Теория «Десятичные дроби». Умножение двоичных чисел

В этой статье мы рассмотрим такое действие, как умножение десятичных дробей. Начнем с формулировки общих принципов, далее покажем, как умножить одну десятичную дробь на другую и рассмотрим метод умножения столбиком. Все определения будут проиллюстрированы примерами. Потом мы разберем, как правильно умножить десятичные дроби на обыкновенные, а также на смешанные и натуральные числа (в том числе 100 , 10 и др.)

В рамках этого материала мы коснемся только правил умножения положительных дробей. Случаи с отрицательными разобраны отдельно в статьях об умножении рациональных и действительных чисел.

Yandex.RTB R-A-339285-1

Сформулируем общие принципы, которых надо придерживаться при решении задач на умножение десятичных дробей.

Вспомним для начала, что десятичные дроби есть не что иное, как особая форма записи обыкновенных дробей, следовательно, процесс их умножения можно свести к аналогичному для дробей обыкновенных. Это правило работает и для конечных, и для бесконечных дробей: после их перевода в обыкновенные с ними легко выполнять умножение по уже изученным нами правилам.

Посмотрим, как решаются такие задачи.

Пример 1

Вычислите произведение 1 , 5 и 0 , 75 .

Решение: для начала заменим десятичные дроби на обыкновенные. Мы знаем, что 0 , 75 – это 75 / 100 , а 1 , 5 – это 15 10 . Мы можем сократить дробь и произвести выделение целой части. Полученный результат 125 1000 мы запишем как 1 , 125 .

Ответ: 1 , 125 .

Мы можем использовать метод подсчета столбиком, как и для натуральных чисел.

Пример 2

Умножьте одну периодическую дробь 0 , (3) на другую 2 , (36) .

Для начала приведем исходные дроби к обыкновенным. У нас получится:

0 , (3) = 0 , 3 + 0 , 03 + 0 , 003 + 0 , 003 + . . . = 0 , 3 1 - 0 , 1 = 0 , 3 9 = 3 9 = 1 3 2 , (36) = 2 + 0 , 36 + 0 , 0036 + . . . = 2 + 0 , 36 1 - 0 , 01 = 2 + 36 99 = 2 + 4 11 = 2 4 11 = 26 11

Следовательно, 0 , (3) · 2 , (36) = 1 3 · 26 11 = 26 33 .

Полученную в итоге обыкновенную дробь можно привести к десятичному виду, разделив числитель на знаменатель в столбик:

Ответ: 0 , (3) · 2 , (36) = 0 , (78) .

Если у нас в условии задачи стоят бесконечные непериодические дроби, то нужно выполнить их предварительное округление (см. статью об округлении чисел, если вы забыли, как это делается). После этого можно производить действие умножения с уже округленными десятичными дробями. Приведем пример.

Пример 3

Вычислите произведение 5 , 382 … и 0 , 2 .

Решение

У нас в задаче есть бесконечная дробь, которую нужно предварительно округлить до сотых. Получится, что 5 , 382 … ≈ 5 , 38 . Второй множитель округлять до сотых смысла не имеет. Теперь можно подсчитать нужное произведение и записать ответ: 5 , 38 · 0 , 2 = 538 100 · 2 10 = 1 076 1000 = 1 , 076 .

Ответ: 5 , 382 … · 0 , 2 ≈ 1 , 076 .

Метод подсчета столбиком можно применять не только для натуральных чисел. Если у нас есть десятичные дроби, мы можем умножить их точно таким же образом. Выведем правило:

Определение 1

Умножение десятичных дробей столбиком выполняется в 2 шага:

1. Выполняем умножение столбиком, не обращая внимание на запятые.

2. Ставим в итоговом числе десятичную запятую, отделяя ей столько цифр с правой стороны, сколько оба множителя содержат десятичных знаков вместе. Если в результате не хватает для этого цифр, дописываем слева нули.

Разберем примеры таких расчетов на практике.

Пример 4

Умножьте десятичные дроби 63 , 37 и 0 , 12 столбиком.

Решение

Первым делом выполним умножение чисел, игнорируя десятичные запятые.

Теперь нам надо поставить запятую на нужное место. Она будет отделять четыре цифры с правой стороны, поскольку сумма десятичных знаков в обоих множителях равна 4 . Дописывать нули не придется, т.к. знаков достаточно:

Ответ: 3 , 37 · 0 , 12 = 7 , 6044 .

Пример 5

Подсчитайте, сколько будет 3 , 2601 умножить на 0 , 0254 .

Решение

Считаем без учета запятых. Получаем следующее число:

Мы будем ставить запятую, отделяющую 8 цифр с правой стороны, ведь исходные дроби вместе имеют 8 знаков после запятой. Но в нашем результате всего семь цифр, и нам не обойтись без дополнительных нулей:

Ответ: 3 , 2601 · 0 , 0254 = 0 , 08280654 .

Как умножить десятичную дробь на 0,001, 0,01, 01, и т.д

Умножать десятичные дроби на такие числа приходится часто, поэтому важно уметь делать это быстро и точно. Запишем особое правило, которым мы будем пользоваться при таком умножении:

Определение 2

Если мы умножим десятичную дробь на 0 , 1 , 0 , 01 и т.д., в итоге получится число, похожее на исходную дробь, запятая которого перенесена влево на нужное количество знаков. При нехватке цифр для переноса нужно дописывать нули слева.

Так, для умножения 45 , 34 на 0 , 1 надо перенести в исходной десятичной дроби запятую на один знак. У нас получится в итоге 4 , 534 .

Пример 6

Умножьте 9 , 4 на 0 , 0001 .

Решение

Нам придется переносить запятую на четыре знака по количеству нулей во втором множителе, но цифр в первом для этого не хватит. Приписываем необходимые нули и получаем, что 9 , 4 · 0 , 0001 = 0 , 00094 .

Ответ: 0 , 00094 .

Для бесконечных десятичных дробей мы пользуемся тем же правилом. Так, к примеру, 0 , (18) · 0 , 01 = 0 , 00 (18) или 94 , 938 … · 0 , 1 = 9 , 4938 … . и др.

Процесс такого умножения ничем не отличается то действия умножения двух десятичных дробей. Удобно пользоваться методом умножения в столбик, если в условии задачи стоит конечная десятичная дробь. При этом надо учитывать все те правила, о которых мы рассказывали в предыдущем пункте.

Пример 7

Подсчитайте, сколько будет 15 · 2 , 27 .

Решение

Умножим столбиком исходные числа и отделим два знака запятой.

Ответ: 15 · 2 , 27 = 34 , 05 .

Если мы выполняем умножение периодической десятичной дроби на натуральное число, надо сначала поменять десятичную дробь на обыкновенную.

Пример 8

Вычислите произведение 0 , (42) и 22 .

Приведем периодическую дробь к виду обыкновенной.

0 , (42) = 0 , 42 + 0 , 0042 + 0 , 000042 + . . . = 0 , 42 1 - 0 , 01 = 0 , 42 0 , 99 = 42 99 = 14 33

0 , 42 · 22 = 14 33 · 22 = 14 · 22 3 = 28 3 = 9 1 3

Итоговый результат можем записать в виде периодической десятичной дроби как 9 , (3) .

Ответ: 0 , (42) · 22 = 9 , (3) .

Бесконечные дроби перед подсчетами надо предварительно округлить.

Пример 9

Вычислите, сколько будет 4 · 2 , 145 … .

Решение

Округлим до сотых исходную бесконечную десятичную дробь. После этого мы придем к умножению натурального числа и конечной десятичной дроби:

4 · 2 , 145 … ≈ 4 · 2 , 15 = 8 , 60 .

Ответ: 4 · 2 , 145 … ≈ 8 , 60 .

Как умножить десятичную дробь на 1000, 100, 10 и др

Умножение десятичной дроби на 10 , 100 и др. часто встречается в задачах, поэтому мы разберем этот случай отдельно. Основное правило умножения звучит так:

Определение 3

Чтобы умножить десятичную дробь на 1000 , 100 , 10 и др., нужно перенести ее запятую на 3 , 2 , 1 цифры в зависимости от множителя и отбросить слева лишние нули. Если цифр для переноса запятой недостаточно, дописываем справа столько нулей, сколько нам нужно.

Покажем на примере, как именно это делать.

Пример 10

Выполните умножение 100 и 0 , 0783 .

Решение

Для этого нам надо перенести в десятичной дроби запятую на 2 цифры в правую сторону. Мы получим в итоге 007 , 83 ​​​​​Нули, стоящие слева, можно отбросить и записать результат как 7 , 38 .

Ответ: 0 , 0783 · 100 = 7 , 83 .

Пример 11

Умножьте 0 , 02 на 10 тысяч.

Решение: мы будем переносить запятую на четыре цифры вправо. В исходной десятичной дроби нам не хватит для этого знаков, поэтому придется дописывать нули. В этом случае будет достаточно трех 0 . В итоге получилось 0 , 02000 ,перенесем запятую и получим 00200 , 0 . Игнорируя нули слева, можем записать ответ как 200 .

Ответ: 0 , 02 · 10 000 = 200 .

Приведенное нами правило будет работать так же и в случае с бесконечными десятичными дробями, но здесь следует быть очень внимательным к периоду итоговой дроби, так как в нем легко допустить ошибку.

Пример 12

Вычислите произведение 5 , 32 (672) на 1 000 .

Решение: первым делом мы запишем периодическую дробь как 5 , 32672672672 … , так вероятность ошибиться будет меньше. После этого можем переносить запятую на нужное количество знаков (на три). В итоге получится 5326 , 726726 … Заключим период в скобки и запишем ответ как 5 326 , (726) .

Ответ: 5 , 32 (672) · 1 000 = 5 326 , (726) .

Если в условиях задачи стоят бесконечные непериодические дроби, которые надо умножать на десять, сто, тысячу и др., не забываем округлить их перед умножением.

Чтобы выполнить умножение такого типа, нужно представить десятичную дробь в виде обыкновенной и далее действовать по уже знакомым правилам.

Пример 13

Умножьте 0 , 4 на 3 5 6

Решение

​Cначала переведем десятичную дробь в обыкновенную. Имеем: 0 , 4 = 4 10 = 2 5 .

Мы получили ответ в виде смешанного числа. Можно записать его как периодическую дробь 1 , 5 (3) .

Ответ: 1 , 5 (3) .

Если в расчете участвует бесконечная непериодическая дробь, нужно округлить ее до некоторой цифры и уже потом умножать.

Пример 14

Вычислите произведение 3 , 5678 . . . · 2 3

Решение

Второй множитель мы можем представить как 2 3 = 0 , 6666 …. Далее округлим до тысячного разряда оба множителя. После этого нам будет нужно вычислить произведение двух конечных десятичных дробей 3 , 568 и 0 , 667 . Посчитаем столбиком и получим ответ:

Итоговый результат нужно округлить до тысячных долей, так как именно до этого разряда мы округляли исходные числа. У нас получается, что 2 , 379856 ≈ 2 , 380 .

Ответ: 3 , 5678 . . . · 2 3 ≈ 2 , 380

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

| 8 классы | Планирование уроков на учебный год | Двоичная система счисления

Урок 27
Двоичная система счисления
Представление чисел в памяти компьютера

История чисел и систем счисления

Изучаемые вопросы:

- Десятичная и двоичная системы счисления.
- Перевод двоичных чисел в десятичную систему счисления.
- Перевод десятичных чисел в двоичную систему.
- Двоичная арифметика.
- Непозиционные системы древности.
- Позиционные системы.

История чисел и систем счисления. Позиционные системы

Позиционные системы

Впервые идея позиционной системы счисления возникла в Древнем Вавилоне.

В позиционных системах счисления количественное значение, обозначаемое цифрой в записи числа, зависит от позиции цифры в числе.

Основание позиционной системы счисления равно количеству используемых в системе цифр.

Система счисления, применяемая в современной математике, является позиционной десятичной системой . Ее основание равно десяти, так как запись любых чисел производится с помощью десяти цифр:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Хотя десятичную систему принято называть арабской, но зародилась она в Индии в V веке. В Европе об этой системе узнали в XII веке из арабских научных трактатов, которые были переведены на латынь. Этим и объясняется название «арабские цифры». Широкое распространение в науке и в обиходе десятичная позиционная система получила только в XVI веке. Эта система позволяет легко выполнять любые арифметические вычисления, записывать сколь угодно большие числа. Распространение арабской системы дало мощный толчок развитию математики.

С позиционной десятичной системой счисления вы знакомы с раннего детства, только, возможно, не знали, что она так называется.

Что означает свойство позиционности системы счисления, легко понять на примере любого многозначного десятичного числа. Например, в числе 333 первая тройка означает три сотни, вторая - три десятка, третья - три единицы. Одна и та же цифра в зависимости от позиции в записи числа обозначает разные значения.

333 = 3 100 + 3 10 + 3.

Еще пример:

32 478 = 3 10 ООО + 2 1000 + 4 100 + 7 10 + 8 =
= 3 10 4 + 2 10 3 + 4 10 2 + 7 10 1 + 8 10 0 .

Отсюда видно, что всякое десятичное число можно представить, как сумму произведений составляющих его цифр на соответствующие степени десятки. То же самое относится и к десятичным дробям.

26,387 = 2 10 1 + 6 10 0 + 3 10 -1 + 8 10 -2 + 7 10 -3 .

Очевидно, что число «десять» - не единственно возможное основание позиционной системы. Известный русский математик Н. Н. Лузин так выразился по этому поводу: «Преимущества десятичной системы не математические, а зоологические. Если бы у нас на руках было не десять пальцев, а восемь, то человечество пользовалось бы восьмеричной системой».

За основание позиционной системы счисления можно принять любое натуральное число, большее 1. Упомянутая выше вавилонская система имела основание 60. Следы этой системы сохранились до наших дней в порядке счета единиц времени (1 час = 60 минут, 1 минута = 60 секунд).

Для записи чисел в позиционной системе с основанием n нужно иметь алфавит из n цифр. Обычно для этого при n ≤ 10 используют n первых арабских цифр, а при n ≥ 10 к десяти арабским цифрам добавляют буквы.

Вот примеры алфавитов нескольких систем.

Основание системы, к которой относится число, обычно обозначается подстрочным индексом к этому числу:

101101 2 , 3671 8 , 3B8F 16 .

А как строится ряд натуральных чисел в разных позиционных системах счисления? Происходит это по тому же принципу, что и в десятичной системе. Сначала идут однозначные числа, потом двузначные, затем трехзначные и т. д. Самое большое однозначное число в десятичной системе – 9. Затем следуют двузначные – 10, 11, 12, ... Самое большое двузначное число - 99, далее идут 100, 101, 102 и т. д. до 999, затем 1000 и т. д.

Для примера рассмотрим пятеричную систему. В ней ряд натуральных чисел выглядит так:
1, 2, 3, 4, 10, 11, 12, 13, 14, 20, 21, 22, 23, 24, 30, 31, 32, 33, 34,
40, 41, 42, 43, 44, 100, 101, ..., 444, 1000, ...

Видно, что здесь число цифр «нарастает» быстрее, чем в десятичной системе. Быстрее всего число цифр растет в двоичной системе счисления. В следующей таблице сопоставляются начала натуральных рядов десятичных и двоичных чисел:

10 1 2 3 4 5 6 7 8 9 10 11
2 1 10 11 100 101 110 111 1000 1001 1010 1011

Математический-Калькулятор-Онлайн v.1.0

Калькулятор выполняет следующие операции: сложение, вычитание, умножение, деление, работа с десятичными, извлечение корня, возведение в степень, вычисление процентов и др. операции.


Решение:

Как работать с математическим калькулятором

Клавиша Обозначение Пояснение
5 цифры 0-9 Арабские цифры. Ввод натуральных целых чисел, нуля. Для получения отрицательного целого числа необходимо нажать клавишу +/-
. точка (запятая) Разделитель для обозначения десятичной дроби. При отсутствии цифры перед точкой (запятой) калькулятор автоматически подставит ноль перед точкой. Например: .5 - будет записано 0.5
+ знак плюс Сложение чисел (целые, десятичные дроби)
- знак минус Вычитание чисел (целые, десятичные дроби)
÷ знак деления Деление чисел (целые, десятичные дроби)
х знак умножения Умножение чисел (целые, десятичные дроби)
корень Извлечение корня из числа. При повторном нажатие на кнопку "корня" производится вычисление корня из результата. Например: корень из 16 = 4; корень из 4 = 2
x 2 возведение в квадрат Возведение числа в квадрат. При повторном нажатие на кнопку "возведение в квадрат" производится возведение в квадрат результата Например: квадрат 2 = 4; квадрат 4 = 16
1 / x дробь Вывод в десятичные дроби. В числителе 1, в знаменателе вводимое число
% процент Получение процента от числа. Для работы необходимо ввести: число из которого будет высчитываться процент, знак (плюс, минус, делить, умножить), сколько процентов в численном виде, кнопка "%"
( открытая скобка Открытая скобка для задания приоритета вычисления. Обязательно наличие закрытой скобки. Пример: (2+3)*2=10
) закрытая скобка Закрытая скобка для задания приоритета вычисления. Обязательно наличие открытой скобки
± плюс минус Меняет знак на противоположный
= равно Выводит результат решения. Также над калькулятором в поле "Решение" выводится промежуточные вычисления и результат.
удаление символа Удаляет последний символ
С сброс Кнопка сброса. Полностью сбрасывает калькулятор в положение "0"

Алгоритм работы онлайн-калькулятора на примерах

Сложение.

Сложение целых натуральных чисел { 5 + 7 = 12 }

Сложение целых натуральных и отрицательных чисел { 5 + (-2) = 3 }

Сложение десятичных дробных чисел { 0,3 + 5,2 = 5,5 }

Вычитание.

Вычитание целых натуральных чисел { 7 - 5 = 2 }

Вычитание целых натуральных и отрицательных чисел { 5 - (-2) = 7 }

Вычитание десятичных дробных чисел { 6,5 - 1,2 = 4,3 }

Умножение.

Произведение целых натуральных чисел { 3 * 7 = 21 }

Произведение целых натуральных и отрицательных чисел { 5 * (-3) = -15 }

Произведение десятичных дробных чисел { 0,5 * 0,6 = 0,3 }

Деление.

Деление целых натуральных чисел { 27 / 3 = 9 }

Деление целых натуральных и отрицательных чисел { 15 / (-3) = -5 }

Деление десятичных дробных чисел { 6,2 / 2 = 3,1 }

Извлечение корня из числа.

Извлечение корня из целого числа { корень(9) = 3 }

Извлечение корня из десятичных дробей { корень(2,5) = 1,58 }

Извлечение корня из суммы чисел { корень(56 + 25) = 9 }

Извлечение корня из разницы чисел { корень (32 – 7) = 5 }

Возведение числа в квадрат.

Возведение в квадрат целого числа { (3) 2 = 9 }

Возведение в квадрат десятичных дробей { (2,2) 2 = 4,84 }

Перевод в десятичные дроби.

Вычисление процентов от числа

Увеличить на 15% число 230 { 230 + 230 * 0,15 = 264,5 }

Уменьшить на 35% число 510 { 510 – 510 * 0,35 =331,5 }

18% от числа 140 это { 140 * 0,18 = 25,2 }

В тему «Умножение десятичных дробей» входит умножение десятичной дроби на натуральное число, умножение десятичной дроби на десятичную дробь и некоторые важные частные случаи. Запишем все правила этой темы на одной странице.

Чтобы умножить десятичную дробь на натуральное число, нужно

  • в полученном произведении отделить после запятой столько цифр, сколько их после запятой в десятичной дроби.

Примеры умножения десятичной дроби на натуральное число .

Умножаем, не обращая внимания на запятую, то есть 342∙7=2394. После запятой в десятичной дроби 3,42 стоит две цифры. Поэтому в полученном произведении после запятой отделяем две цифры: 23,94.

Таким образом, 3,42∙7=23,94.

Перемножаем числа, не обращая внимания на запятую: 7135∙2=14270. В полученном результате следует отделить запятой две последние цифры: 142,70. Так как нули после запятой в конце записи десятичной дроби не пишут, то

71,35∙2=142,70=142,7.

3) 0, 000836∙17=?

Умножаем, не принимая во внимание запятую: 836∙17=14212. Так как в десятичной дроби после запятой стоит 6 цифр, в полученном произведении после запятой также должно стоять 6 цифр. Поскольку в результате цифр всего 5, недостающую одну цифру дополняем нулём. Приписываем этот нуль перед числом: ,01412. При получении такой записи перед запятой в целую часть пишут нуль: 0 ,01412.

Чтобы перемножить две десятичные дроби, нужно:

  • перемножить числа, не обращая внимания на запятую;
  • в полученном произведении отделить после запятой столько цифр, сколько их после запятых в обоих множителях вместе.

Примеры умножения десятичных дробей .

Умножаем числа, не обращая внимания на запятую: 13∙4=52. В полученном произведении следует после запятой записать столько цифр, сколько их после запятой в обоих множителях вместе. В первом множителе 1,3 после запятой одна цифра, во втором множителе 0,4 после запятой одна цифра, итого 1+1=2 цифры в результате нужно отделить запятой: 0,52 (дописав перед запятой нуль):

2) 3,00504∙0,025=?

Перемножаем, не беря во внимание запятую: 300504∙25=7512600. В полученном произведении надо после запятой получить столько цифр, сколько их в обоих множителях после запятой вместе, то есть 5+3=8 цифр. Недостающее количество цифр дополняем нулём. Нули после запятой в конце записи десятичной дроби отбрасываем.

3,00504∙0,025=0,07512600=0,075126.

3) 1,37∙0,0061=?

Произведение без учёта запятых 137∙61=8357. После запятой должно стоять 2+4=6 цифр. Недостающее до 6 количество цифр дополняем двумя нулями (пишем их на перед числом 8357. На первое место, перед запятой в целой части пишем нуль:

1,37∙0,0061=0,008357.

3.Частные случаи умножения десятичных дробей .

Чтобы умножить десятичную дробь на 10, 100, 1000, 10000 и т. д., нужно в записи дроби запятую перенести на 1, 2, 3, 4 и т. д. цифры вправо.

Примеры .

Запятую переносим на 1 цифру вправо:

1) 7,9∙10=79 (здесь 79,=79);

2) 8,53∙10=85,3;

3) 0, 6541=6,541.

Запятую переносим на две цифры вправо:

1) 7,04∙100=704;

2) 3,8754∙100=387,54;

3) 4,5∙100=450 (после запятой стоит всего одна цифра. Недостающую 1 цифру дополнили нулём).

Запятую переносим на три цифры вправо:

1) 45,8096∙1000=45809,6;

2) 0,67∙1000=670 (после запятой 2 цифры. Недостающую 1 цифру дополняем нулём);

Назначение сервиса . Онлайн-калькулятор предназначен для умножения двоичных чисел.

Число №1

Число №2


Пример №1 . Умножить двоичные числа 111 и 101 .
Решение .
1 1 1
1 0 1
= = = = =
1 1 1
0 0 0
1 1 1
= = = = =
0 0 0 1 1

При суммировании в разрядах 2, 3, 4 возникло переполнение. Причем переполнение возникло и в старшем разряде, поэтому записываем 1 впереди полученного числа, и получаем: 100011
В десятичной системе счисления данное число имеет следующий вид:
Для перевода необходимо умножить разряд числа на соответствующую ему степень разряда.
100011 = 2 5 *1 + 2 4 *0 + 2 3 *0 + 2 2 *0 + 2 1 *1 + 2 0 *1 = 32 + 0 + 0 + 0 + 2 + 1 = 35
Проверим результат умножения в десятичной системе счисления. Для этого переводим числа 111 и 101 в десятичное представление.
111 2 = 2 2 *1 + 2 1 *1 + 2 0 *1 = 4 + 2 + 1 = 7
101 2 = 2 2 *1 + 2 1 *0 + 2 0 *1 = 4 + 0 + 1 = 5
7 x 5 = 35

Пример №2 . Найти двоичное произведение 11011*1100 . Перевести ответ в десятичную систему.
Решение . Умножение начинаем с младших разрядов: если текущий разряд второго числа равен 0, то везде записываем нули, если 1 - то переписываем первое число.

1 1 0 1 1
1 1 0 0
= = = = = = = =
0 0 0 0 0
0 0 0 0 0
1 1 0 1 1
1 1 0 1 1
= = = = = = = =
0 1 0 0 0 1 0 0

При суммировании в разрядах 3, 4, 5, 6, 7 возникло переполнение. Причем переполнение возникло и в старшем разряде, поэтому записываем 1 впереди полученного числа, и получаем: 101000100

101000100 = 2 8 *1 + 2 7 *0 + 2 6 *1 + 2 5 *0 + 2 4 *0 + 2 3 *0 + 2 2 *1 + 2 1 *0 + 2 0 *0 = 256 + 0 + 64 + 0 + 0 + 0 + 4 + 0 + 0 = 324
Проверим результат умножения в десятичной системе счисления. Для этого переводим числа 11011 и 1100 в десятичное представление.
11011 = 2 4 *1 + 2 3 *1 + 2 2 *0 + 2 1 *1 + 2 0 *1 = 16 + 8 + 0 + 2 + 1 = 27
1100 = 2 3 *1 + 2 2 *1 + 2 1 *0 + 2 0 *0 = 8 + 4 + 0 + 0 = 12
27 x 12 = 324

Пример №3 . 1101.11*101
Будем умножать числа без учета плавающей точки: 110111 x 101
Умножение начинаем с младших разрядов: если текущий разряд второго числа равен 0, то везде записываем нули, если 1 - то переписываем первое число.

1 1 0 1 1 1
1 0 1
= = = = = = = =
1 1 0 1 1 1
0 0 0 0 0 0
1 1 0 1 1 1
= = = = = = = =
0 0 0 1 0 0 1 1

При суммировании в разрядах 2, 3, 4, 5, 6, 7 возникло переполнение. Причем переполнение возникло и в старшем разряде, поэтому записываем 1 впереди полученного числа, и получаем: 100010011
Поскольку умножали без учета плавающей запятой, то окончательный результат запишем как: 1000100.11
В десятичной системе счисления данное число имеет следующий вид:
1000100 = 2 6 *1 + 2 5 *0 + 2 4 *0 + 2 3 *0 + 2 2 *1 + 2 1 *0 + 2 0 *0 = 64 + 0 + 0 + 0 + 4 + 0 + 0 = 68
Для перевода дробной части необходимо разделить разряд числа на соответствующую ему степень разряда.
11 = 2 -1 *1 + 2 -2 *1 = 0.75
В итоге получаем число 68.75
Проверим результат умножения в десятичной системе счисления. Для этого переводим числа 1101.11 и 101 в десятичное представление.
1101 = 2 3 *1 + 2 2 *1 + 2 1 *0 + 2 0 *1 = 8 + 4 + 0 + 1 = 13
11 = 2 -1 *1 + 2 -2 *1 = 0.75
В итоге получаем число 13.75
Переводим число: 101 2 = 2 2 *1 + 2 1 *0 + 2 0 *1 = 4 + 0 + 1 = 5
13.75 x 5 = 68.75