Таблица из строк и столбцов матрицы. Матрицы

Матрицей называется прямоугольная таблица из чисел с некоторым количеством m строк и с некоторым количеством n столбцов. Числа m и n называются порядками или размерами матрицы.

Матрица порядка m × n записывается в форме:

или (i=1,2 ,...m; j=1,2 ,...n).

Числа a ij входящие в состав данной матрицы называются ее элементами. В записи a ij первый индекс i означает номер строки, а второй индекс j - номер столбца.

Матрица строка

Матрица размером 1×n , т.е. состоящая из одной строки, называется матрицей-строкой . Например:

Матрица столбец

Матрица размером m×1 , т.е. состоящая из одного столбца, называется матрицей-столбцом . Например

Нулевая матрица

Если все элементы матрицы равны нулю,то матрица называется нулевой матрицей . Например

Квадратная матрица

Матрица A порядка m×n называется квадратной матрицей , если количество строк и столбцов совпадают: m=n . Число m=n называется порядком квадратной матрицы. Например:

Главная диагональ матрицы

a 11 , a 22 ,..., a nn образуют главную диагональ матрицы. Например:

В случае m×n -матриц элементы a ii (i=1,2 ,...,min(m,n)) также образуют главную диагональ . Например:

Элементы расположенные на главной диагонали называются главными диагональными элементами или просто диагональными элементами .

Побочная диагональ матрицы

Элементы расположенные на местах a 1n , a 2n-1 ,..., a n1 образуют побочную диагональ матрицы. Например:

Диагональная матрица

Квадратная матрица называется диагональной , если элементы, расположенные вне главной диагонали равны нулю. Пример диагональной матрицы:

Единичная матрица

Квадратную матрицу n -го порядка, у которой на главной диагонали стоят единицы, а все остальные элементы равны нулю, называется единичной матрицей и обозначается через E или E n , где n - порядок матрицы. Единичная матрица порядка 3 имеет следующий вид:

След матрицы

Сумма главных диагональных элементов матрицы A называется следом матрицы и обозначается Sp A или Tr A . Например:

Верхняя треугольная матрица

Квадратная матрица порядка n×n называется верхней треугольной матрицей, если равны нулю все элементы матрицы, расположенные под главной диагональю, т.е. a ij =0 , при всех i>j . Например:

Нижняя треугольная матрица

Квадратная матрица порядка n×n называется нижней треугольной матрицей, если равны нулю все элементы матрицы, расположенные над главной диагональю, т.е. a ij =0 , при всех i. Например:

Cтроки матрицы A образуют пространство строк R(A T).

Cтолбцы матрицы A образуют пространство столбцов матрицы и обозначаются через R(A) .

Ядро или нуль пространство матрицы

Множесто всех решений уравнения Ax=0 , где A- m xn -матрица, x - вектор длины n - образует нуль пространство или ядро матрицы A и обозначается через Ker(A) или N(A) .

Противоположная матрица

Для любой матрицы A сущеcтвует противоположная матрица -A такая, что A+(-A)=0. Очевидно, что в качестве матрицы -A следует взять матрицу (-1)A , элементы которой отличаются от элементов A знаком.

Кососимметричная (Кососимметрическая) матрица

Кососимметричной называется квадратная матрица, которая отличается от своей транспонированной матрицы множителем −1:

В кососимметричной матрице любые два элемента, расположенные симметрично относительно главной диагонали отличаются друг от друга множителем −1, а диагональные элементы равны нулю.

Пример кососимметрической матрицы:

Разность матриц

Разностью C двух матриц A и B одинакового размера определяется равенством

Для обозначения разности двух матриц используется запись:

Степень матрицы

Пусть квадратная матрица размера n×n. Тогда степень матрицы определяется следующим образом:

где E-единичная матрица.

Из сочетательного свойства умножения следует:

где p,q - произвольные целые неотрицательные числа.

Симметричная (Симметрическая) матрица

Матрица, удовлетворяющая условию A=A T называется симметричной матрицей.

Для симметричных матриц имеет место равенство:

a ij =a ji ; i=1,2,...n, j=1,2,...n


Понятие / определение матрицы. Виды матриц

Определение матрицы. Матрицей называется прямоугольная таблица из чисел, содержащая некоторое количество m строк и некоторое количество n столбцов.

Основные понятия матрицы: Числа m и n называются порядками матрицы. В случае, если m=n, матрица называется квадратной , а число m=n — ее порядком.

В дальнейшем для записи матрицы будут применяться обозначение: Хотя иногда в литературе встречается обозначение: Впрочем, для краткого обозначения матрицы часто используется одна большая буква латинского алфавита, (например, А), либо символ ||aij||, а иногда и с разъяснением: A=||aij||=(aij) (i=1,2,…,m; j=1,2,…n)

Числа aij, входящие в состав данной матрицы, называются ее элементами. В записи aij первый индекс i означает номер строки, а второй индекс j — номер столбца.

Например, матрицаэто матрица порядка 2×3, ее элементы a11=1, a12=x, a13=3, a21=-2y, …

Итак, мы ввели определение матрицы. Рассмотрим виды матриц и дадим соответствующие к ним определения.

Виды матриц

Введем понятие матриц: квадратных, диагональных, единичных и нулевых.

Определение матрицы квадратной: Квадратной матрицей n-го порядка называется матрица размера n×n.

В случае квадратной матрицывводятся понятие главной и побочной диагоналей. Главной диагональю матрицы называется диагональ, идущая из левого верхнего угла матрицы в правый нижний ее угол.Побочной диагональю той же матрицы называется диагональ, идущая из левого нижнего угла в правый верхний угол.Понятие диагональной матрицы: Диагональной называется квадратная матрица, у которой все элементы вне главной диагонали равны нулю.Понятие единичной матрицы: Единичной (обозначается Е иногда I) называется диагональная матрица с единицами на главной диагонали.Понятие нулевой матрицы: Нулевой называется матрица, все элементы которой равны нулю. Две матрицы А и В называются равными (А=В), если они одинакового размера (т.е. имеют одинаковое количество строе и одинаковое количество столбцов и их соответствующие элементы равны). Так, если то А=B, если a11=b11, a12=b12, a21=b21, a22=b22

Данный материал взят с сайта highermath.ru

В данной теме рассмотрим понятие матрицы, а также виды матриц. Так как в данной теме немало терминов, то я добавлю краткое содержание, чтобы ориентироваться в материале было проще.

Определение матрицы и её элемента. Обозначения.

Матрица - это таблица из $m$ строк и $n$ столбцов. Элементами матрицы могут быть объекты совершенно разнообразной природы: числа, переменные или, к примеру, иные матрицы. Например, матрица $\left(\begin{array} {cc} 5 & 3 \\ 0 & -87 \\ 8 & 0 \end{array} \right)$ содержит 3 строки и 2 столбца; элементами её являются целые числа. Матрица $\left(\begin{array} {cccc} a & a^9+2 & 9 & \sin x \\ -9 & 3t^2-4 & u-t & 8\end{array} \right)$ содержит 2 строки и 4 столбца.

Разные способы записи матриц: показать\скрыть

Матрица может быть записана не только в круглых, но и в квадратных или двойных прямых скобках. Ниже указана одна и та же матрица в различных формах записи:

$$ \left(\begin{array} {cc} 5 & 3 \\ 0 & -87 \\ 8 & 0 \end{array} \right);\;\; \left[ \begin{array} {cc} 5 & 3 \\ 0 & -87 \\ 8 & 0 \end{array} \right]; \;\; \left \Vert \begin{array} {cc} 5 & 3 \\ 0 & -87 \\ 8 & 0 \end{array} \right \Vert $$

Произведение $m\times n$ называют размером матрицы . Например, если матрица содержит 5 строк и 3 столбца, то говорят о матрице размера $5\times 3$. Матрица $\left(\begin{array}{cc} 5 & 3\\0 & -87\\8 & 0\end{array}\right)$ имеет размер $3 \times 2$.

Обычно матрицы обозначаются большими буквами латинского алфавита: $A$, $B$, $C$ и так далее. Например, $B=\left(\begin{array} {ccc} 5 & 3 \\ 0 & -87 \\ 8 & 0 \end{array} \right)$. Нумерация строк идёт сверху вниз; столбцов - слева направо. Например, первая строка матрицы $B$ содержит элементы 5 и 3, а второй столбец содержит элементы 3, -87, 0.

Элементы матриц обычно обозначаются маленькими буквами. Например, элементы матрицы $A$ обозначаются $a_{ij}$. Двойной индекс $ij$ содержит информацию о положении элемента в матрице. Число $i$ - это номер строки, а число $j$ - номер столбца, на пересечении которых находится элемент $a_{ij}$. Например, на пересечении второй строки и пятого столбца матрицы $A=\left(\begin{array} {cccccc} 51 & 37 & -9 & 0 & 9 & 97 \\ 1 & 2 & 3 & 41 & 59 & 6 \\ -17 & -15 & -13 & -11 & -8 & -5 \\ 52 & 31 & -4 & -1 & 17 & 90 \end{array} \right)$ расположен элемент $a_{25}=59$:

Точно так же на пересечении первой строки и первого столбца имеем элемент $a_{11}=51$; на пересечении третьей строки и второго столбца - элемент $a_{32}=-15$ и так далее. Замечу, что запись $a_{32}$ читается как "а три два", но не "а тридцать два".

Для сокращённого обозначения матрицы $A$, размер которой равен $m\times n$, используется запись $A_{m\times n}$. Нередко используется и такая запись:

$$ A_{m\times{n}}=(a_{ij}) $$

Здесь $(a_{ij})$ указывает на обозначение элементов матрицы $A$, т.е. говорит о том, что элементы матрицы $A$ обозначаются как $a_{ij}$. В развёрнутом виде матрицу $A_{m\times n}=(a_{ij})$ можно записать так:

$$ A_{m\times n}=\left(\begin{array}{cccc} a_{11} & a_{12} & \ldots & a_{1n} \\ a_{21} & a_{22} & \ldots & a_{2n} \\ \ldots & \ldots & \ldots & \ldots \\ a_{m1} & a_{m2} & \ldots & a_{mn} \end{array} \right) $$

Введём еще один термин - равные матрицы .

Две матрицы одинакового размера $A_{m\times n}=(a_{ij})$ и $B_{m\times n}=(b_{ij})$ называются равными , если их соответствующие элементы равны, т.е. $a_{ij}=b_{ij}$ для всех $i=\overline{1,m}$ и $j=\overline{1,n}$.

Пояснение к записи $i=\overline{1,m}$: показать\скрыть

Запись "$i=\overline{1,m}$" означает, что параметр $i$ изменяется от 1 до m. Например, запись $i=\overline{1,5}$ говорит о том, что параметр $i$ принимает значения 1, 2, 3, 4, 5.

Итак, для равенства матриц требуется выполнение двух условий: совпадение размеров и равенство соответствующих элементов. Например, матрица $A=\left(\begin{array}{cc} 5 & 3\\0 & -87\\8 & 0\end{array}\right)$ не равна матрице $B=\left(\begin{array}{cc} 8 & -9\\0 & -87 \end{array}\right)$, поскольку матрица $A$ имеет размер $3\times 2$, а размер матрицы $B$ составляет $2\times 2$. Также матрица $A$ не равна матрице $C=\left(\begin{array}{cc} 5 & 3\\98 & -87\\8 & 0\end{array}\right)$, поскольку $a_{21}\neq c_{21}$ (т.е. $0\neq 98$). А вот для матрицы $F=\left(\begin{array}{cc} 5 & 3\\0 & -87\\8 & 0\end{array}\right)$ можно смело записать $A=F$ поскольку и размеры, и соответствующие элементы матриц $A$ и $F$ совпадают.

Пример №1

Определить размер матрицы $A=\left(\begin{array} {ccc} -1 & -2 & 1 \\ 5 & 9 & -8 \\ -6 & 8 & 23 \\ 11 & -12 & -5 \\ 4 & 0 & -10 \\ \end{array} \right)$. Указать, чему равны элементы $a_{12}$, $a_{33}$, $a_{43}$.

Данная матрица содержит 5 строк и 3 столбца, поэтому размер её $5\times 3$. Для этой матрицы можно использовать также обозначение $A_{5\times 3}$.

Элемент $a_{12}$ находится на пересечении первой строки и второго столбца, поэтому $a_{12}=-2$. Элемент $a_{33}$ находится на пересечении третьей строки и третьего столбца, поэтому $a_{33}=23$. Элемент $a_{43}$ находится на пересечении четвертой строки и третьего столбца, поэтому $a_{43}=-5$.

Ответ : $a_{12}=-2$, $a_{33}=23$, $a_{43}=-5$.

Виды матриц в зависимости от их размера. Главная и побочная диагонали. След матрицы.

Пусть задана некая матрица $A_{m\times n}$. Если $m=1$ (матрица состоит из одной строки), то заданную матрицу называют матрица-строка . Если же $n=1$ (матрица состоит из одного столбца), то такую матрицу называют матрица-столбец . Например, $\left(\begin{array} {ccccc} -1 & -2 & 0 & -9 & 8 \end{array} \right)$ - матрица-строка, а $\left(\begin{array} {c} -1 \\ 5 \\ 6 \end{array} \right)$ - матрица-столбец.

Если для матрицы $A_{m\times n}$ верно условие $m\neq n$ (т.е. количество строк не равно количеству столбцов), то часто говорят, что $A$ - прямоугольная матрица. Например, матрица $\left(\begin{array} {cccc} -1 & -2 & 0 & 9 \\ 5 & 9 & 5 & 1 \end{array} \right)$ имеет размер $2\times 4$, т.е. содержит 2 строки и 4 столбца. Так как количество строк не равно количеству столбцов, то эта матрица является прямоугольной.

Если для матрицы $A_{m\times n}$ верно условие $m=n$ (т.е. количество строк равно количеству столбцов), то говорят, что $A$ - квадратная матрица порядка $n$. Например, $\left(\begin{array} {cc} -1 & -2 \\ 5 & 9 \end{array} \right)$ - квадратная матрица второго порядка; $\left(\begin{array} {ccc} -1 & -2 & 9 \\ 5 & 9 & 8 \\ 1 & 0 & 4 \end{array} \right)$ - квадратная матрица третьего порядка. В общем виде квадратную матрицу $A_{n\times n}$ можно записать так:

$$ A_{n\times n}=\left(\begin{array}{cccc} a_{11} & a_{12} & \ldots & a_{1n} \\ a_{21} & a_{22} & \ldots & a_{2n} \\ \ldots & \ldots & \ldots & \ldots \\ a_{n1} & a_{n2} & \ldots & a_{nn} \end{array} \right) $$

Говорят, что элементы $a_{11}$, $a_{22}$, $\ldots$, $a_{nn}$ находятся на главной диагонали матрицы $A_{n\times n}$. Эти элементы называются главными диагональными элементами (или просто диагональными элементами). Элементы $a_{1n}$, $a_{2 \; n-1}$, $\ldots$, $a_{n1}$ находятся на побочной (второстепенной) диагонали ; их называют побочными диагональными элементами . Например, для матрицы $C=\left(\begin{array}{cccc}2&-2&9&1\\5&9&8& 0\\1& 0 & 4 & -7 \\ -4 & -9 & 5 & 6\end{array}\right)$ имеем:

Элементы $c_{11}=2$, $c_{22}=9$, $c_{33}=4$, $c_{44}=6$ являются главными диагональными элементами; элементы $c_{14}=1$, $c_{23}=8$, $c_{32}=0$, $c_{41}=-4$ - побочные диагональные элементы.

Сумма главных диагональных элементов называется следом матрицы и обозначается $\Tr A$ (или $\Sp A$):

$$ \Tr A=a_{11}+a_{22}+\ldots+a_{nn} $$

Например, для матрицы $C=\left(\begin{array} {cccc} 2 & -2 & 9 & 1\\5 & 9 & 8 & 0\\1 & 0 & 4 & -7\\-4 & -9 & 5 & 6 \end{array}\right)$ имеем:

$$ \Tr C=2+9+4+6=21. $$

Понятие диагональных элементов используется также и для неквадратных матриц. Например, для матрицы $B=\left(\begin{array} {ccccc} 2 & -2 & 9 & 1 & 7 \\ 5 & -9 & 8 & 0 & -6 \\ 1 & 0 & 4 & -7 & -6 \end{array} \right)$ главными диагональными элементами будут $b_{11}=2$, $b_{22}=-9$, $b_{33}=4$.

Виды матриц в зависимости от значений их элементов.

Если все элементы матрицы $A_{m\times n}$ равны нулю, то такая матрица называется нулевой и обозначается обычно буквой $O$. Например, $\left(\begin{array} {cc} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array} \right)$, $\left(\begin{array} {ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right)$ - нулевые матрицы.

Рассмотрим некоторую ненулевую строку матрицы $A$, т.е. такую строку, в которой есть хоть один элемент, отличный от нуля. Ведущим элементом ненулевой строки назовём её первый (считая слева направо) ненулевой элемент. Для примера рассмотрим такую матрицу:

$$W=\left(\begin{array}{cccc} 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 12\\ 0 & -9 & 5 & 9 \end{array}\right)$$

Во второй строке ведущим будет четвёртый элемент, т.е. $w_{24}=12$, а в третьей строке ведущим будет второй элемент, т.е. $w_{32}=-9$.

Матрица $A_{m\times n}=\left(a_{ij}\right)$ называется ступенчатой , если она удовлетворяет двум условиям:

  1. Нулевые строки, если они есть, расположены ниже всех ненулевых строк.
  2. Номера ведущих элементов ненулевых строк образуют строго возрастающую последовательность, т.е. если $a_{1k_1}$, $a_{2k_2}$, ..., $a_{rk_r}$ - ведущие элементы ненулевых строк матрицы $A$, то $k_1\lt{k_2}\lt\ldots\lt{k_r}$.

Примеры ступенчатых матриц:

$$ \left(\begin{array}{cccccc} 0 & 0 & 2 & 0 & -4 & 1\\ 0 & 0 & 0 & 0 & -9 & 0\\ 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 \end{array}\right);\; \left(\begin{array}{cccc} 5 & -2 & 2 & -8\\ 0 & 4 & 0 & 0\\ 0 & 0 & 0 & -10 \end{array}\right). $$

Для сравнения: матрица $Q=\left(\begin{array}{ccccc} 2 & -2 & 0 & 1 & 9\\0 & 0 & 0 & 7 & 9\\0 & -5 & 0 & 10 & 6\end{array}\right)$ не является ступенчатой, так как нарушено второе условие в определении ступенчатой матрицы. Ведущие элементы во второй и третьей строках $q_{24}=7$ и $q_{32}=10$ имеют номера $k_2=4$ и $k_3=2$. Для ступенчатой матрицы должно быть выполнено условие $k_2\lt{k_3}$, которое в данном случае нарушено. Отмечу, что если поменять местами вторую и третью строки, то получим ступенчатую матрицу: $\left(\begin{array}{ccccc} 2 & -2 & 0 & 1 & 9\\0 & -5 & 0 & 10 & 6 \\0 & 0 & 0 & 7 & 9\end{array}\right)$.

Ступенчатую матрицу называют трапециевидной или трапецеидальной , если для ведущих элементов $a_{1k_1}$, $a_{2k_2}$, ..., $a_{rk_r}$ выполнены условия $k_1=1$, $k_2=2$,..., $k_r=r$, т.е. ведущими являются диагональные элементы. В общем виде трапециевидную матрицу можно записать так:

$$ A_{m\times{n}} =\left(\begin{array} {cccccc} a_{11} & a_{12} & \ldots & a_{1r} & \ldots & a_{1n}\\ 0 & a_{22} & \ldots & a_{2r} & \ldots & a_{2n}\\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots\\ 0 & 0 & \ldots & a_{rr} & \ldots & a_{rn}\\ 0 & 0 & \ldots & 0 & \ldots & 0\\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots\\ 0 & 0 & \ldots & 0 & \ldots & 0 \end{array}\right) $$

Примеры трапециевидных матриц:

$$ \left(\begin{array}{cccccc} 4 & 0 & 2 & 0 & -4 & 1\\ 0 & -2 & 0 & 0 & -9 & 0\\ 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 \end{array}\right);\; \left(\begin{array}{cccc} 5 & -2 & 2 & -8\\ 0 & 4 & 0 & 0\\ 0 & 0 & -3 & -10 \end{array}\right). $$

Дадим ещё несколько определений для квадратных матриц. Если все элементы квадратной матрицы, расположенные под главной диагональю, равны нулю, то такую матрицу называют верхней треугольной матрицей . Например, $\left(\begin{array} {cccc} 2 & -2 & 9 & 1 \\ 0 & 9 & 8 & 0 \\ 0 & 0 & 4 & -7 \\ 0 & 0 & 0 & 6 \end{array} \right)$ - верхняя треугольная матрица. Заметьте, что в определении верхней треугольной матрицы ничего не сказано про значения элементов, расположенных над главной диагональю или на главной диагонали. Они могут быть нулевыми или нет, - это несущественно. Например, $\left(\begin{array} {ccc} 0 & 0 & 9 \\ 0 & 0 & 0\\ 0 & 0 & 0 \end{array} \right)$ - тоже верхняя треугольная матрица.

Если все элементы квадратной матрицы, расположенные над главной диагональю, равны нулю, то такую матрицу называют нижней треугольной матрицей . Например, $\left(\begin{array} {cccc} 3 & 0 & 0 & 0 \\ -5 & 1 & 0 & 0 \\ 8 & 2 & 1 & 0 \\ 5 & 4 & 0 & 6 \end{array} \right)$ - нижняя треугольная матрица. Заметьте, что в определении нижней треугольной матрицы ничего не сказано про значения элементов, расположенных под или на главной диагонали. Они могут быть нулевыми или нет, - это неважно. Например, $\left(\begin{array} {ccc} -5 & 0 & 0 \\ 0 & 0 & 0\\ 0 & 0 & 9 \end{array} \right)$ и $\left(\begin{array} {ccc} 0 & 0 & 0 \\ 0 & 0 & 0\\ 0 & 0 & 0 \end{array} \right)$ - тоже нижние треугольные матрицы.

Квадратная матрица называется диагональной , если все элементы этой матрицы, не лежащие на главной диагонали, равны нулю. Пример: $\left(\begin{array} {cccc} 3 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 6 \end{array} \right)$. Элементы на главной диагонали могут быть любыми (равными нулю или нет), - это несущественно.

Диагональная матрица называется единичной , если все элементы этой матрицы, расположенные на главной диагонали, равны 1. Например, $\left(\begin{array} {cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right)$ - единичная матрица четвёртого порядка; $\left(\begin{array} {cc} 1 & 0 \\ 0 & 1 \end{array}\right)$ - единичная матрица второго порядка.

В этой теме будут рассмотрены такие операции, как сложение и вычитание матриц, умножение матрицы на число, умножение матрицы на матрицу, транспонирование матрицы. Все обозначения, которые используются на данной странице, взяты из предыдущей темы .

Сложение и вычитание матриц.

Суммой $A+B$ матриц $A_{m\times n}=(a_{ij})$ и $B_{m\times n}=(b_{ij})$ называется матрица $C_{m\times n}=(c_{ij})$, где $c_{ij}=a_{ij}+b_{ij}$ для всех $i=\overline{1,m}$ и $j=\overline{1,n}$.

Аналогичное определение вводят и для разности матриц:

Разностью $A-B$ матриц $A_{m\times n}=(a_{ij})$ и $B_{m\times n}=(b_{ij})$ называется матрица $C_{m\times n}=(c_{ij})$, где $c_{ij}=a_{ij}-b_{ij}$ для всех $i=\overline{1,m}$ и $j=\overline{1,n}$.

Пояснение к записи $i=\overline{1,m}$: показать\скрыть

Запись "$i=\overline{1,m}$" означает, что параметр $i$ изменяется от 1 до m. Например, запись $i=\overline{1,5}$ говорит о том, что параметр $i$ принимает значения 1, 2, 3, 4, 5.

Стоит обратить внимание, что операции сложения и вычитания определены только для матриц одинакового размера. Вообще, сложение и вычитание матриц - операции, ясные интуитивно, ибо означают они, по сути, всего лишь суммирование или вычитание соответствующих элементов.

Пример №1

Заданы три матрицы:

$$ A=\left(\begin{array} {ccc} -1 & -2 & 1 \\ 5 & 9 & -8 \end{array} \right)\;\; B=\left(\begin{array} {ccc} 10 & -25 & 98 \\ 3 & 0 & -14 \end{array} \right); \;\; F=\left(\begin{array} {cc} 1 & 0 \\ -5 & 4 \end{array} \right). $$

Можно ли найти матрицу $A+F$? Найти матрицы $C$ и $D$, если $C=A+B$ и $D=A-B$.

Матрица $A$ содержит 2 строки и 3 столбца (иными словами - размер матрицы $A$ равен $2\times 3$), а матрица $F$ содержит 2 строки и 2 столбца. Размеры матрицы $A$ и $F$ не совпадают, поэтому сложить их мы не можем, т.е. операция $A+F$ для данных матриц не определена.

Размеры матриц $A$ и $B$ совпадают, т.е. данные матрицы содержат равное количество строк и столбцов, поэтому к ним применима операция сложения.

$$ C=A+B=\left(\begin{array} {ccc} -1 & -2 & 1 \\ 5 & 9 & -8 \end{array} \right)+ \left(\begin{array} {ccc} 10 & -25 & 98 \\ 3 & 0 & -14 \end{array} \right)=\\= \left(\begin{array} {ccc} -1+10 & -2+(-25) & 1+98 \\ 5+3 & 9+0 & -8+(-14) \end{array} \right)= \left(\begin{array} {ccc} 9 & -27 & 99 \\ 8 & 9 & -22 \end{array} \right) $$

Найдем матрицу $D=A-B$:

$$ D=A-B=\left(\begin{array} {ccc} -1 & -2 & 1 \\ 5 & 9 & -8 \end{array} \right)- \left(\begin{array} {ccc} 10 & -25 & 98 \\ 3 & 0 & -14 \end{array} \right)=\\= \left(\begin{array} {ccc} -1-10 & -2-(-25) & 1-98 \\ 5-3 & 9-0 & -8-(-14) \end{array} \right)= \left(\begin{array} {ccc} -11 & 23 & -97 \\ 2 & 9 & 6 \end{array} \right) $$

Ответ : $C=\left(\begin{array} {ccc} 9 & -27 & 99 \\ 8 & 9 & -22 \end{array} \right)$, $D=\left(\begin{array} {ccc} -11 & 23 & -97 \\ 2 & 9 & 6 \end{array} \right)$.

Умножение матрицы на число.

Произведением матрицы $A_{m\times n}=(a_{ij})$ на число $\alpha$ называется матрица $B_{m\times n}=(b_{ij})$, где $b_{ij}=\alpha\cdot a_{ij}$ для всех $i=\overline{1,m}$ и $j=\overline{1,n}$.

Попросту говоря, умножить матрицу на некое число - означает умножить каждый элемент заданной матрицы на это число.

Пример №2

Задана матрица: $ A=\left(\begin{array} {ccc} -1 & -2 & 7 \\ 4 & 9 & 0 \end{array} \right)$. Найти матрицы $3\cdot A$, $-5\cdot A$ и $-A$.

$$ 3\cdot A=3\cdot \left(\begin{array} {ccc} -1 & -2 & 7 \\ 4 & 9 & 0 \end{array} \right) =\left(\begin{array} {ccc} 3\cdot(-1) & 3\cdot(-2) & 3\cdot 7 \\ 3\cdot 4 & 3\cdot 9 & 3\cdot 0 \end{array} \right)= \left(\begin{array} {ccc} -3 & -6 & 21 \\ 12& 27 & 0 \end{array} \right).\\ -5\cdot A=-5\cdot \left(\begin{array} {ccc} -1 & -2 & 7 \\ 4 & 9 & 0 \end{array} \right) =\left(\begin{array} {ccc} -5\cdot(-1) & -5\cdot(-2) & -5\cdot 7 \\ -5\cdot 4 & -5\cdot 9 & -5\cdot 0 \end{array} \right)= \left(\begin{array} {ccc} 5 & 10 & -35 \\ -20 & -45 & 0 \end{array} \right). $$

Запись $-A$ есть сокращенная запись для $-1\cdot A$. Т.е., чтобы найти $-A$ нужно все элементы матрицы $A$ умножить на (-1). По сути, это означает, что знак всех элементов матрицы $A$ изменится на противоположный:

$$ -A=-1\cdot A=-1\cdot \left(\begin{array} {ccc} -1 & -2 & 7 \\ 4 & 9 & 0 \end{array} \right)= \left(\begin{array} {ccc} 1 & 2 & -7 \\ -4 & -9 & 0 \end{array} \right) $$

Ответ : $3\cdot A=\left(\begin{array} {ccc} -3 & -6 & 21 \\ 12& 27 & 0 \end{array} \right);\; -5\cdot A=\left(\begin{array} {ccc} 5 & 10 & -35 \\ -20 & -45 & 0 \end{array} \right);\; -A=\left(\begin{array} {ccc} 1 & 2 & -7 \\ -4 & -9 & 0 \end{array} \right)$.

Произведение двух матриц.

Определение этой операции громоздко и, на первый взгляд, непонятно. Поэтому сначала укажу общее определение, а потом подробно разберем, что оно означает и как с ним работать.

Произведением матрицы $A_{m\times n}=(a_{ij})$ на матрицу $B_{n\times k}=(b_{ij})$ называется матрица $C_{m\times k}=(c_{ij})$, для которой каждый элемент $c_{ij}$ равен сумме произведений соответствующих элементов i-й строки матрицы $A$ на элементы j-го столбца матрицы $B$: $$c_{ij}=\sum\limits_{p=1}^{n}a_{ip}b_{pj}, \;\; i=\overline{1,m}, j=\overline{1,n}.$$

Пошагово умножение матриц разберем на примере. Однако сразу стоит обратить внимание, что перемножать можно не все матрицы. Если мы хотим умножить матрицу $A$ на матрицу $B$, то сперва нужно убедиться, что количество столбцов матрицы $A$ равно количеству строк матрицы $B$ (такие матрицы часто называют согласованными ). Например, матрицу $A_{5\times 4}$ (матрица содержит 5 строк и 4 столбца), нельзя умножать на матрицу $F_{9\times 8}$ (9 строк и 8 столбцов), так как количество столбцов матрицы $A$ не равно количеству строк матрицы $F$, т.е. $4\neq 9$. А вот умножить матрицу $A_{5\times 4}$ на матрицу $B_{4\times 9}$ можно, так как количество столбцов матрицы $A$ равно количеству строк матрицы $B$. При этом результатом умножения матриц $A_{5\times 4}$ и $B_{4\times 9}$ будет матрица $C_{5\times 9}$, содержащая 5 строк и 9 столбцов:

Пример №3

Заданы матрицы: $ A=\left(\begin{array} {cccc} -1 & 2 & -3 & 0 \\ 5 & 4 & -2 & 1 \\ -8 & 11 & -10 & -5 \end{array} \right)$ и $ B=\left(\begin{array} {cc} -9 & 3 \\ 6 & 20 \\ 7 & 0 \\ 12 & -4 \end{array} \right)$. Найти матрицу $C=A\cdot B$.

Для начала сразу определим размер матрицы $C$. Так как матрица $A$ имеет размер $3\times 4$, а матрица $B$ имеет размер $4\times 2$, то размер матрицы $C$ таков: $3\times 2$:

Итак, в результате произведения матриц $A$ и $B$ мы должны получить матрицу $C$, состоящую из трёх строк и двух столбцов: $ C=\left(\begin{array} {cc} c_{11} & c_{12} \\ c_{21} & c_{22} \\ c_{31} & c_{32} \end{array} \right)$. Если обозначения элементов вызывают вопросы, то можно глянуть предыдущую тему: "Матрицы. Виды матриц. Основные термины" , в начале которой поясняется обозначение элементов матрицы. Наша цель: найти значения всех элементов матрицы $C$.

Начнем с элемента $c_{11}$. Чтобы получить элемент $c_{11}$ нужно найти сумму произведений элементов первой строки матрицы $A$ и первого столбца матрицы $B$:

Чтобы найти сам элемент $c_{11}$ нужно перемножить элементы первой строки матрицы $A$ на соответствующие элементы первого столбца матрицы $B$, т.е. первый элемент на первый, второй на второй, третий на третий, четвертый на четвертый. Полученные результаты суммируем:

$$ c_{11}=-1\cdot (-9)+2\cdot 6+(-3)\cdot 7 + 0\cdot 12=0. $$

Продолжим решение и найдем $c_{12}$. Для этого придётся перемножить элементы первой строки матрицы $A$ и второго столбца матрицы $B$:

Аналогично предыдущему, имеем:

$$ c_{12}=-1\cdot 3+2\cdot 20+(-3)\cdot 0 + 0\cdot (-4)=37. $$

Все элементы первой строки матрицы $C$ найдены. Переходим ко второй строке, которую начинает элемент $c_{21}$. Чтобы его найти придётся перемножить элементы второй строки матрицы $A$ и первого столбца матрицы $B$:

$$ c_{21}=5\cdot (-9)+4\cdot 6+(-2)\cdot 7 + 1\cdot 12=-23. $$

Следующий элемент $c_{22}$ находим, перемножая элементы второй строки матрицы $A$ на соответствующие элементы второго столбца матрицы $B$:

$$ c_{22}=5\cdot 3+4\cdot 20+(-2)\cdot 0 + 1\cdot (-4)=91. $$

Чтобы найти $c_{31}$ перемножим элементы третьей строки матрицы $A$ на элементы первого столбца матрицы $B$:

$$ c_{31}=-8\cdot (-9)+11\cdot 6+(-10)\cdot 7 + (-5)\cdot 12=8. $$

И, наконец, для нахождения элемента $c_{32}$ придется перемножить элементы третьей строки матрицы $A$ на соответствующие элементы второго столбца матрицы $B$:

$$ c_{32}=-8\cdot 3+11\cdot 20+(-10)\cdot 0 + (-5)\cdot (-4)=216. $$

Все элементы матрицы $C$ найдены, осталось лишь записать, что $C=\left(\begin{array} {cc} 0 & 37 \\ -23 & 91 \\ 8 & 216 \end{array} \right)$. Или, если уж писать полностью:

$$ C=A\cdot B =\left(\begin{array} {cccc} -1 & 2 & -3 & 0 \\ 5 & 4 & -2 & 1 \\ -8 & 11 & -10 & -5 \end{array} \right)\cdot \left(\begin{array} {cc} -9 & 3 \\ 6 & 20 \\ 7 & 0 \\ 12 & -4 \end{array} \right)=\left(\begin{array} {cc} 0 & 37 \\ -23 & 91 \\ 8 & 216 \end{array} \right). $$

Ответ : $C=\left(\begin{array} {cc} 0 & 37 \\ -23 & 91 \\ 8 & 216 \end{array} \right)$.

Кстати сказать, зачастую нет резона расписывать подробно нахождение каждого элемента матрицы-результата. Для матриц, размер которых невелик, можно поступать и так:

$$ \left(\begin{array} {cc} 6 & 3 \\ -17 & -2 \end{array}\right)\cdot \left(\begin{array} {cc} 4 & 9 \\ -6 & 90 \end{array} \right) =\left(\begin{array} {cc} 6\cdot{4}+3\cdot(-6) & 6\cdot{9}+3\cdot{90} \\ -17\cdot{4}+(-2)\cdot(-6) & -17\cdot{9}+(-2)\cdot{90} \end{array} \right) =\left(\begin{array} {cc} 6 & 324 \\ -56 & -333 \end{array} \right) $$

Стоит также обратить внимание, что умножение матриц некоммутативно. Это означает, что в общем случае $A\cdot B\neq B\cdot A$. Лишь для некоторых типов матриц, которые именуют перестановочными (или коммутирующими), верно равенство $A\cdot B=B\cdot A$. Именно исходя из некоммутативности умножения, требуется указывать как именно мы домножаем выражение на ту или иную матрицу: справа или слева. Например, фраза "домножим обе части равенства $3E-F=Y$ на матрицу $A$ справа" означает, что требуется получить такое равенство: $(3E-F)\cdot A=Y\cdot A$.

Транспонированной по отношению к матрице $A_{m\times n}=(a_{ij})$ называется матрица $A_{n\times m}^{T}=(a_{ij}^{T})$, для элементов которой $a_{ij}^{T}=a_{ji}$.

Попросту говоря, для того, чтобы получить транспонированную матрицу $A^T$, нужно в исходной матрице $A$ заменить столбцы соответствующими строками по такому принципу: была первая строка - станет первый столбец; была вторая строка - станет второй столбец; была третья строка - станет третий столбец и так далее. Например, найдем транспонированную матрицу к матрице $A_{3\times 5}$:

Соответственно, если исходная матрица имела размер $3\times 5$, то транспонированная матрица имеет размер $5\times 3$.

Некоторые свойства операций над матрицами.

Здесь предполагается, что $\alpha$, $\beta$ - некоторые числа, а $A$, $B$, $C$ - матрицы. Для первых четырех свойств я указал названия, остальные можно назвать по аналогии с первыми четырьмя.

Матрицы в математике - один из важнейших объектов, имеющих прикладное значение. Часто экскурс в теорию матриц начинают со слов: "Матрица - это прямоугольная таблица...". Мы начнём этот экскурс несколько с другой стороны.

Телефонные книги любого размера и с любым числом данных об абоненте - ни что иное, как матрицы. Такие матрицы имеют примерно следующий вид:

Ясно, что такими матрицами мы все пользуемся почти каждый день. Эти матрицы бывают с различным числом строк (различаются как выпущенный телефонной компанией справочник, в котором могут быть тысячи, сотни тысяч и даже миллионы строк и только что начатая Вами новая записная книжка, в которой меньше десяти строк) и столбцов (справочник должностных лиц какой-нибудь организации, в котором могут быть такие столбцы, как должность и номер кабинета и та же Ваша записная книжка, где может не быть никаких данных, кроме имени, и, таким образом, в ней только два столбца - имя и телефон).

Всякие матрицы можно складывать и умножать, а также проводить над ними другие операции, однако нет необходимости складывать и умножать телефонные справочники, от этого нет никакой пользы, к тому же можно и подвинуться рассудком.

Но очень многие матрицы можно и нужно складывать и перемножать и решать таким образом различные насущные задачи. Ниже примеры таких матриц.

Матрицы, в которых столбцы - выпуск единиц продукции того или иного вида, а строки - годы, в которых ведётся учёт выпуска этой продукции:

Можно складывать матрицы такого вида, в которых учтён выпуск аналогичной продукции различными предприятиями, чтобы получить суммарные данные по отрасли.

Или матрицы, состоящие, к примеру, из одного столбца, в которых строки - средняя себестоимость того или иного вида продукции:

Матрицы двух последних видов можно умножать, а в результате получится матрица-строка, содержащая себестоимость всех видов продукции по годам.

Матрицы, основные определения

Прямоугольная таблица, состоящая из чисел, расположенных в m строках и n столбцах, называется mn-матрицей (или просто матрицей ) и записывается так:

(1)

В матрице (1) числа называются её элементами (как и в определителе, первый индекс означает номер строки, второй – столбца, на пересечении которых стоит элемент; i = 1, 2, ..., m ; j = 1, 2, n ).

Матрица называется прямоугольной , если .

Если же m = n , то матрица называется квадратной , а число n – её порядком .

Определителем квадратной матрицы A называется определитель, элементами которого являются элементы матрицы A . Он обозначается символом |A |.

Квадратная матрица называется неособенной (или невырожденной , несингулярной ), если её определитель не равен нулю, и особенной (или вырожденной , сингулярной ), если её определитель равен нулю.

Матрицы называются равными , если у них одинаковое число строк и столбцов и все соответствующие элементы совпадают.

Матрица называется нулевой , если всё её элементы равны нулю. Нулевую матрицу будем обозначать символом 0 или .

Например,

Матрицей-строкой (или строчной ) называется 1n -матрица, а матрицей-столбцом (или столбцовой ) – m 1-матрица.

Матрица A " , которая получается из матрицы A заменой в ней местами строк и столбцов, называется транспонированной относительно матрицы A . Таким образом, для матрицы (1) транспонированной является матрица

Операция перехода к матрице A " , транспонированной относительно матрицы A , называется транспонированием матрицы A . Для mn -матрицы транспонированной является nm -матрица.

Транспонированной относительно матрицы является матрица A , то есть

(A ")" = A .

Пример 1. Найти матрицу A " , транспонированную относительно матрицы

и выяснить, равны ли определители исходной и транспонированной матриц.

Главной диагональю квадратной матрицы называется воображаемая линия, соединяющая её элементы, у которых оба индекса одинаковые. Эти элементы называются диагональными .

Квадратная матрица, у которой все элементы вне главной диагонали равны нулю, называется диагональной . Не обязательно все диагональные элементы диагональной матрицы отличны от нуля. Среди них могут быть и равные нулю.

Квадратная матрица, у которой элементы, стоящие на главной диагонали равны одному и тому же числу, отличному от нуля, а все прочие равны нулю, называется скалярной матрицей .

Единичной матрицей называется диагональная матрица, у которой все диагональные элементы равны единице. Например, единичной матрицей третьего порядка является матрица

Пример 2. Даны матрицы:

Решение. Вычислим определители данных матриц. Пользуясь правилом треугольников, найдём

Определитель матрицы B вычислим по формуле

Легко получаем, что

Следовательно, матрицы A и – неособенные (невырожденные, несингулярные), а матрица B – особенная (вырожденная, сингулярная).

Определитель единичной матрицы любого порядка, очевидно, равен единице.

Решить задачу на матрицы самостоятельно, а затем посмотреть решение

Пример 3. Даны матрицы

,

,

Установить, какие из них являются неособенными (невырожденными, несингулярными).

Применение матриц в математико-экономическом моделировании

В виде матриц просто и удобно записываются структурированные данные о том или ином объекте. Матричные модели создаются не только для хранения этих структурированных данных, но и для решения различных задач с этими данными средствами линейной алгебры.

Так, известной матричной моделью экономики является модель "затраты-выпуск", внедрённая американским экономистом русского происхождения Василием Леонтьевым. Эта модель исходит из предположения, что весь производственный сектор экономики разбит на n чистых отраслей. Каждая из отраслей выпускает продукцию только одного вида и разные отрасли выпускают разную продукцию. Из-за такого разделения труда между отраслями существуют межотраслевые связи, смысл которых состоит в том, что часть продукции каждой отрасли передаётся другим отраслям в качестве ресурса производства.

Объём продукции i -й отрасли (измеряемый определённой единицей измерения), которая была произведена за отчётный период, обозначается через и называется полным выпуском i -й отрасли. Выпуски удобно разместить в n -компонентную строку матрицы.

Количество единиц продукции i -й отрасли, которое необходимо затратить j -й отрасли для производства единицы своей продукции, обозначается и называется коэффициентом прямых затрат.