Теоретическая механика 2 курс. Условия равновесия твердого тела

Примеры решения задач по теоретической механике

Статика

Условия задач

Кинематика

Кинематика материальной точки

Условие задачи

Определение скорости и ускорения точки по заданным уравнениям ее движения .
По заданным уравнениям движения точки установить вид ее траектории и для момента времени t = 1 с найти положение точки на траектории, ее скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории.
Уравнения движения точки:
x = 12 sin(πt/6) , см;
y = 6 cos 2 (πt/6) , см.

Кинематический анализ плоского механизма

Условие задачи

Плоский механизм состоит из стержней 1, 2, 3, 4 и ползуна E. Стержни между собой, с ползунами и неподвижными опорами соединены с помощью цилиндрических шарниров. Точка D расположена в середине стержня AB. Длины стержней равны, соответственно
l 1 = 0,4 м; l 2 = 1,2 м; l 3 = 1,6 м; l 4 = 0,6 м.

Взаимное расположение элементов механизма в конкретном варианте задачи определяется углами α, β, γ, φ, ϑ. Стержень 1 (стержень O 1 A) вращается вокруг неподвижной точки O 1 против хода часовой стрелки с постоянной угловой скоростью ω 1 .

Для заданного положения механизма необходимо определить:

  • линейные скорости V A , V B , V D и V E точек A, B, D, E;
  • угловые скорости ω 2 , ω 3 и ω 4 звеньев 2, 3 и 4;
  • линейное ускорение a B точки B;
  • угловое ускорение ε AB звена AB;
  • положения мгновенных центров скоростей C 2 и C 3 звеньев 2 и 3 механизма.

Определение абсолютной скорости и абсолютного ускорения точки

Условие задачи

В приведенной ниже схеме рассматривается движение точки M в желобе вращающегося тела. По заданным уравнениям переносного движения φ = φ(t) и относительного движения OM = OM(t) определить абсолютную скорость и абсолютное ускорение точки в заданный момент времени.

Скачать решение задачи >>>

Динамика

Интегрирование дифференциальных уравнений движения материальной точки, находящейся под действием переменных сил

Условие задачи

Груз D массой m, получив в точке A начальную скорость V 0 , движется в изогнутой трубе ABC, расположенной в вертикальной плоскости. На участке AB, длина которого l, на груз действует постоянная сила T(ее направление показано на рисунке) и сила R сопротивления среды (модуль этой силы R = μV 2 , вектор R направлен противоположно скорости V груза).

Груз, закончив движение на участке AB, в точке B трубы, не изменяя значения модуля своей скорости, переходит на участок BC. На участке BC на груз действует переменная сила F, проекция F x которой на ось x задана.

Считая груз материальной точкой, найти закон его движения на участке BC, т.е. x = f(t), где x = BD. Трением груза о трубу пренебречь.


Скачать решение задачи >>>

Теорема об изменении кинетической энергии механической системы

Условие задачи

Механическая система состоит из грузов 1 и 2, цилиндрического катка 3, двухступенчатых шкивов 4 и 5. Тела системы соединены нитями, намотанными на шкивы; участки нитей параллельны соответствующим плоскостям. Каток (сплошной однородный цилиндр) катится по опорной плоскости без скольжения. Радиусы ступеней шкивов 4 и 5 равны соответственно R 4 = 0,3 м, r 4 = 0,1 м, R 5 = 0,2 м, r 5 = 0,1 м. Массу каждого шкива считать равномерно распределенной по его внешнему ободу. Опорные плоскости грузов 1 и 2 шероховатые, коэффициент трения скольжения для каждого груза f = 0.1.

Под действием силы F, модуль которой изменяется по закону F = F(s), где s - перемещение точки ее приложения, система приходит в движение из состояния покоя. При движении системы на шкив 5 действуют силы сопротивления, момент которых относительно оси вращения постоянный и равен M 5 .

Определить значение угловой скорости шкива 4 в тот момент времени, когда перемещение s точки приложения силы F станет равным s 1 = 1,2 м.

Скачать решение задачи >>>

Применение общего уравнения динамики к исследованию движения механической системы

Условие задачи

Для механической системы определить линейное ускорение a 1 . Считать, что у блоков и катков массы распределены по наружному радиусу. Тросы и ремни считать невесомыми и нерастяжимыми; проскальзывание отсутствует. Трением качения и трением скольжения пренебречь.

Скачать решение задачи >>>

Применение принципа Даламбера к определению реакций опор вращающегося тела

Условие задачи

Вертикальный вал AK, вращающийся равномерно с угловой скоростью ω = 10 с -1 , закреплен подпятником в точке A и цилиндрическим подшипником в точке D.

К валу жестко прикреплены невесомый стержень 1 длиной l 1 = 0,3 м, на свободном конце которого расположен груз массой m 1 = 4 кг, и однородный стержень 2 длиной l 2 = 0,6 м, имеющий массу m 2 = 8 кг. Оба стержня лежат в одной вертикальной плоскости. Точки прикрепления стержней к валу, а также углы α и β указаны в таблице. Размеры AB=BD=DE=EK=b, где b = 0,4 м. Груз принять за материальную точку.

Пренебрегая массой вала, определить реакции подпятника и подшипника.

Теоретическая механика

Теорети́ческая меха́ника - наука об общих законах механического движения и взаимодействия материальных тел. Будучи по существу одним из разделов физики , теоретическая механика, вобрав в себя фундаментальную основу в виде аксиоматики , выделилась в самостоятельную науку и получила широкое развитие благодаря своим обширным и важным приложениям в естествознании и технике, одной из основ которой она является.

В физике

В физике под теоретической механикой подразумевается часть теоретической физики, изучающая математические методы классической механики, альтернативные прямому применению законов Ньютона (так называемая аналитическая механика). Сюда входят, в частности, методы, основанные на уравнениях Лагранжа , принципы наименьшего действия , уравнении Гамильтона-Якоби и др.

Следует подчеркнуть, что аналитическая механика может быть как нерелятивистской - тогда она пересекается с классической механикой , так и релятивистской. Принципы аналитической механики являются настолько общими, что её релятивизация не приводит к фундаментальным трудностям.

В технических науках

В технических науках под теоретической механикой подразумевается набор физико-математических методов, облегчающих расчёты механизмов, сооружений, летательных аппаратов и т. п. (так называемая прикладная механика или инженерная механика) . Практически всегда эти методы выводятся из законов классической механики - в основном, из законов Ньютона, хотя в некоторых технических задачах оказываются полезными некоторые из методов аналитической механики.

Теоретическая механика опирается на некоторое число законов, установленных в опытной механике, принимаемых за истины, не требующих доказательств - аксиомы . Эти аксиомы заменяют собой индуктивные истины опытной механики. Теоретическая механика имеет дедуктивный характер. Опираясь на аксиомы как на известный и проверенный практикой и экспериментом фундамент, теоретическая механика возводит свое здание при помощи строгих математических выводов.

Теоретическая механика как часть естествознания, использующая математические методы, имеет дело не с самими реальными материальными объектами, а с их моделями. Такими моделями, изучаемыми в теоретической механике, являются

  • материальные точки и системы материальных точек,
  • абсолютно твердые тела и системы твёрдых тел,
  • деформируемые сплошные среды .

Обычно в теоретической механике выделяют такие разделы, как

В теоретической механике широко применяются методы

  • векторного исчисления и дифференциальной геометрии ,

Теоретическая механика явилась основой для создания многих прикладных направлений, получивших большое развитие. Это механика жидкости и газа , механика деформируемого твердого тела, теория колебаний , динамика и прочность машин, гироскопия , теория управления , теория полета, навигация и др.

В высшем образовании

Теоретическая механика является одной из фундаментальных механических дисциплин на механико-математических факультетах университетов России. По этой дисциплине проводятся ежегодные всероссийские , национальные и региональные студенческие олимпиады, а также Международная олимпиада .

Примечания

Литература

См. также

  • Тренажер по теоретической механике - программированное пособие по теоретической механике.

Wikimedia Foundation . 2010 .

Смотреть что такое "Теоретическая механика" в других словарях:

    теоретическая механика - общая механика Раздел механики, в котором излагаются основные законы и принципы этой науки и изучаются общие свойства движения механических систем. [Сборник рекомендуемых терминов. Выпуск 102. Теоретическая механика. Академия наук СССР. Комитет… …

    См. МЕХАНИКА Словарь иностранных слов, вошедших в состав русского языка. Павленков Ф., 1907 …

    теоретическая механика - теоретическая механика; общая механика Раздел механики, в котором излагаются основные законы и принципы этой науки и изучаются общие свойства движения механических систем … Политехнический терминологический толковый словарь

    Сущ., кол во синонимов: 1 теормех (2) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

    теоретическая механика - teorinė mechanika statusas T sritis fizika atitikmenys: angl. theoretical mechanics vok. theoretische Mechanik, f rus. теоретическая механика, f pranc. mécanique rationnelle, f … Fizikos terminų žodynas

    - (греч. mechanike, от mechane машина). Часть прикладной математики, наука о силе и сопротивлении в машинах; искусство применять силу к делу и строить машины. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. МЕХАНИКА… … Словарь иностранных слов русского языка

    механика - Наука о механическом движении и механическом взаимодействии материальных тел. [Сборник рекомендуемых терминов. Выпуск 102. Теоретическая механика. Академия наук СССР. Комитет научно технической терминологии. 1984 г.] Тематики теоретическая… … Справочник технического переводчика

    - (от греч. mechanike (techne) наука о машинах, искусство построения машин), наука о механич. движении матер. тел и происходящих при этом вз ствиях между ними. Под механич. движением понимают изменение с течением времени взаимного положения тел или … Физическая энциклопедия

    Теоретическая физика раздел физики, в котором в качестве основного способа познания природы используется создание математических моделей явлений и сопоставление их с реальностью. В такой формулировке теоретическая физика является… … Википедия

    - (греч. μηχανική искусство построения машин) область физики, изучающая движение материальных тел и взаимодействие между ними. Движением в механике называют изменение во времени взаимного положения тел или их частей в пространстве.… … Википедия

Кинематика точки.

1. Предмет теоретической механики. Основные абстракции.

Теоретическая механика - это наука, в которой изучаются общие законы механического движения и механического взаимодействия материальных тел

Механическим движением называется перемещение тела по отношению к другому телу, происходящее в пространстве и во времени.

Механическим взаимодействием называется такое взаимодействие материальных тел, которое изменяет характер их механического движения.

Статика - это раздел теоретической механики, в котором изучаются методы преобразования систем сил в эквивалентные системы и устанавливаются условия равновесия сил, приложенных к твердому телу.

Кинематика - это раздел теоретической механики, в котором изучаетсядвижение материальных тел в пространстве с геометрической точки зрения, независимо от действующих на них сил.

Динамика - это раздел механики, в котором изучается движение материальных тел в пространстве в зависимости от действующих на них сил.

Объекты изучения в теоретической механике:

материальная точка,

система материальных точек,

Абсолютно твердое тело.

Абсолютное пространство и абсолютное время независимы одно от другого. Абсолютное пространство - трехмерное, однородное, неподвижное евклидово пространство. Абсолютное время - течет от прошлого к будущему непрерывно, оно однородно, одинаково во всех точках пространства и не зависит от движения материи.

2. Предмет кинематики.

Кинематика - это раздел механики, в котором изучаются геометрические свойства движения тел без учета их инертности (т.е. массы) и действующих на них сил

Для определения положения движущегося тела (или точки) с тем телом, по отношению к которому изучается движение данного тела, жестко, связывают какую-нибудь систему координат, которая вместе с телом образует систему отсчета.

Основная задача кинематики состоит в том, чтобы, зная закон движения данного тела (точки), определить все кинематические величины, характеризующие его движение (скорость и ускорение).

3. Способы задания движения точки

· Естественный способ

Должно быть известно:

Траектория движения точки;

Начало и направление отсчета;

Закон движения точки по заданной траектории в форме (1.1)

· Координатный способ

Уравнения (1.2) – уравнения движения точки М.

Уравнение траектории точки М можно получить, исключив параметр времени « t » из уравнений (1.2)

· Векторный способ

(1.3)

Связь между координатным и векторным способами задания движения точки

(1.4)

Связь между координатным и естественным способами задания движения точки

Определить траекторию точки, исключив время из уравнений (1.2);

-- найти закон движения точки по траектории (воспользоваться выражением для дифференциала дуги)

После интегрирования получим закон движения точки по заданной траектории:

Связь между координатным и векторным способами задания движения точки определяется уравнением (1.4)

4. Определение скорости точки при векторном способе задания движения.

Пусть в момент времени t положение точки определяется радиусом-вектором , а в момент времени t 1 – радиусом-вектором , тогда за промежуток времени точка совершит перемещение .


(1.5)

средняя скорость точки,

направлен вектор также как и вектор

Скорость точки в данный момент времени

Чтобы получить скорость точки в данный момент времени, необходимо совершить предельный переход

(1.6)

(1.7)

Вектор скорости точки в данный момент времени равен первой производной от радиуса-вектора по времени и направлен по касательной к траектории в данной точке.

(единица измерения ¾ м/с, км/час)

Вектор среднего ускорения имеет то же направление, что и вектор Δ v , то есть, направлен в сторону вогнутости траектории.

Вектор ускорения точки в данный момент времени равен первой производной от вектора скорости или второй производной от радиуса-вектора точки по времени.

(еденица измерения - )

Как располагается вектор по отношению к траектории точки?

При прямолинейном движении вектор направлен вдоль прямой, по которой движется точка. Если траекторией точки является плоская кривая, то вектор ускорения , также как и вектор ср лежит в плоскости этой кривой и направлен в сторону ее вогнутости. Если траектория не является плоской кривой, то вектор ср будет направлен в сторону вогнутости траектории и будет лежать в плоскости, проходящей через касательную к траектории в точке М и прямую, параллельную касательной в соседней точке М 1 . В пределе, когда точка М 1 стремится к М эта плоскость занимает положение так называемой соприкасающейся плоскости. Следовательно, в общем случае вектор ускорения лежит в соприкасающейся плоскости и направлен в сторону вогнутости кривой.