двухфазной жидкости по трубопроводу давление во всех точках выравнивается и становится равным упругости паров.

Сжижение газов, переход вещества из газообразного состояния в жидкое. Сжижение газов достигается охлаждением их ниже критической температуры (Т к ) и последующей конденсацией в результате отвода теплоты парообразования (конденсации). Охлаждение газа ниже Т К необходимо для достижения области температур, при которых газ может сконденсироваться в жидкость (при Т > Т К жидкость существовать не может). Впервые газ (аммиак) был сжижен в 1792 (голландский физик М. ван Марум). Хлор был получен в жидком состоянии в 1823 (М. Фарадей ), кислород - в 1877 (швейцарский учёный Р. Пикте и французский учёный Л. П. Кальете), азот и окись углерода - в 1883 (З. Ф. Вроблевский и К. Ольшевский ), водород - в 1898 (Дж. Дьюар ), гелий - в 1908 (Х. Камерлинг-Оннес ).

Идеальный процесс Сжижение газов изображен на рис. 1 . Изобара 1-2 соответствует охлаждению газа до начала конденсации, изотерма 2-0 - конденсации газа. Площадь ниже 1-2-0 эквивалентна количеству теплоты, которое необходимо отвести от газа при его сжижении, а площадь внутри контура 1-2-0-3 (1-3 - изотермическое сжатие газа, 3-0 - адиабатическое его расширение) характеризует термодинамически минимальную работу L min , необходимую для Сжижение газов :

Для Сжижение газов в промышленных масштабах чаще всего применяются циклы с детандерами (рис. 3 ), т. к. расширение газов с производством внешней работы - наиболее эффективный метод охлаждения. В самом детандере жидкость обычно не получают, ибо технически проще проводить само сжижение в дополнительной дроссельной ступени. После сжатия в компрессоре (1-2 ) и предварительного охлаждения в теплообменнике (2-3 ) поток сжатого газа делится на 2 части: часть М отводится в детандер, где, расширяясь, производит внешнюю работу и охлаждается (3-7 ). Охлажденный газ подаётся в теплообменник, где понижает температуру оставшейся части сжатого газа 1 - М , которая затем дросселируется и сжижается. Теоретически расширение в детандере должно осуществляться при постоянной энтропии (3-6 ). Однако из-за потерь расширение протекает по линии 3-7 . Для увеличения термодинамической эффективности процесса Сжижение газов иногда применяют несколько детандеров, работающих на различных температурных уровнях.

Циклы с тепловыми насосами обычно используются (наряду с детандерными и дроссельными циклами) при Сжижение газов с помощью холодильно-газовых машин, которые позволяют получать температуры до 12 К, что достаточно для сжижения всех газов, кроме гелия (см. табл.). Для сжижения гелия к машине пристраивается дополнительная дроссельная ступень.

Подвергаемые сжижению газы должны очищаться от паров воды, масла и др. примесей (например, воздух - от углекислоты, водород - от воздуха), которые при охлаждении могут затвердеть и закупорить теплообменную аппаратуру. Поэтому узел очистки газа от посторонних примесей - необходимая часть установок Сжижение газов

О применении сжиженных газов см. в ст. Глубокое охлаждение .

Значения температуры кипения Т кип (при 760 мм. рт. ст. ), критической температуры Т К , минимальной L min и действительной L Д работ сжижения некоторых газов


Газ

Т кип , К

Т К , К

L min , квт ч/кг

L д , квт ч/кг

Азот

Этилен


77,4

126,2

0,220

1,2-1,5

Лит.: Фастовский В. Г., Петровский Ю. В., Ровинский А. Е., Криогенная техника, 2 изд., М., 1974; Справочник по физико-техническим основам криогеники, 2 изд., М., 1973. См. также лит. при ст.

СЖИЖЕНИЕ ГАЗОВ - производят при охлаждении их ниже критич. темп-ры Т к (см. Критическая точка ).С. г. с критич. темп-рой выше темп-ры окружающей среды (С1 2 , NH 3 , CO 2 и др.) производится сжатием их в компрессорах и последующей конденсацией в теплообменниках, охлаждаемых водой или холодильным рассолом. Для С. г. с критич. темп-рой ниже темп-ры окружающей среды их предварительно охлаждают с помощью соответствующих холодильных (криогенных) циклов.

Идеальный цикл С. г. приведён на рис. 1: 1 - 2 - изобарич. охлаждение газа от темп-ры Т 0 до темп-ры Т 2 начала конденсации (T 2 ниже Т к) , изотерма 2-0 - конденсация газа; 1-3 - изотермич. сжатие газа, 3-0 - адиабатич. его расширение. Площадь под 1 -2 -0 соответствует отводимой при С. г. теплоте, площадь внутри 1 - 2 - 0- 3 - мин. работе A мин С. г.: где S Г, S Ж - энтропия, Н Г, Н Ж - энтальпия газа и жидкости соответственно.

Рис. 1. Т - S-диаграм-ма идеального цикла сжижения газов (р - давление, Н - энтальпия) .

Давления, необходимые для идеального цикла С. г., составляют сотни тысяч атм, поэтому на практике цикл неосуществим. Реальные затраты энергии при С. г. обычно превышают А мин в 5-10 и более раз.

Совр. методы С. г. основаны на охлаждении предварительно сжатого газа при Джоуля - Томсона эффекте (т. е. при дросселировании - пропускании газа через пористую перегородку, кран, вентиль), изоэнтропич. расширении газа с совершением внеш. работы в детандере и при выпуске газа из сосуда пост. объёма (выхлоп). Процесс дросселирования необратим, идёт с возрастанием энтропии по закону: Н = const. Инверсионная темп-pa всех газов (темп-pa, при к-рой положит. становится отрицательным и газ начинает нагреваться), кроме Н 2 , Не и Ne, на сотни градусов выше темп-ры окружающей среды, и поэтому они могут быть охлаждены и сжижены простым дросселированием. Инверсионные темп-ры Н 2 , Не и Ne значительно ниже комнатных, поэтому их предварительно охлаждают (Н 2 и Ne - жидким азотом, Не - жидким водородом).

Термодинамически наиб. эффективен метод С. г. с помощью детандера; этот метод в пром. установках является основным. В поршневых детандерах сжатый газ движет поршень и охлаждается, в турбодетандерах - вращает турбину. В большинстве случаев после детандера газ дополнительно охлаждают дросселированием. Процесс расширения газа в детандере: S = const.

Рис. 2. Схема установки сжижения газов (а) и её Т - S-диаграмма (б); К - компрессор, Д - детандер, Т/о - теплообменники, Др - дроссель, Сб - сборник .

На рис. 2 приведены типовая схема установки для С. г. (а Т - S -диаграмма (б )термодинамич. процессов в ней. После сжатия в компрессоре (1-2 )и предварит. охлаждения в теплообменнике (2-3 )поток сжатого газа делится на два: поток М отводится в детандер, где, расширяясь, производит работу, охлаждается (3-7 )и охлаждает вторую часть сжатого газа 1 - М , к-рый затем дросселируется и сжижается. Теоретически расширение газа в детандере должно протекать при пост. энтропии (3-6) , однако в результате разл. потерь реально идёт процесс 3-7 . В крупных установках С. г. применяют неск. детандеров, работающих в разных температурных интервалах. Спец. устройство позволяет получать сжиженный газ непосредственно в самом детандере и обходиться без дроссельной ступени. Для сжижения небольших кол-в газа используются криогенно-газовые машины, представляющие собой комбинацию компрессора, теплообменного аппарата и детандера. С помощью таких машин получают темп-ры до 10 К, т. е. достаточно низкие для сжижения всех газов, кроме гелия (для сжижения гелия пристраивается дополнит. дроссельная ступень). В небольшом объёме С. г. может производиться при охлаждении испаряющейся жидкостью с более низкой (чем получаемая) темп-рой кипения. Так, с помощью жидкого азота можно сжижать кислород, аргон, метан и др. газы, с помощью жидкого водорода - неон. Такой процесс энергетически невыгоден и применяется только в лаб. условиях.

Подвергаемые сжижению газы должны быть очищены от примесей, к-рые имеют тем-ру замерзания более высокую, чем в цикле сжижения данного газа, и, затвердевая, могут закупорить теплообменную аппаратуру. Сжижение газов (N, О 2 , Н 2 , природного газа и др.) - крупная отрасль хим. пром-сти.

Лит.: Справочник по физико-техническим основам криогеники, под ред. М. П. Малкова, 3 изд., М., 1985; Фрадков А. Б., Что такое криогеника, М., 1991. А. Б. Фрадков .

Чтобы произошло сжижение газа, силы притяжения между молекулами должны стать достаточными для их связывания в жидкость. Силы притяжения становятся значительными только при малых расстояниях между молекулами. Этому условию благоприятствует высокое давление. Действию сил притяжения препятствует движение молекул, происходящее тем быстрее (с большей кинетической энергией), чем выше температура. Поэтому сжижению газов благоприятствует понижение температуры.

Сжижение газа осуществляется тем труднее, чем выше его температура , так как при более высокой температуре требуется и более высокое давление, чтобы сжижить газ (табл. 3.4). Выше определенной температуры газ вообще не поддается сжижению. Эта температура называется критической и обозначается Тс. Минимальное давление, необходимое для сжижения газа при его критической температуре, называется критическим давлением и обозначается рс. Объем, занимаемый одним молем газа при его критических температуре и давлении, называется критическим объемом и обозначается Vc. Значения Тс, рс и Vc для каждого газа называются его критическими постоянными. В табл. 3.5 приведены значения критических постоянных для некоторых газов.

Таблица 3.4. Давления, необходимые для сжижения CO2 при разных температурах

В 1863 г., изучая соотношение между давлением и объемом определенной массы диоксида углерода при различных температурах, Томас Эндрюс получил ряд изотерм (графиков зависимости между давлением и объемом при постоянной температуре), названных изотермами Эндрюса (рис. 3.11). Изотерма для CO2 при 321 К показывает, что этот газ при такой температуре не сжижается ни при каком давлении или объеме. Дело в том, что температура 321 К выше критической температуры для CO2, равной 304 К. Изотерма, соответствующая критической температуре, называется критической изотермой. Точка P на этой изотерме соответствует газу при его критических значениях температуры, давления и объема. В условиях, соответствующих этой точке, газ находится в своем критическом состоянии. На рис. 3.11 показаны две изотермы CO2 при температурах ниже критической. Рассмотрим ту из них, которая отвечает температуре 286 К.


Рис. 3.11. Изотермы Эндрюса для CO2.

Перемещение вдоль этой изотермы от точки А к точке В соответствует сжатию газа при возрастании давления. Между точками В и С происходит большое изменение объема, которое не сопровождается изменением давления. Этот процесс соответствует сжижению газа при указанной температуре. Между точками С и D возрастание давления приводит к небольшому изменению объема. Сжимаемость жидкостей очень мала по сравнению со сжимаемостью газов.

Сжижение газов

Сжижение газов включает в себя несколько стадий, необходимых для перевода газа в жидкое состояние. Эти процессы используются для научных, промышленных и коммерческих целей. Все газы могут быть приведены в жидкое состояние путём простого охлаждения при нормальном атмосферном давлении. Однако для некоторых газов достаточно определённого повышения давления (углекислый газ, пропан, аммиак). Другое (кислород, водород, аргон и т.д.) находятся в баллонах в сжатом состоянии. Дело в том, что газ не может быть сжижен при сколь угодно высоком давлении выше так называемой критической температуры. Первыми были сжижены газы с критической температурой значительно выше комнатной (аммиак, сернистый газ, углекислый газ и пр.), при этом было достаточно одного повышения давления. Подробнее об этом см.: Опыты с трубкой Фарадея (получение сжиженных газов) Химия и Химики № 3 2012 Сжижение используется для изучения фундаментальных свойств молекул газа (например, межмолекулярных сил взаимодействия), для хранения газов. Газы сжижаются в специальных конденсаторах, которые поглощают теплоту парообразования, и переводятся в газообразное состояние в испарителях, где теплота парообразования выделяется.

Физические основы сжижения газов

Все вещества, в том числе и те, которые в «обычных земных условиях» находятся в газообразном состоянии, могут находиться в трёх основных состояниях - жидком, твёрдом и газообразном. каждое из веществ ведёт себя согласно своей фазовой диаграмме , общий вид которой для всех веществ похож. Согласно этой диаграмме, для сжижения газа необходимо либо понижение температуры , либо увеличение давления , или изменение обоих этих параметров.

Сжижение газов - сложный процесс, который включает в себя множество сжатий и расширений газа для достижения высокого давления и низких температур, используя, например, детандеры .

Применение сжиженных газов


Wikimedia Foundation . 2010 .

Смотреть что такое "Сжижение газов" в других словарях:

    Производят при охлаждении их ниже критич … Физическая энциклопедия

    Современная энциклопедия

    Переход вещества из газообразного состояния в жидкое при охлаждении его ниже температуры насыщения при данном давлении. Для сжижения газов с низкой критической температурой (154,2 К у О2, 126,2 К у N2, 33 К у Н2, 5,3 К у Не) применяют криогенную… … Большой Энциклопедический словарь

    Сжижение газов - СЖИЖЕНИЕ ГАЗОВ, переход вещества из газообразного состояния в жидкое при охлаждении его ниже температуры насыщения (критические температуры при данном давлении). Для сжижения газов с низкой критической температурой (126,2 К у азота; 154,2 К у… … Иллюстрированный энциклопедический словарь

    СЖИЖЕНИЕ ГАЗОВ - процесс пре вращения газов в жидкое состояние путём (см.) его ниже к (см.) с помощью (см.); осуществляют в компрессорах и детандерах … Большая политехническая энциклопедия

    сжижение газов - — Тематики нефтегазовая промышленность EN liquefaction of gases … Справочник технического переводчика

    Переход вещества из газообразного состояния в жидкое. С. г. достигается охлаждением их ниже критической температуры (См. Критическая температура) (Тк) и последующей конденсацией в результате отвода теплоты парообразования (конденсации).… … Большая советская энциклопедия

    Перевод в ва из газообразного состояния в жидкое. С. г. возможно только при темп pax, меньших критической температуры. В пром сти С. г. с критич. темп рой выше темп ры окружающей среды (практически выше 50 °С) осуществляется сжатием газа в… … Большой энциклопедический политехнический словарь

    Перевод вещества из газообразного состояния в жидкое путём понижения температуры и (или) повышения давления. Возможно только при температурах ниже критических. Для сжижения газов с низкой критической температурой (154,2 К у О2, 126,2 К у N2, 33 К … Энциклопедический словарь

    сжижение газов - dujų skystinimas statusas T sritis chemija apibrėžtis Slegiamų ir šaldomų dujų vertimas skysčiu. atitikmenys: angl. gas liquation; gas liquefaction rus. газосжижение; сжижение газов … Chemijos terminų aiškinamasis žodynas