Теория биологической эволюции и генетическое разнообразие. Этапы развития природы

В статье подробно рассмотрим виды эволюции, а также поговорим в целом об этом процессе, стараясь комплексно разобраться в теме. Узнаем о том, как зарождалось учение эволюции, какими идеями оно представлено и какую роль в нём играет вид.

Вступление в тему

Эволюция органического мира представляет собой довольно сложный и длительный процесс, который одновременно проходит на разных уровнях организации живой материи. При этом он всегда затрагивает множество направлений. Так сложилось, что развитие живой природы происходит от низших форм к высшим. Всё простое со временем усложняется и приобретает более интересную форму. В отдельных группах организмов развиваются адаптационные навыки, которые позволяют живым существам лучше существовать в своих конкретных условиях. Например, у некоторых водных животных появились в результате эволюции перепонки между пальцами.

Три направления

Прежде чем говорить о видах эволюции, рассмотрим три главных направления, выделенные весомыми российскими учеными И. Шмальгаузеном и А. Северцовым. По их мнению, существует ароморфоз, идиоадаптация, дегенерация.

Ароморфоз

Ароморфоз, или арогенез, - это серьёзные эволюционные изменения, которые ведут в целом к усложнению структуры и функций каких-то организмов. Данный процесс позволяет принципиально менять некоторые стороны жизни, например места обитания. Также ароморфоз способствует повышению конкурентоспособности конкретных организмов к выживанию в окружающей среде. Главная суть ароморфозов заключается в покорении новых адаптационных зон. Именно поэтому такие процессы происходят довольно редко, но если уж они случаются, то носят принципиальный характер и оказывают влияние на всё дальнейшее развитие.

При этом надо разобраться с таким понятием, как адаптационный уровень. Это определенная зона места обитания с характерным климатом и экологическими условиями, которые свойственны для определенной группы организмов. Например, для птиц адаптивной зоной является воздушное пространство, которое защищает их от хищников и позволяет осваивать новые способы охоты. Кроме того, перемещение в воздухе дает возможность преодолевать крупные препятствия и осуществлять дальние миграции. Именно поэтому полёт по праву считается важным эволюционным ароморфозом.

Наиболее яркие ароморфозы в природе - это многоклеточность и половой способ размножения. Благодаря многоклеточности, начался процесс усложнения анатомии и морфологии практически всех организмов. Благодаря половому размножению значительно расширились адаптационные способности.

У животных такие процессы поспособствовали созданию более эффективных способов питания и улучшения обмена веществ. При этом наиболее значимым ароморфозом в животном мире считается теплокровность, благодаря которой очень повысилась выживаемость в разных условиях.

У растений подобные процессы проявляются в появлении общей и проводящей систем, которые соединяют все их части в единое целое. Благодаря этому повышается эффективность опыления.

Для бактерий ароморфозом является автотрофный способ питания, благодаря которому они смогли покорить новую адаптационную зону, которая может быть лишена органических источников питания, а бактерии всё равно на ней выживут.

Идиоадаптация

Без этого процесса невозможно представить эволюцию биологических видов. Он подразумевает конкретные адаптации к специфическим условиям окружающей среды. Для того чтобы лучше понять, что это за процесс, давайте немного порассуждаем. Идиоадаптация — это небольшие изменения, которые существенно улучшают жизнь организмов, но при этом не выводят их на новый уровень организации. Рассмотрим данную информацию на примере птиц. Крыло является следствием процесса ароморфоза, а вот форма крыльев и способы полета - это уже идиоадаптации, которые не меняют анатомического строения птиц, но при этом отвечают за их выживание в определенной среде. К таким процессам еще можно отнести окрас животных. Из-за того что они значительно влияют лишь на группу организмов, их считают признаками видов и подвидов.

Дегенерация, или катагенез

Макро- и микроэволюция

А теперь перейдем непосредственно к теме нашей статьи. Какие же бывают разновидности этого процесса? Это микро- и макроэволюция. Поговорим о них подробнее. Макроэволюция представляет собой процесс формирования крупнейших систематических единиц: видов, новых семейств и так далее. Основные движущие силы макроэволюции кроются в микроэволюции.

Во-первых, это наследственность, естественный отбор, изменчивость и репродуктивная изоляция. Дивергентный характер свойственен для микро- и макроэволюции. При этом данные понятия, о которых мы говорим сейчас, получали много разных интерпретаций, но до сих пор окончательного понимания не достигнуто. Одна из самых популярных заключается в том, что макроэволюция является изменением системного характера, которое не требует большого количества времени.

Однако, что касается изучения этого процесса, то он занимает очень много времени. Более того, макроэволюция носит глобальный характер, поэтому освоить всё её многообразие очень сложно. Важным методом изучения этого направления является компьютерное моделирование, которое особенно активно начало развиваться в 1980-х годах.

Виды доказательств эволюции

А теперь поговорим о том, какие существуют доказательства макроэволюции. Во-первых, это сравнительно-анатомическая система умозаключений, которая основывается на том, что у всех животных единый тип строения. Именно это указывает на то, что все мы имеем общее происхождение. Здесь большое внимание уделяется гомологичным органам, также атавизмам. Атавизмы человека — это возникновение хвоста, многососковость и сплошной волосяной покров. Важное доказательство макроэволюции заключается в наличии рудиментарных органов, которые больше не нужны человеку и постепенно исчезают. Рудименты - это аппендикс, волосяной покров и остатки третьего века.

Теперь рассмотрим эмбриологические доказательства, которые заключаются в том, что все позвоночные животные имеют похожие зародыши на ранних стадиях развития. Конечно, со временем это сходство становится всё менее заметным, так как начинают преобладать характерные черты для определённого вида.

Палеонтологические доказательства процесса эволюции видов заключаются в том, что по остаткам некоторых организмов можно исследовать переходные формы других вымерших существ. Благодаря ископаемым останкам ученые могут узнавать о том, что существовали переходные формы. Например, такая форма жизни существовала между пресмыкающимися и птицами. Также благодаря палеонтологии ученые смогли построить филогенетические ряды, в которых можно четко отследить последовательность сменяющих друг друга видов, развивающихся в процессе эволюции.

Биохимические доказательства основываются на том, что у всех живых организмов на земле единообразный химический состав и генетический код, что также следует отметить. Более того, мы все схожи по энергетическому и пластическому обмену, а также ферментативному характеру некоторых процессов.

Биогеографические доказательства строятся на том, что процесс эволюции отлично отражается в характере распространения животных и растений по поверхности Земли. Так, учёные условно поделили массив планеты на 6 географических зон. Подробно рассматривать их мы здесь не будем, но заметим то, что наблюдается очень тесная связь между континентами и родственными видами живых организмов.

Благодаря макроэволюции мы можем понимать, что все виды произошли путем эволюции от ранее живших организмов. Таким образом раскрывается суть самого процесса развития.

Преобразования на внутривидовом уровне

Микроэволюция подразумевает под собой мелкие изменения в аллелях в популяции на протяжении поколений. Также можно сказать, что эти преобразования происходят на внутривидовом уровне. Причины кроются в мутационных процессах, искусственном и естественном дрейфе и переносе генов. Все эти изменения приводят к видообразованию.

Мы рассмотрели основные виды эволюции, но ещё не знаем, что микроэволюция делится на некоторые ветви. Во-первых, это популяционная генетика, благодаря которой производятся математические расчёты, необходимые для изучения многих процессов. Во-вторых, это экологическая генетика, которая позволяет наблюдать за процессами развития в действительности. Эти 2 вида эволюции (микро- и макро-) имеют огромное значение и вносят свой определенный вклад в целом в процессы развития. Стоит заметить, что их часто противопоставляют друг другу.

Эволюция современных видов

Для начала заметим, что это постоянный процесс. Другими словами, он никогда не прекращается. Все живые организмы эволюционируют с разной скоростью. Однако проблема состоит в том, что некоторые животные живут очень долго, поэтому заметить какие-то изменения очень сложно. Чтобы их отследить, должны пройти сотни или даже тысячи лет.

В современном мире происходит активная эволюция африканских слонов. Правда, при содействии человека. Так, у этих животных быстро уменьшается длина бивня. Дело в том, что охотники всегда охотились на слонов, которые обладали массивными бивнями. Одновременно с этим другие особи интересовали их гораздо меньше. Таким образом, у них увеличивались шансы на выживание, а также на передачу своих генов другим поколениям. Именно поэтому в течение нескольких десятилетий постепенно отмечалось уменьшение длины бивней.

Очень важно понимать, что отсутствие внешних признаков ещё не означает прекращение процесса эволюции. Например, очень часто разные исследователи ошибаются по поводу кистеперой рыбы латимерии. Ходит мнение, что она не эволюционировала миллионы лет, но это не так. Добавим, что на сегодняшний день латимерия является единственным живым представителем отряда целакантообразных. Если сравнить первых представителей этого вида и современных особей, то можно найти множество существенных различий. Единственная схожая черта заключается во внешних признаках. Именно поэтому очень важно комплексно смотреть на эволюцию, не судить о ней исключительно по внешним признакам. Интересно, что современная латимерия имеет больше схожих черт с селёдкой, чем со своим прародителем целакантом.

Факторы

Как мы знаем, виды произошли путем эволюции, но какие факторы этому способствовали? Во-первых, наследственная изменчивость. Дело в том, что различные мутации и новые комбинации генов создают базу для наследственного разнообразия. Заметим: чем активнее мутационный процесс, тем более эффективным будет естественный отбор.

Второй фактор - это случайное сохранение признаков. Чтобы уяснить суть этого явления, давайте разберёмся с такими понятиями, как дрейф генов и популяционные волны. Последние представляют собой колебания, которые происходят периодами и влияют на численность популяции. Например, каждые четыре года зайцев становится очень много, а сразу после этого их численность резко падает. Но что же такое дрейф генов? Здесь подразумевается сохранение или исчезновение каких-либо признаков в случайном порядке. То есть, если в результате каких-то событий популяция сильно уменьшается, то некоторые признаки будут сохраняться полностью или частично в хаотичном порядке.

Третий фактор, который мы рассмотрим — это борьба за существование. Её причина кроется том, что рождается очень много организмов, но лишь часть из них способна выжить. Более того, для всех не хватит пищи и территорий. В целом понятие борьбы за существование можно описать как особые взаимоотношения организма с окружающей средой и другими особями. При этом существует несколько форм борьбы. Она может быть внутривидовой, которая происходит между особями одного и того же вида. Вторая форма - межвидовая, когда за выживание борются представители разных видов. Третья форма заключается в борьбе с условиями окружающей среды, когда животным необходимо приспосабливаться к ним или же погибать. При этом по праву самой жестокой считается борьба внутри видов.

Теперь мы знаем, что роль вида в эволюции огромна. Именно с одного представителя может начаться мутация или дегенерация. Однако эволюционный процесс регулируется сам по себе, так как действует закон естественного отбора. Так, если новые признаки будут неэффективны, то особи, имеющие их, рано или поздно погибнут.

Рассмотрим еще одно важное понятие, которое характерно для всех движущих видов эволюции. Это изоляция. Данный термин подразумевает накопление определенных различий между представителями одной популяции, которая долгое время была изолирована друг от друга. В итоге это может привести к тому, что особи просто не смогут между собой скрещиваться, таким образом появится два совершенно разных вида.

Антропогенез

Теперь поговорим о видах людей. Эволюция - процесс, характерный для всех живых организмов. Часть биологической эволюции, которая привела к появлению человека, называется антропогенезом. Благодаря этому произошло отделение человеческого вида от человекообразных обезьян, млекопитающих и гоминид. Какие мы знаем виды людей? Эволюционная теория делит их на австралопитеков, неандертальцев и т. д. Характеристики каждого из этих видов знакомы нам ещё со школьной скамьи.

Вот мы и ознакомились с основными видами эволюции. Биология порой может рассказать очень много о прошлом и настоящем. Именно поэтому к ней стоит прислушиваться. Заметим: некоторые ученые считают, что следует выделять 3 вида эволюции: макро-, микро- и эволюцию человека. Однако такие мнения единичны и субъективны. В данном материале мы представили вниманию читателя 2 основных вида эволюции, благодаря которым развивается всё живое.

Подводя итоги статьи, скажем о том, что эволюционный процесс — настоящее чудо природы, которое само регулирует и координирует жизнь. В статье мы рассмотрели основные теоретические понятия, но на практике всё гораздо интереснее. Каждый биологический вид представляет собой уникальную систему, способную саморегулироваться, приспосабливаться и эволюционировать. В этом и состоит прелесть природы, которая позаботилась не только о созданных видах, но и о тех, в которые они могут мутировать.

Эволюцией называют такой естественный процесс развития живой природы, в котором генетический состав популяций постепенно меняется, в результате чего происходит преобразование биосферы. Такие механизмы объясняются несколькими теориями, самой известной является учение Дарвина о естественном отборе.

Сегодня считается, что эволюция, как естественный процесс, является твердо установленным научным фактом. Тем не менее это довольно широкое понятие, которое допускает довольно много толкований и неверных представлений вокруг себя. Именно поэтому есть мифы, которые нуждаются в пояснении.

Теория эволюции посвящена происхождению жизни. На самом деле это научное учение рассказывает о том, как развивалась жизнь уже после ее зарождения. Не стоит отрицать, что эволюцию интересует и четкое понимание того, как появилась жизнь на планете. Однако это не самое главное, для этого учения.

В процессе эволюции организмы всегда получают лучшие качества. Известно, что в результате естественного отбора выживали самые сильные. Но природа наградила нас многими примерами, когда это были далеко не самые совершенные организмы. В качестве примера можно упомянуть мхи, раков, акул и грибки. Эти организмы довольно долгое время оставались неизменными. Они смогли так приспособиться к изменяющейся окружающей среде, чтобы и дальше жить без улучшений. Другие организмы претерпевали серьезные изменения, но не всегда это был скачок вперед. С изменением окружающей среды даже эволюционировавшие организмы не всегда могли приспособиться к новым условиям.

В ходе эволюции жизнь менялась случайным образом. Нельзя считать естественный обзор каким-то случайным процессом. Чтобы выжить и воспроизводить свое потомство, многие существа, живущие в водной среде, должны были более быстро передвигаться. В итоге выживали те, кто лучше справлялся с такой задачей. Потомство же этих существ уже получало эти полезные характеристики, продолжая цикл. Так что не стоит считать, что эволюция является случайным процессом, такое мнение не имеет под собой оснований.

Естественный отбор представляет собой попытку организмов адаптироваться к новым условиям жизни. На самом деле в ходе естественного отбора организмы вовсе не пытались приспособиться. Такой процесс позволял разным существам размножаться и выживать. Генетической же адаптацией к новым условиям сам развивающийся организм заняться не в состоянии.

Естественный отбор дает организмам то, что им и требуется. Этот природный процесс не обладает каким-то интеллектом, естественный отбор не может четко указать, какому виду что требуется. Просто если в популяции присутствуют генетические вариации, помогающие выжить в природной среде, то такие особенности будут переданы по наследству следующим поколениям. Сама же популяция будет увеличиваться. А если генетической вариации не существует, то она либо появится со временем, либо сама популяция продолжит жить без существенных изменений.

Эволюция – всего лишь теория. Научным языком теорией является хорошо доказанная фактами идея, которая может с помощью логики определить какие-то свойства природы. А вот другие определения понятия «теория», в частности, подразумевающие «догадку» или «предположение» привносят в ненаучный мир только еще большую путаницу. Те, кто имеет дело с наукой, но не понимает ее основ, путает два разных понятия.

Эволюция является теорией кризиса. В науке нет сомнений о том, происходила ли на самом деле эволюция или нет. Есть некие сомнения по поводу того, как это было на самом деле. Внимание уделяется каждой мелочи этого сложного процесса. Некоторые нюансы заставляют анти-эволюционистов предполагать, что теория эволюции является теорией кризиса. На самом деле это учение является рупором науки, к которому прислушиваются ученые во всем мире.

Есть некоторые пробелы в истории окаменелостей, которые опровергают эволюцию. Среди окаменелостей есть много свидетельств переходных форм. Некоторые из них свидетельствуют о превращении динозавров в современных птиц, другие – об эволюции китом и их предков в наземных млекопитающих. К сожалению, множество переходных форм было утрачено. Однако они не сохранились только потому, что существовали в таких условиях, которые не дали возможности сохраниться окаменелости. Наука действительно говорит о том, что среди эволюционных изменений существует довольно много пробелов. Однако саму теорию эволюции это никак не опровергает.

Эволюционная теория на самом деле неполная. Эта наука еще только находится в состоянии разработке. Новые изыскания постоянно дополняют теорию поправками, новыми фактами, что может даже слегка изменить представление об эволюции. В данном случае эта теория похожа на все другие в подобном отношении. И только эволюция является тем самым единственно возможным правдоподобным объяснением всего существующего разнообразия жизни на планете.

Теория эволюции содержит много неточностей. Наука является довольно конкурентным полем деятельности. В случае эволюционной теории все выявленные недостатки быстро исправлялись, а учение корректировалось с их учетом. Креационисты выдвинули немало доводов против эволюции. Ученые исследовали их, критики такие тезисы просто не выдерживали. На самом деле все эти «неточности» появились из-за непонимания самой теории или же искажения ее понятий.

Эволюция наукой не является, так как ее нельзя наблюдать. Такое мнение ошибочное, так как эволюцию можно и проверять, и наблюдать. Заблуждение кроется в том, что для многих наука – это эксперименты в лаборатории, проводимые учеными в белых халатах. А ведь большое количество научной информации может быть собрано и из реального мира. Например, астрономы не могут физически контактировать с объектами своих исследований – звездами и галактиками. Зато информацию они получают путем наблюдений и опытов. Аналогичная ситуация сложилась и в случае эволюции.

Практически все биологи отвергают дарвинизм. Ученые не опровергают учение Дарвина, просто эта теория постоянно изменяется в связи с получением новых данных и знаний. Великий ученый считал, что эволюция происходит медленно и размеренно. Но сегодня есть свидетельства того, что при некоторых обстоятельствах этот процесс может и ускориться. А вот каких-то серьезных научных вызовов принципам теории Дарвина так и не было брошено. Зато ученые смогли углубить его учение о естественном отборе и даже улучшить. Таким образом биологи не отвергают дарвинизм, а просто модифицируют.

Эволюция влечет за собой аморальное поведение. Все животные обладают каким-то вариантом поведения, который разделяется с другими представителями этого же вида. Собаки ведут себя, как собаки, у червей своя жизнь, у людей – своя. Как может ребенок вести себя, как иное существо? Именно поэтому нет никакого смысла связывать эволюцию с каким-то неестественным или аморальным поведением.

Эволюция поддерживает понятие правильного правосудия. Около ста лет назад в философии общества появилось такое направление, как социальный дарвинизм. Учение стало настолько популярным, что даже осуществлялись попытки применить теорию биологической эволюции на общественных нормах. Считалось, что общество должно помочь умереть слабым. При этом это будет не просто идеальным подтверждением теории отбора, но еще и верным с точки зрения морали. Такая идея была даже неким образом научно подтверждена, ссылались на биологическую эволюцию, что делало такой подход весьма рациональным. Но то было время попыток использовать науку в посторонних делах. Хорошо, что человечество вовремя отвергло социальный дарвинизм.

Ученые должны уделять внимание не только теории эволюции, но и другим вариантам создания жизни. Есть довольно много теорий создания нашего мира, в основном они носят религиозный характер. Всех их представить попросту невозможно. Но ни одна из них в своей основе не несет научных исследований. Поэтому нет нужды обучать школьников таким антинаучным теориям. Ведь школьники и студенты изучают именно науку, а попытки заменить ее религиозными верованиями могут направить молодых людей в другую сторону.

Из архивов «Континента»

Хорошо известно, что наша Вселенная образовалась около 14 миллиардов лет тому назад в результате гигантского взрыва, известного в науке как Big Bang. Возникновение Вселенной “из ничего” не противоречит известным законам физики: положительная энергия вещества, образовавшегося после взрыва, в точности равна отрицательной энергии гравитации, так что полная энергия такого процесса равна нулю. В последнее время ученые обсуждают также возможность образования и других вселенных – “пузырей”. Мир, согласно этим теориям, состоит из бесконечного числа вселенных, о которых мы пока еще ничего не знаем. Интересно, что в момент взрыва образовалось не только трехмерное пространство, но, и что очень важно, и время, связанное с пространством. Время – причина всех тех изменений, которые произошли во Вселенной после Big Bang. Эти изменения происходили последовательно, шаг за шагом по мере возрастания стрелы времени, и включают в себя образование огромного числа галактик (порядка 100 млрд.), звезд (число галактик умноженное на 100 млрд.), планетных систем и в конечном счете самой жизни, включая разумную жизнь. Чтобы представить себе, как много звезд во Вселенной, астрономы приводят такое любопытное сравнение: число звезд в нашей Вселенной сравнимо с числом песчинок на всех пляжах Земли, включая моря, реки и океаны. Вселенная, замороженная во времени, была бы неизменной и мало интересной и в ней не было бы никакого развития, т.е. всех тех изменений, которые произошли потом и в конечном счете привели к существующей картине мира.

Возраст нашей Галактики 12.4 миллиардов лет, а нашей солнечной системы 4.6 млрд. лет. Возраст метеоритов и самых старых камней на Земле немного меньше 3.8-4.4 млрд. лет. Первые одноклеточные организмы, лишенные ядер прокариоты и зелено-голубые бактерии, появились 3.0-3.5 млрд. лет тому назад. Это простейшие биологические системы, способные образовывать протеины, цепи аминокислот, состоящие из основных элементов жизни С, Н, О, N, S, и ведущие независимый образ жизни. Простые зелено-голубые “аlgае”, т.е. водяные растения без сосудистых тканей и “archaebacteria” или старые бактерии (используемые для приготовления лекарственных препаратов) и сегодня важная часть нашей биосферы. Эти бактерии – первое успешное приспособление жизни на Земле. Интересно, что зелено-голубые бактерии и другие прокариоты почти не изменились в течение млрд. лет, в то же время исчезнувшие динозавры и другие виды уже никогда не могут возродиться снова, т.к. условия на Земле сильно изменились, и они уже не могут пройти через все те этапы развития, которые они прошли в те далекие годы. Если по тем или иным причинам жизнь на Земле прекратится (из-за столкновения с гигантским метеоритом, в результате взрыва соседней к солнечной системе суперновой или нашего собственного самоуничтожения), она не может начаться вновь в том же виде, ибо теперешние условия в корне отличаются от тех, которые были около четырех млрд. лет тому назад (например, наличие свободного кислорода в атмосфере, а также изменение фауны Земли). Эволюция, уникальная по своей сути, уже не может повториться в том же виде и пройти все те этапы, через которые она прошла за минувшие миллиарды лет. Доктор Пайсон из Лос-Аламосской Национальной Лаборатории США высказал весьма любопытную мысль о роли эволюции в организации системы живых структур: “Жизнь – это последовательность молекулярных взаимодействий. Если мы откроем в биологии принцип иной, чем эволюция, мы научимся создавать живые системы лабораторным путем и таким образом понять механизм образования жизни”. Причина, почему мы не можем лабораторным путем осуществить превращение видов (например, мухи дрозофилы в какой-нибудь другой вид), состоит в том, что в естественных условиях на это понадобились миллионы лет, и мы сегодня не знаем другого принципа, как вызвать такое превращение.

По мере увеличения количества прокариотов они “изобрели” явление фотосинтеза, т.е. сложную цепь химических реакций, в которых энергия солнечного света вместе с углекислым газом и водой преобразуется в кислород и глюкозу. В растениях фотосинтез осуществляется в хлоропластах, которые содержатся в их листьях, приводя к атмосферному кислороду. Атмосфера, насыщенная кислородом, появилась 2-2.5 млрд. тому назад. Эукариоты, многоклеточные клетки, содержащие ядро с генетической информацией, а также органеллы, образовались 1-2 млрд. лет тому назад. Органеллы содержатся в клетках прокариотов, а также в клетках животных и растений. ДНК – это генетический материал любой живой клетки, в которой содержится наследственная информация. Наследственные гены расположены в хромосомах, которые содержат протеины, связанные с ДНК. Все организмы – бактерии, растительный и животный миры – несмотря на гигантское разнообразие видов, имеют общее происхождение, т.е. имеют общего предка (common ancestor). Дерево жизни состоит из трех основных ветвей – Bacteria, Archaea, Eukaria. В последнюю группу входит весь растительный и животный мир. Все известные живые организмы образуют протеины, используя лишь 20 основных аминокислот (хотя общее количество аминокислот в природе равно 70), а также используют одну и то же молекулу энергии АТФ для запаса энергии в клетках. Они также используют молекулы ДНК для передачи генов из одного поколения другому. Ген – это фундаментальная единица наследственности, часть ДНК, который содержит информацию, необходимую для синтеза протеина. Различные организмы имеют сходные гены, которые могут подвергаться мутации или улучшаться в течение длительной эволюции. От бактерий до амеб и от амеб до человека) гены ответственны за характеристики организмов и улучшение видов, тогда как протеины поддерживают жизнь. Все живые организмы используют ДНК, чтобы передать свои гены другому поколению. Генетическая информация передается от ДНК протеину путем сложной цепочки превращений посредством РНК, которая подобна ДНК, но отличается от нее своей структурой. В цепочке превращений химия®биология®жизнь синтезируется органическая молекула. Биологам хорошо известны все эти превращения. Самое удивительное из них – расшифровка генетического кода (The Human Genome Project), которая поражает воображение как сложностью, так и совершенством. Генетический код универсален для всех трех ветвей дерева жизни.

Самый интересный вопрос, некоторый человечество ищет ответ в течение всей своей истории, это как возникла первая жизнь и, в частности, зародилась ли она на Земле или же была привнесена из межзвездной среды с помощью метеоритов. Все основные молекулы жизни, включая аминокислоты и ДНК, найдены и в метеоритах. Теория направленной пансмермии (panspermia) предполагает, что жизнь возникла в межзвездном пространстве (интересно, откуда?), мигрирует через огромное пространство, однако эта теория не может объяснить, как жизнь может сохраниться в суровых условиях космоса (опасная радиация, низкие температуры, отсутствие атмосферы и т.д.). Ученые придерживаются теории, согласно которой естественные, хотя и примитивные условия на Земле привели к образованию простых органических молекул, а также к развитию форм различной химической активности, которые, в конечном счете, запустили дерево жизни. В очень интересном эксперименте Miller and Urey, выполненном в 1953 году, они доказали образование сложных органических молекул (альдегидов, карбоксилов и аминокислот) путем пропускания мощного электрического разряда – аналога молнии в естественных условиях – через смесь газов CН4, NH3, H2O, H2, которые имелись в первичной атмосфере Земли. Этот эксперимент продемонстрировал, что основные химические компоненты жизни, т.е. биологические молекулы, могут быть естественным путем сформированы путем симуляции примитивных условий на Земле. Однако, никакие формы жизни, включая полимеризацию молекул ДНК, не были обнаружены которые, по-видимому, могли возникнуть только в результате длительной эволюции.

Тем временем стали появляться более сложные структуры, огромные клетки – органы и большие живые образования, состоящие из млн. и млрд. клеток (например, человек состоит из десяти триллионов клеток). Сложность системы зависела от прошедшего времени и глубины естественного отбора, который сохранял виды, наиболее приспособленные к новым условиям жизни. Хотя все простые эукариоты воспроизводились путем деления, более сложные системы образовывались половым путем. В последнем случае каждая новая клетка берет половину генов от одного родителя и вторую половину от другого.

Жизнь в течение очень длительного периода ее истории (почти 90%) существовала в микроскопических и невидимых формах. Примерно 540 млн. лет тому назад начался совершенно новый революционный период, известный в науке как Cambrian era. Это период бурного возникновения огромного количества многоклеточных видов с твердой оболочкой, скелетом и мощным панцирем. Появились первые рыбы и позвоночные, растения из океанов начали мигрировать по всей Земле. Первые насекомые и их потомки способствовали распространению по Земле и животного мира. Последовательно стали появляться насекомые с крыльями, амфибии, первые деревья, пресмыкающиеся, динозавры и мамонты, первые птицы и первые цветы (динозавры исчезли 65 млн. лет тому назад, по-видимому, вследствие гигантского столкновения Земли с массивным метеоритом). Затем наступил период дельфинов, китов, акул и приматов, прародителей обезьян. Примерно 3 млн. лет тому назад появились существа с необычайно большим и сильно развитым мозгом, hominids (первые предки людей). Появление первого человека (homo sapiens) датируется 200,000 лет тому назад. Согласно некоторым теориям, появление первого человека, который качественно отличается от всех других видов животного мира, возможно, является результатом сильной мутации hominids, которое явилось источником образования новой аллели (allele) – измененной формы одного из генов. Появление современного человека датируется примерно 100,000 лет – тому назад, исторические и культурные свидетельства нашей истории не превышают 3000-7 4000 лет, однако технологически – развитой цивилизацией мы стали совсем недавно, всего лишь 200 лет назад!

Жизнь на Земле – это продукт биологической эволюции, насчитывающей примерно 3.5 млрд. лет. Появление жизни на Земле – это результат большого числа благоприятных условий – астрономических, геологических, химических и биологических. Все живые организмы от бактерий до человека имеют общего предка и состоят из нескольких основных молекул, присущих всем объектам нашей Вселенной. Главные свойства живых организмов – они имеют реакцию, растут, размножаются и передают информацию от одного поколения другому. Мы, земная цивилизация, несмотря на свой юношеский возраст, многого достигли: освоили атомную энергию, расшифровали генетический код человека, создали сложные технологии, стали экспериментировать в области генной инженерии (синтетической жизни), занимаемся клонированием, работаем над увеличением продолжительности нашей жизни (уже сегодня ученые обсуждают возможность увеличения продолжительности жизни до 800 и более лет), начали летать в космос, изобрели компьютеры и даже пытаемся вступить в контакт с внеземной цивилизацией (программа SETI, Search for Extraterrestrial Intelligence). Т.к. другая цивилизация пройдет совершенно другой путь развития, она полностью будет отличаться от нашей. В этом смысле каждая цивилизация по-своему уникальна – возможно, – это одна из причин, почему программа SETI оказалась безуспешной. Мы стали вмешиваться в святая святых, т.е. в процессы, которые в естественной среде занимали бы миллионы и миллионы лет.

Чтобы лучше понять, как мы молоды, предположим, что полная история Земли равна одному году и что наша история началась 1 января. В этой шкале уже 1 июня появились прокариоты и зелено-голубые бактерии, которые вскоре привели к насыщенной кислородом атмосфере. Cambrion эра началась 13 ноября. Динозавры жили на Земле с 13 по 26 декабря, а первые hominids появились днем 31 декабря. К Новому году мы, уже современные люди, послали первое послание в космос – в другую часть нашей Галактики. Только примерно через 100,000 лет (или по нашей шкале через 15 минут) наше послание (не прочитанное еще никем) покинет нашу Галактику и устремится к другим галактикам. Будет ли оно прочитано когда-нибудь? Мы этого не узнаем. Вероятнее всего нет.

Для возникновения в другой части Вселенной цивилизации, подобной нашей, не только потребуются миллиарды лет. Важно, чтобы такая цивилизация имела достаточно времени для своего развития и превращения в технологическую, а главное не уничтожила себя (это другая причина, почему мы не можем найти другую цивилизацию, хотя мы ее ищем более 50 лет: она, возможно, погибает раньше, чем успевает стать технологической). Наша технология может оказать пагубное влияние на атмосферу. Уже сегодня мы озабочены появлением озоновых дыр в нашей атмосфере, которые сильно увеличились за последние 50 лет (озон – трехатомная молекула кислорода, которая, в общем, является ядом). Это – результат нашей технологической активности. Озоновая оболочка предохраняет нас от опасного ультрафиолетового излучения Солнца. Такое излучение, при наличии озоновых дыр, приведет к повышению земной температуры и как результат – к глобальному потеплению (global warming). Поверхность Марса сегодня стерильна из-за отсутствия озонового слоя. За последние 20 лет озоновая дыра в атмосфере Земли возросла до размеров большого континента. Увеличение температуры даже на 2 градуса приведет к таянию льдов, возрастанию уровня океанов, а также к их испарению и опасному увеличению углекислого газа в атмосфере. Затем произойдет новое потепление атмосферы, и этот процесс будет продолжаться, пока не испаряться все моря и океаны (ученые называют это явление runaway greenhouse effect). После испарения океанов количество углекислого газа в атмосфере увеличится примерно в 100,000 раз и составит около 100%, что приведет к полному и необратимому уничтожению не только озонового слоя земной атмосферы, но и всего живого на Земле. Такое развитие событий уже имело место в истории нашей солнечной системы на Венере. 4 млрд. лет тому назад условия на Венере были близки к земным и, возможно, даже там была жизнь, т.к. Солнце в те далекие времена светило не так ярко (известно, что интенсивность излучения Солнца постепенно увеличивается). Возможно, что жизнь с Венеры мигрировала на Землю, а с Земли, по мере возрастания солнечного излучения, мигрирует на Марс, хотя, по-видимому, такое развитие событий маловероятно из-за проблем миграции живой клетки через космос. Количество углекислого газа в атмосфере Венеры сегодня равно 98%, а атмосферное давление почти в сто раз превышает земное. Возможно, это результат глобального потепления и испарения венерианских океанов. Венера и Марс преподают нам важный урок, т.е. мы знаем сегодня, что может произойти и с нашей планетой, если не предпринимать никаких мер. Другая проблема связана с возрастанием излучения Солнца, которое, в конечном счете, обусловит runaway greenhouse effect на Земле с известным результатом.

Наше развитие идет по экспоненте, с ускорением. Население Земли удваивается каждые 40 лет и возросло примерно с 200 тысяч до 6 млрд. за последние 2000 лет. Однако, не содержатся ли в таком бурном развитии семена опасности нашему существованию? Не погубим ли мы свою цивилизацию? Успеем ли мы стать высокоразвитой цивилизацией и понять нашу историю? Сумеем ли мы летать глубоко в космос и найти другую цивилизацию, подобную нашей? Согласно Эйнштейну, самое удивительное в мире состоит в том, что мир познаваем. Пожалуй, эта одна из самых интригующих особенностей человеческой цивилизации – умение раскрывать тайны мира. Мы можем понять мир, в котором живем, и понять законы, управляющие им. Однако, почему эти законы существуют? Почему скорость света, например, равна 300,000 км/сек или почему хорошо известное в математике число я (отношение длины окружности к его диаметру) равно именно 3.14159…? Американский физик А. Майкельсон получил Нобелевскую премию за измерения скорости света с невиданной точностью (напомню, что это гигантская величина: двигаясь с такой скоростью мы бы оказались на Луне через примерно одну секунду, на Солнце через 8 минут, а в центре Галактики через 28,000 лет). Другой пример – расшифровка генетического кода, состоящего из 30 млн. кусочков, каждый длиной в 500-600 букв, потребовала 15 лет работы с использованием сложных программ и компьютеров. Оказалось, что длина всего кода равна длине 100 млн. писем. Это открытие было сделано на рубеже двух тысячелетий и показало, что, возможно, мы научимся лечить болезни любой сложности путем исправления ошибок соответствующего участка поврежденного гена. Математики с помощью быстрых компьютеров рассчитали число я с немыслимой точностью до триллиона знаков после запятой, чтобы знать точное его значение и описать это число с помощью какой-нибудь простой формулы. Кто придумал эти числа и почему они именно такие? Как генетический код мог оказаться столь совершенным? Как физические постоянные связаны с нашим мирозданием? Разумеется, они отражают геометрическую структуру нашей Вселенной и, по-видимому, имеют разное значение для разных вселенных. Мы не знаем этого сегодня, как, впрочем, много другого. Но мы стремимся найти общие законы нашего мира или даже единый закон, из которого могли бы получить все другие законы в частном случае, а также, что очень важно, понять смысл мировых постоянных. Мы также не знаем, связано ли наше существование с выполнением какой-то миссии.

Но вернемся к нашей истории и нашей эволюции. Закончилась ли она и в чем ее смысл? Что произойдет с нами через миллионы лет, если, конечно, мы сумеем решить намят технологические проблемы и не уничтожим себя? В чем смысл появления в нашей истории таких гениальных личностей, как Эйнштейн, Шекспир или Моцарт? Возможна ли новая мутация и создание другого более совершенного вида, чем человек? Может ли этот новый вид решить проблемы мироздания и понять смысл нашей истории? Мы открыли законы и измерили с захватывающей дух точностью мировые постоянные, но мы не понимаем, почему они такие и какова их роль во Вселенной. Если совсем немного изменить те постоянные, то вся наша история выглядела бы по-другому. Несмотря на всю сложность и загадочность генетического кода, загадки самой Вселенной выглядят бесконечными. В чем суть этих загадок и удастся ли нам расшифровать их? Безусловно, мы изменимся. Но как? Являемся ли мы высшим и последним звеном в длительной истории нашего развития? Является ли наша история результатом какого-то остроумного плана или же оно просто результат сотен и тысяч благоприятных условий, которые стали возможными благодаря времени и длительной эволюции? Вне сомнения, что нашему развитию нет предела и оно также бесконечно, как бесконечен мир, состоящий из миллионов и миллионов вселенных, которые постоянно и разрушаются и образуются вновь.

Илья Гулькаров, Профессор, доктор физико-математических наук, Чикаго
June 18, 2005

Потомство живых существ очень похоже на родителей. Однако если среда обитания живых организмов меняется, они тоже могут существенно измениться. К примеру, если климат постепенно становится холоднее, то некоторые виды могут от поколения к поколению обрастать все более густой шерстью. Этот процесс называется эволюцией . За миллионы лет эволюции мелкие изменения, накапливаясь, могут приводить к возникновению новых видов растений и животных, резко отличающихся от своих предков.

Как происходит эволюция?

В основе эволюции лежит естественный отбор. Он происходит так. Все животные или растения, принадлежащие к одному виду, все же слегка отличаются друг от друга. Некоторые из этих отличий позволяют их обладателям лучше приспосабливаться к условиям жизни, нежели их сородичам. Например, у какого-то оленя особенно быстрые ноги, и ему каждый раз удается убежать от хищника. У такого оленя больше шансов выжить и обзавестись потомством, а способность быстро бегать может передаться его детенышам, или, как говорят, унаследоваться ими.

Эволюция создала бесчисленное множество способов приспособления к трудностям и опасностям жизни на Земле. Например, семена конского каштана со временем приобрели оболочку, покрытую острыми колючками. Колючки защищают семя, когда оно падает с дерева на землю.

Какова скорость эволюции?


Прежде у этих бабочек были светлые крылышки. Они прятались от врагов на стволах деревьев с такой же светлой корой. Однако около 1% этих бабочек имели темные крылышки. Естественно, птицы сразу их замечали и, как правило, съедали раньше других

Обычно эволюция протекает очень медленно. Но бывают случаи, когда какой-либо вид животных претерпевает стремительные изменения и затрачивает на это не тысячи и миллионы лет, а гораздо меньше. К примеру, некоторые бабочки за последние двести лет изменили свою окраску, чтобы приспособиться к новы условиям жизни в тех районах Европы, где возникло множество промышленных предприятий.

Около двухсот лет назад в Западной Европе начали строить заводы, работающие на угле. Дым из заводских труб содержал сажу, которая оседала на стволах деревьев, и они чернели. Теперь оказались заметнее светлые бабочки. А немногие прежде бабочки с темной окраской крылышек выжили, ибо птицы их уже не замечали. От них произошли другие бабочки с такими же темными крылышками. И теперь большинство бабочек этого вида, обитающих в промышленных районах, имеют темные крылышки.

Почему некоторые виды животных вымирают?

Некоторые живые существа неспособны эволюционировать, когда среда их обитания резко изменяется, и в результате вымирают. Скажем, огромные волосатые животные, похожие на слонов — мамонты, скорее всего, вымерли оттого, что климат на Земле в ту пору стал контрастнее: летом слишком жарко, а зимой слишком холодно. К тому же их численность сократилась из-за усиленной охоты на них первобытного человека. А вслед за мамонтами вымерли и саблезубые тигры — ведь их громадные клыки были приспособлены к охоте лишь на крупных животных вроде мамонтов. Более мелкие животные были для саблезубых тигров недоступны, и, оставшись без добычи, они исчезли с лица нашей планеты.

Откуда мы знаем, что человек тоже эволюционировал?

Большинство ученых полагает, что человек произошел от живших на деревьях животных, похожих на современных обезьян. Доказательством этой теории служат некоторые черты строения наших тел, позволяющие, в частности, предположить, что когда-то наши предки были вегетарианцами и питались только плодами, кореньями и стеблями растений.

У основания вашего позвоночника есть костное образование — копчик. Это все, что осталось от хвоста. Большая часть волос, покрывающих ваше тело, представляет собой лишь мягкий пушок, но у наших предков волосяной покров был гораздо гуще. Каждый волосок снабжен специальным мускулом и встает дыбом, когда вы мерзнете. Так же и у всех млекопитающих с волосатой шкурой: она удерживает воздух, который не дает теплу животного уйти.

У многих взрослых людей есть широкие крайние зубы — их называют «зубы мудрости». Теперь в этих зубах нет никакой необходимости, но в свое время наши предки пережевывали ими жесткую растительную пищу, которой питались. Аппендикс представляет собой маленькую трубочку-отросток, связанную с кишечником. Наши отдаленные предки с его помощью переваривали растительную пищу, плохо усваиваемую организмом. Теперь он больше не нужен и постепенно становится все меньше и меньше. У многих травоядных животных — к примеру, кроликов — аппендикс развит очень хорошо.

Могут ли люди управлять эволюцией?

Люди управляют эволюцией некоторых животных вот уже более 10000 лет. Например, многие современные породы собак, по всей вероятности, произошли от волков, стаи которых бродили около стойбищ древних людей. Постепенно те из них, что стали жить вместе с людьми, эволюционировали в новый вид животных, то есть стали собаками. Затем люди начали специально выращивать собак для определенных целей. Это называется селекцией. В результате сегодня в мире насчитывается свыше 150 различных пород собак.

  • Собак, которых можно было обучить разным командам, вроде этой английской овчарки, выращивали для того, чтобы пасти скот.
  • Собак, которые умели быстро бегать, использовали для преследования дичи. У этой борзой мощные ноги, и она бежит огромными прыжками.
  • Собак с хорошим нюхом выводили специально для выслеживания дичи. Эта гладкошерстная такса может разрывать кроличьи норы.

Через естественный отбор, как правило, протекает очень медленно. Селективный отбор позволяет резко ускорить ее.

Что такое генная инженерия?

В 70-е гг. XX в. ученые изобрели способ изменения свойств живых организмов вмешательством в их генетический код. Эту технологию называют генной инженерией. Гены несут в себе своеобразный биологический шифр, содержащийся в каждой живой клетке. Он и определяет размеры и внешний вид каждого живого существа. С помощью генной инженерии можно выводить растения и животных, которые, скажем, быстрее растут или менее восприимчивы к какому-либо заболеванию

Жизнь на Земле появилась миллиарды лет назад, и с тех пор живые организмы становились всё сложнее и разнообразнее. Существует множество доказательств того, что всё живое на нашей планете имеет общее происхождение. Хотя механизм эволюции ещё не до конца понятен учёным, сам её факт не подлежит сомнению. В этом посте — о том, какой путь прошло развитие жизни на Земле от самых простейших форм до человека, какими были много миллионов лет назад наши далёкие предки. Итак, от кого же произошёл человек?

Земля возникла 4,6 миллиардов лет назад из газопылевого облака, окружавшего Солнце. В начальный период существования нашей планеты условия на ней были не очень комфортными — в окружающем космическом пространстве летало ещё много обломков, которые постоянно бомбардировали Землю. Считается, что 4,5 млрд лет назад Земля столкнулась с другой планетой, в результате этого столкновения образовалась Луна. Первоначально Луна была очень близко к Земле, но постепенно отдалялась. Из-за частых столкновений в это время поверхность Земли находилась в расплавленном состоянии, имела очень плотную атмосферу, а температура на поверхности превышала 200°C. Через некоторое время поверхность затвердела, образовалась земная кора, появились первые материки и океаны. Возраст самых древних исследованных горных пород составляет 4 миллиарда лет.

1) Древнейший предок. Археи.

Жизнь на Земле появилась, согласно современным представлениям, 3,8-4,1 млрд лет назад (самому раннему из найденных следов бактерий 3,5 млрд лет). Как именно возникла жизнь на Земле, до сих пор надёжно не установлено. Но вероятно, уже 3,5 млрд. лет назад, существовал одноклеточный организм, который имел все черты, присущие всем современным живым организмам и был для всех них общим предком. От этого организма всем его потомкам достались черты строения (все они состоят из клеток, окружённых оболочкой), способ хранения генетического кода (в закрученных двойной спиралью молекулах ДНК), способ хранения энергии (в молекулах АТФ) и т. д. От этого общего предка произошли три основные группы одноклеточных организмов, существующих до сих пор. Сначала разделились между собой бактерии и археи, а затем от архей произошли эукариоты — организмы, клетки которых имеют ядро.

Археи почти не изменились за миллиарды лет эволюции, вероятно примерно так же выглядели и древнейшие предки человека

Хотя археи дали начало эволюции, многие из них дожили до наших дней почти в неизменном виде. И это не удивительно — с древних времён археи сохранили способность выживать в самых экстремальных условиях — при отсутствии кислорода и солнечного света, в агрессивных — кислых, солёных и щелочных средах, при высоких (некоторые виды прекрасно чувствуют себя даже в кипятке) и низких температурах, при высоких давлениях, также они способны питаться самыми разными органическими и неорганическими веществами. Их далёкие высокоорганизованные потомки совсем не могут этим похвастаться.

2) Эукариоты. Жгутиковые.

Длительное время экстремальные условия на планете мешали развитию сложных форм жизни, и на ней безраздельно господствовали бактерии и археи. Примерно 3 млрд. лет назад на Земле появляются цианобактерии. Они начинают использовать процесс фотосинтеза для поглощения углерода из атмосферы, выделяя при этом кислород. Выделяющийся кислород сначала расходуется на окисление горных пород и железа в океане, а затем начинает накапливаться в атмосфере. 2,4 млрд. лет назад происходит «кислородная катастрофа» — резкое повышение содержание кислорода в атмосфере Земли. Это приводит к большим изменениям. Для многих организмов кислород оказывается вреден, и они вымирают, заменяясь такими, которые наоборот, используют кислород для дыхания. Меняется состав атмосферы и климат, становится значительно холоднее из-за падения содержания парниковых газов, но появляется озоновый слой, защищающий Землю от вредного ультрафиолетового излучения.

Примерно 1,7 млрд лет назад от архей произошли эукариоты — одноклеточные организмы, клетки которых имели более сложное строение. Их клетки, в частности, содержали ядро. Впрочем, возникшие эукариоты имели не одного предшественника. Например, митохондрии, важные составляющие клеток всех сложных живых организмов, произошли от свободноживущих бактерий, захваченных древними эукариотами.

Существует много разновидностей одноклеточных эукариот. Считается, что все животные, а значит и человек, произошли от одноклеточных организмов, которые научились передвигаться при помощи жгутика, расположенного сзади клетки. Жгутики также помогают фильтровать воду в поисках пищи.

Хоанофлагеллаты под микроскопом, как полагают учёные, именно от подобных существ некогда произошли все животные

Некоторые виды жгутиковых живут, объединяясь в колонии, считается, что из таких колоний простейших жгутиковых некогда произошли первые многоклеточные животные.

3) Развитие многоклеточных. Билатерии.

Примерно 1,2 млрд. лет назад появляются первые многоклеточные организмы. Но эволюция всё ещё медленно продвигается, вдобавок развитию жизни мешают . Так, 850 млн. лет назад начинается глобальное оледенение. Планета более чем на 200 млн. лет покрывается льдом и снегом.

Точные детали эволюции многоклеточных, к сожалению, неизвестны. Но известно, что через некоторое время первые многоклеточные животные разделились на группы. Дожившие до наших дней без особых изменений губки и пластинчатые не имеют отдельных органов и тканей и отфильтровывают питательные вещества из воды. Ненамного сложнее устроены кишечнополостные, имеющие лишь одну полость и примитивную нервную систему. Все же остальные более развитые животные, от червей до млекопитающих, относятся к группе билатерий, и их отличительным признаком является двусторонняя симметрия тела. Когда появились первые билатерии, доподлинно неизвестно, вероятно это произошло вскоре после окончания глобального оледенения. Формирование двусторонней симметрии и появление первых групп билатеральных животных, вероятно, происходило между 620 и 545 млн. лет назад. Находки ископаемых отпечатков первых билатерий относятся ко времени 558 млн. лет назад.

Кимберелла (отпечаток, внешний вид) — один из первых обнаруженных видов билатерий

Вскоре после своего возникновения билатерии разделяются на первичноротых и вторичноротых. От первичноротых происходят почти все беспозвоночные животные — черви, моллюски, членистоногие и т. д. Эволюция вторичноротых приводит к появлению иглокожих (таких, как морские ежи и звёзды), полухордовых и хордовых (к которым относится и человек).

Недавно в Китае были найдены остатки существ, получивших название Saccorhytus coronarius. Они жили примерно 540 млн. лет назад. По всем признакам это маленькое (размером всего около 1 мм) существо было предком всех вторичноротых животных, а значит, и человека.

Saccorhytus coronarius

4) Появление хордовых. Первые рыбы.

540 млн. лет назад происходит «кембрийский взрыв» — за очень короткий период времени появляется огромное число самых разных видов морских животных. Фауну этого периода удалось хорошо изучить благодаря сланцам Бёрджес в Канаде, где сохранились остатки огромного числа организмов этого периода.

Некоторые из животных кембрийского периода, останки которых найдены в сланцах Бёрджес

В сланцах нашли множество удивительных животных, к сожалению, давно вымерших. Но одной из наиболее интересных находок стало обнаружение останков небольшого животного, получившего название пикайя. Это животное — самый ранний из найденных представителей типа хордовых.

Пикайя (останки, рисунок)

У пикайи были жабры, простейший кишечник и кровеносная система, а также небольшие шупальца возле рта. Это небольшое, размером около 4 см. животное напоминает современных ланцетников.

Появление рыб не заставило себя долго ждать. Первым из найденных животных, которое можно отнести к рыбам, считается хайкоуихтис. Он был ещё меньше пикайи (всего 2,5 см), но у него уже были глаза и головной мозг.

Примерно так выглядел хайкоуихтис

Пикайя и хайкоуихтис появились между 540 и 530 млн. лет назад.

Вслед за ними в морях вскоре появилось множество рыб большего размера.

Первые ископаемые рыбы

5) Эволюция рыб. Панцирные и первые костные рыбы.

Эволюция рыб продолжалась довольно долго, и поначалу они совсем не были доминирующей группой живых существ в морях, как сегодня. Напротив, им приходилось спасаться от таких крупных хищников, как ракоскорпионы. Появились рыбы, у которых голова и часть туловища были защищены панцирем (считается, что череп впоследствии развился из такого панциря).

Первые рыбы были бесчелюстными, вероятно, они питались мелкими организмами и органическими остатками, втягивая и фильтруя воду. Лишь около 430 млн. лет назад появились первые рыбы, имеющие челюсти — плакодермы, или панцирные рыбы. Голова и часть туловища у них была прикрыта костным панцирем, обтянутым кожей.

Древняя панцирная рыба

Некоторые из панцирных рыб приобрели большие размеры и стали вести хищный образ жизни, но дальнейший шаг в эволюции был сделан благодаря появлению костных рыб. Предположительно, от панцирных рыб произошёл общий предок хрящевых и костных рыб, населяющих современные моря, а сами панцирные рыбы, появившиеся примерно в одно с ними время акантоды, а также почти все бесчелюстные рыбы впоследствии вымерли.

Entelognathus primordialis — вероятная промежуточная форма между панцирными и костными рыбами, жил 419 млн. лет назад

Самой первой из обнаруженных костных рыб, а значит, и предком всех сухопутных позвоночных, включая человека, считается живший 415 млн. лет назад Guiyu Oneiros. По сравнению с хищными панцирными рыбами, достигавшими в длину 10 м, эта рыба была небольшой — всего 33 см.

Guiyu Oneiros

6) Рыбы выходят на сушу.

Пока рыбы продолжали эволюционировать в море, растения и животные других классов уже выбрались на сушу (следы присутствия на ней лишайников и членистоногих обнаруживаются ещё 480 млн. лет назад). Но в конце концов освоением суши занялись и рыбы. От первых костных рыб произошли два класса — лучепёрые и лопастопёрые. К лучепёрым относится большинство современных рыб, и они прекрасно приспособлены для жизни в воде. Лопастепёрые, напротив, приспособились к жизни на мелководье и в небольших пресных водоёмах, в результате чего их плавники удлинились, а плавательный пузырь постепенно превратился в примитивные лёгкие. В результате эти рыбы научились дышать воздухом и ползать по суше.

Эвстеноптерон () — одна из ископаемых кистепёрых рыб, которая считается предком сухопутных позвоночных. Эти рыбы жили 385 млн. лет назад и достигали длины 1,8 м.

Eusthenopteron (реконструкция)

— ещё одна кистепёрая рыба, которая считается вероятной промежуточной формой эволюции рыб в земноводных. Она уже могла дышать лёгкими и выползать на сушу.

Panderichthys (реконструкция)

Тиктаалик, найденные останки которого относятся ко времени 375 млн. лет назад, был ещё ближе к земноводным. У него были рёбра и лёгкие, он мог вертеть головой отдельно от туловища.

Тиктаалик (реконструкция)

Одними из первых животных, которых причисляют уже не к рыбам, а к земноводным, стали ихтиостеги. Они жили около 365 млн. лет назад. Эти небольшие животные длиной около метра, хотя уже и имели лапы вместо плавников, всё ещё с трудом могли передвигаться по суше и вели полуводный образ жизни.

Ихтиостега (реконструкция)

На время выхода позвоночных на сушу пришлось очередное массовое вымирание — девонское. Оно началось примерно 374 млн. лет назад, и привело к вымиранию почти всех бесчелюстных рыб, панцирных рыб, многих кораллов и других групп живых организмов. Тем не менее первые земноводные выжили, хотя им и понадобился ещё не один миллион лет, чтобы более-менее адаптироваться к жизни на суше.

7) Первые рептилии. Синапсиды.

Начавшийся примерно 360 млн. лет назад и продолжавшийся 60 млн. лет каменноугольный период был очень благоприятен для земноводных. Значительную часть суши покрывали болота, климат был тёплым и влажным. В таких условиях многие земноводные продолжали жить в воде или около неё. Но примерно 340-330 млн. лет назад некоторые из земноводных решили освоить и более сухие места. У них развились более сильные конечности, появились более развитые лёгкие, кожа, наоборот стала сухой, чтобы не терять влагу. Но чтобы действительно длительное время жить далеко от воды, нужно было ещё одно важное изменение, ведь земноводные, как и рыбы, метали икру, и их потомство должно было развиваться в водной среде. И около 330 млн. лет назад появились первые амниоты, т. е. животные, способные откладывать яйца. Оболочка первых яиц была ещё мягкой, а не твёрдой, тем не менее, их уже можно было откладывать на суше, а значит, потомство уже могло появляться вне водоёма, минуя стадию головастиков.

Учёные до сих пор путаются в классификации земноводных каменноугольного периода, а также в том, считать ли некоторые ископаемые виды уже ранними рептилиями, либо всё ещё земноводными, приобретшими лишь некоторые черты рептилий. Так или иначе, эти то ли первые рептилии, то ли рептилоподобные земноводные выглядели примерно так:

Вестлотиана — небольшое животное длиной около 20 см., сочетавшее черты рептилий и земноводных. Жило примерно 338 млн. лет назад.

А затем ранние рептилии разделились, дав начало трём большим группам животных. Палеонтологи выделяют эти группы по строению черепа — по числу отверстий, через которые могут проходить мышцы. На рисунке сверху вниз черепа анапсида , синапсида и диапсида :

При этом анапсидов и диапсидов часто объединяют в группу завропсидов . Казалось бы, отличие совершенно незначительное, тем не менее, дальнейшая эволюция этих групп пошла совершенно разными путями.

От завропсидов произошли более продвинутые рептилии, включая динозавров, а затем птицы. Синапсиды же дали начало ветви звероподобных ящеров, а затем и млекопитающим.

300 млн. лет назад начался Пермский период. Климат стал более сухим и холодным и на суше стали доминировать ранние синапсиды — пеликозавры . Одним из пеликозавров был Диметродон, имевший в длину до 4х метров. На спине у него был большой «парус», который помогал регулировать температуру тела: быстро охладиться при перегреве или, наоборот, быстро согреться, подставив спину солнцу.

Считается, что огромный диметродон является предком всех млекопитающих, а значит, и человека.

8) Цинодонты. Первые млекопитающие.

В середине Пермского периода от пеликозавров происходят терапсиды, больше уже похожие на зверей, чем на ящеров. Выглядели терапсиды примерно так:

Типичный терапсид Пермского периода

В течение Пермского периода возникло много видов терапсид, больших и маленьких. Но 250 млн. лет назад происходит мощный катаклизм. Из-за резкого усиления вулканической активности температура повышается, климат становится очень сухим и жарким, большие площади суши заливает лава, а атмосферу наполняют вредные вулканические газы. Происходит Великое Пермское вымирание, самое масштабное в истории Земли массовое вымирание видов, вымирают до 95% морских и около 70% сухопутных видов. Из всех терапсид выживает лишь одна группа — цинодонты .

Цинодонты были животными преимущественно небольшого размера, от нескольких сантиметров до 1-2 метров. Среди них были как хищники, так и травоядные.

Циногнат — вид хищных цинодонтов, живших около 240 млн. лет назад. Был в длину около 1.2 метра, один из возможных предков млекопитающих.

Однако, после того, как климат наладился, цинодонтам было не суждено захватить планету. Диапсиды перехватили инициативу — от мелких рептилий произошли динозавры, которые вскоре заняли большинство экологических ниш. Цинодонты не могли с ними тягаться, они измельчали, им пришлось прятаться в норах и выжидать. Реванш удалось взять нескоро.

Однако цинодонты выживали, как могли, и продолжали эволюционировать, всё больше становясь похожими на млекопитающих:

Эволюция цинодонтов

Наконец, от цинодонтов произошли первые млекопитающие. Они были маленькими и вели, предположительно, ночной образ жизни. Опасное существование среди большого количества хищников способствовало сильному развитию всех органов чувств.

Одним из первых настоящих млекопитающих считается Мегазостродон.

Мегазостродон жил примерно 200 млн. лет назад. Его длина была всего около 10 см. Мегазостродон питался насекомыми, червями и другими мелкими животными. Вероятно, он или другой похожий зверёк и был предком всех современных млекопитающих.

Дальнейшую эволюцию — от первых млекопитающих до человека — мы рассмотрим в .