Теплоемкость газа. Теплоемкостью тела СТ называют отношение количества теплоты Q, сообщенного телу, к изменению температуры ∆T

Теплоемкость тела характеризуется количеством теплоты, необходимым для нагревание этого тела на один градус (Дж/град). Если для увеличения температуры тела на Т градусов необходимо сообщить ему ΔQ джоулей, то средняя теплоемкость тела в интервале ΔТ определяется как:

Теплоемкость тела пропорциональна массе и зависит от вещества тела. Удельная теплоемкость С уд данного вещества (дерева, железа, воздуха и т. д.) характеризуется количеством тепла на один градус, и измеряется в Дж/кг град. Удельная теплоемкость.

Для газов удобно пользоваться молярной теплоемкостью (С мол или просто С), характеризующейся количеством теплоты, нужным для нагревания одного киломоля данного вещества на один градус.

Очевидно, что

С уд /Дж/кг * град/ * μ/кг/кмоль/ = С /Дж/кмоль * град/.

Поскольку в 1 киломоле любого газа содержится одинаковое количество молекул, а средняя кинетическая энергия молекул не зависит от их массы, то можно ожидать, что молярные теплоемкости всех достаточно разреженных газов должны быть одинаковыми.

Теплоемкость тела существенно зависит от того, как меняются состояния тела в процессе нагревания. Рассмотрим для простоты идеальный одноатомный газ. Если мы будем нагревать газ, заключенный в замкнутом объеме, V = const (рис. 1, а), то все подводимое тепло ΔQ будет идти только на увеличение внутренней энергии газа. Тогда первое начало термодинамики при ΔA = 0 будет иметь вид: ΔQ = ΔU.

При этом температура газа будет возрастать в соответствии с увеличением его внутренней энергии, откуда следует, что температура идеального газа пропорциональна его внутренней энергии. Давление газа Р. также будет возрастать пропорционально температуре. Обозначим теплоемкость газа при постоянном объеме через С.

Если хотим, чтобы в процессе нагревания сохранилось давление, газу следует предоставить возможность расширяться. Для этого поместим газ в цилиндр с поршнем, на который действует постоянное давление Р. = const (рис. 1, б). Так как внутренняя энергия U идеального газа не зависит от его объема, то количество теплоты, необходимое для ее увеличения, останется тем же. Но при нагревании газа до той же температуры часть подводимого тепла расходуется теперь на работу против внешних сил при расширении газа. Следовательно, для нагревания газа до той же температуры, как и в предыдущем случае (V = const), придется затратить большее количество теплоты. Таким образом, теплоемкость ΔQ/ΔТ газа при постоянном давлении, которую мы обозначим через С р. , будет больше, чем С V .



Рассмотренный пример очень важен. Он показывает, что количество теплоты ΔQ, необходимое для нагревания газа на ΔТ градусов, существенно зависит от дополнительных условий – характера измерений других микроскопических параметров, определяющих состояние газа, т. е. Р. и V. Кроме рассмотренных процессов, характеризуемых простейшими дополнительными условиями V = const и Р. = const, можно рассмотреть и множество других, отвечающих различным изменениям V и Р. при нагревании. Каждому процессу будет отвечать своя теплоемкость С.

Величины С р. и С v для идеального газа оказывается связанными простым соотношением:

С р. – С v = R (2)

Это соотношение носит название закона Роберта Майера, полученного им в 1842 году.

Для идеального газа молярная теплоемкость при постоянном давлении превышают молярную теплоемкость при постоянном объеме на величину R т. е. на 8,31 кДж/кмоль град.

Универсальная газовая постоянная R численно равна работе расширения киломоля идеального газа при нагревании его на один градус при постоянном давлении.

Опыт показывает, что во всех случаях превращение механической энергии в тепловую и обратно совершается всегда в строго эквивалентных количествах. Поскольку тепловое движение есть в конечном счете, тоже механическое движение отдельных молекул (только не направленное, а хаотическое), то при всех этих превращениях должен соблюдаться закон сохранения энергии с учетом энергии не только внешних, но и внутренних движений. Такая общая формулировка этого закона носит название первого начала термодинамики и записывается в виде:

ΔQ = ΔU + ΔA, т. е.

Количество теплоты, сообщенное телу (ΔQ), идет на увеличение внутренней энергии (ΔU) и на совершение теплом работы (ΔА).

Однако, если сосуд с расширяющим газом теплоизолировать от окружающей среды, то теплообмен будет отсутствовать, т. е. ΔQ = 0. Процесс, происходящий при таком условии, называется адиабатическим. Уравнение первого начала термодинамики для адиабатического процесса тогда примет вид:

ΔQ = 0 0 = ΔU + ΔA или ΔА = - ΔU. (3)

Следовательно, при адиабатическом процессе работа совершается только за счет внутренней энергии газа. При адиабатическом расширении газ совершает работу, а его внутренняя энергия и, следовательно, температура падают. При адиабатическом сжатии работа газа отрицательная (внешняя среда производит работу над газом), внутренняя энергия и температура газа возрастают.

Теплоемкость при адиабатическом процессе будет равна 0, т. е.

Уравнение, описывающее адиабатический процесс имеет вид:

PV γ = const ; где γ = С Р /С V . (4)

Так как С Р >С V , то γ>1 и кривая, изображаемая уравнением (4), идет круче изотермы (рис. 2). Величина работы адиабатического процесса может быть особенно просто вычислена с помощью уравнения (3):

Для одноатомного газа С =12,5кДж/к моль град, С р. =С v + =20,8 кДж/к моль град и показатель степени адиабаты γ=С Р /С v =1,67.

Для двухатомных газов при обычных температурах

g=29,1/20,8=1,4.

Для многоатомных газов γ еще ближе к единице.

В быстроходных двигателях внутреннего сгорания и при истечении газов через сопла реактивных двигателей процесс расширения газа протекает настолько быстро, что его можно считать практически адиабатическим и

рассчитывать по уравнению /4/.

Опыт также показывает, что для звуковых колебаний с минимальными частотами за время одного колебания /~0,1с/температура между сжатыми/ и тем самым разогретыми/ и разряженными /и тем самым охлажденными/ областями волны не успевает выравниваться. Практически процесс распространения звука можно считать адиабатическим, так что скорость распространения звука в идеальном газе определяется выражением:

Отсюда легко найти :

Таким образом, определение γ сводится к измерению скорости звука и абсолютной температуры воздуха. В данной работе скорость звука определяется методом стоячих волн - методом Кундта.

II. ОПИСАНИЕ ЭКСПЕРИМЕНТАЛЬНОЙ УСТАНОВКИ.

Схема экспериментальной установки изображена на рисунке 3. Телефон т, получая электрический сигнал от генератора1, излучает звуковые волны в трубу 2. Достигнув микрофона М, звуковая волна преобразуется в напряжение, которое поступает на вертикально отклоняющие пластины У электронного осциллографа 3.Напряжение на горизонтально отклоняющие пластины X подается непосредственно с выходных клемм звукового генератора. Телефон жестко закреплен на левом конце трубы, а микрофон может свободно перемещаться внутри нее.

Фазовый сдвиг сигнала, поступающего на пластины У, относительно сигнала, подведенного к пластинам X зависит от времени, которое тратит звук на прохождение расстояния между микрофоном и телефоном, может быть использована для определения длины волны λ. При включении установки на экране осциллографа должен быть виден эллис. Изменяя расстояние между микрофоном и телефоном, можно добиться превращения эллипса в прямую линию. Если теперь сместить микрофон на λ/2, то на экране вновь возникнет прямая линия, проходящая на этот раз через другие квадранты. При дальнейшем смещении прямая вновь переменит свое направление и т.д. Таким образом, при помощи фигур, получивших название фигур Лиссажу, можно непосредственно измерить длину звуковой волны в воздухе и по формуле определить скорость звука, где - частота генератора в Гц.

III.ПОРЯДОК ПРОВЕДЕНИЯ ИЗМЕРЕНИЙ.

1. Включите осциллограф и дайте ему прогреться в течение 10 минут.

2. Включите и настройте звуковой генератор на частоту /частота задается преподавателем/.Установите напряжение на выходе генератора 1,5 В.

3. Установите указатель штока микрофона 5 в крайнее правое положение шкалы 4 /рис/, при этом на экране осциллографа появится фигура Лиссажу /эллипс или прямая линия/.

4. Перемещая шток с микрофоном в лево, зафиксируйте положение штока микрофона / /, при которых эллипс превращается в четкую прямую линию, что соответствует узлам стоячей волны /отсчет производить в см по шкале 4/.

5. Вычислите разность между узловыми точками, которая является половиной длины волны .

11.Сделайте выводы.

IV. КОНТРОЛЬНЫЕ ВОПРОСЫ.

Смотри работу №10.

Теплоёмкость тела (обычно обозначается латинской буквой C ) - физическая величина , определяемая отношением бесконечно малого количества теплоты δQ , полученного телом, к соответствующему приращению его температуры δT :

C = {\delta Q \over \delta T}.

Единица измерения теплоёмкости в Международной системе единиц (СИ) - Дж / .

Удельная теплоёмкость

Удельной теплоёмкостью называется теплоёмкость, отнесённая к единичному количеству вещества. Количество вещества может быть измерено в килограммах, кубических метрах и молях. В зависимости от того, к какой количественной единице относится теплоёмкость, различают массовую, объёмную и молярную теплоёмкость.

Массовая удельная теплоёмкость (С ), также называемая просто удельной теплоёмкостью - это количество теплоты, которое необходимо подвести к единице массы вещества, чтобы нагреть его на единицу температуры. В СИ измеряется в джоулях на килограмм на кельвин (Дж·кг −1 ·К −1).

А при постоянном давлении

c_p = c_v + R = \frac{i+2}{2} R.

Переход вещества из одного агрегатного состояния в другое сопровождается скачкообразным изменением теплоёмкости в конкретной для каждого вещества температурной точке превращения - температура плавления (переход твёрдого тела в жидкость), температура кипения (переход жидкости в газ) и, соответственно, температуры обратных превращений: замерзания и конденсации.

Удельные теплоёмкости многих веществ приведены в справочниках обычно для процесса при постоянном давлении. К примеру, удельная теплоёмкость жидкой воды при нормальных условиях - 4200 Дж/(кг·К); льда - 2100 Дж/(кг·К).

Теория теплоёмкости

Существует несколько теорий теплоёмкости твердого тела:

  • Закон Дюлонга - Пти и закон Джоуля - Коппа . Оба закона выведены из классических представлений и с определенной точностью справедливы лишь для нормальных температур (примерно от 15 °C до 100 °C).
  • Квантовая теория теплоёмкостей Эйнштейна . Первое применение квантовых законов к описанию теплоёмкости.
  • Квантовая теория теплоёмкостей Дебая . Содержит наиболее полное описание и хорошо согласуется с экспериментом.

Теплоёмкость системы невзаимодействующих частиц (например, идеального газа) определяется числом степеней свободы частиц.

Напишите отзыв о статье "Теплоёмкость"

Примечания

Литература

  • // Энциклопедический словарь юного физика / В. А. Чуянов (сост.). - М .: Педагогика, 1984. - С. 268–269. - 352 с.

См. также

Отрывок, характеризующий Теплоёмкость

Он не мог иметь цели, потому что он теперь имел веру, – не веру в какие нибудь правила, или слова, или мысли, но веру в живого, всегда ощущаемого бога. Прежде он искал его в целях, которые он ставил себе. Это искание цели было только искание бога; и вдруг он узнал в своем плену не словами, не рассуждениями, но непосредственным чувством то, что ему давно уж говорила нянюшка: что бог вот он, тут, везде. Он в плену узнал, что бог в Каратаеве более велик, бесконечен и непостижим, чем в признаваемом масонами Архитектоне вселенной. Он испытывал чувство человека, нашедшего искомое у себя под ногами, тогда как он напрягал зрение, глядя далеко от себя. Он всю жизнь свою смотрел туда куда то, поверх голов окружающих людей, а надо было не напрягать глаз, а только смотреть перед собой.
Он не умел видеть прежде великого, непостижимого и бесконечного ни в чем. Он только чувствовал, что оно должно быть где то, и искал его. Во всем близком, понятном он видел одно ограниченное, мелкое, житейское, бессмысленное. Он вооружался умственной зрительной трубой и смотрел в даль, туда, где это мелкое, житейское, скрываясь в тумане дали, казалось ему великим и бесконечным оттого только, что оно было неясно видимо. Таким ему представлялась европейская жизнь, политика, масонство, философия, филантропия. Но и тогда, в те минуты, которые он считал своей слабостью, ум его проникал и в эту даль, и там он видел то же мелкое, житейское, бессмысленное. Теперь же он выучился видеть великое, вечное и бесконечное во всем, и потому естественно, чтобы видеть его, чтобы наслаждаться его созерцанием, он бросил трубу, в которую смотрел до сих пор через головы людей, и радостно созерцал вокруг себя вечно изменяющуюся, вечно великую, непостижимую и бесконечную жизнь. И чем ближе он смотрел, тем больше он был спокоен и счастлив. Прежде разрушавший все его умственные постройки страшный вопрос: зачем? теперь для него не существовал. Теперь на этот вопрос – зачем? в душе его всегда готов был простой ответ: затем, что есть бог, тот бог, без воли которого не спадет волос с головы человека.

Пьер почти не изменился в своих внешних приемах. На вид он был точно таким же, каким он был прежде. Так же, как и прежде, он был рассеян и казался занятым не тем, что было перед глазами, а чем то своим, особенным. Разница между прежним и теперешним его состоянием состояла в том, что прежде, когда он забывал то, что было перед ним, то, что ему говорили, он, страдальчески сморщивши лоб, как будто пытался и не мог разглядеть чего то, далеко отстоящего от него. Теперь он так же забывал то, что ему говорили, и то, что было перед ним; но теперь с чуть заметной, как будто насмешливой, улыбкой он всматривался в то самое, что было перед ним, вслушивался в то, что ему говорили, хотя очевидно видел и слышал что то совсем другое. Прежде он казался хотя и добрым человеком, но несчастным; и потому невольно люди отдалялись от него. Теперь улыбка радости жизни постоянно играла около его рта, и в глазах его светилось участие к людям – вопрос: довольны ли они так же, как и он? И людям приятно было в его присутствии.
Прежде он много говорил, горячился, когда говорил, и мало слушал; теперь он редко увлекался разговором и умел слушать так, что люди охотно высказывали ему свои самые задушевные тайны.
Княжна, никогда не любившая Пьера и питавшая к нему особенно враждебное чувство с тех пор, как после смерти старого графа она чувствовала себя обязанной Пьеру, к досаде и удивлению своему, после короткого пребывания в Орле, куда она приехала с намерением доказать Пьеру, что, несмотря на его неблагодарность, она считает своим долгом ходить за ним, княжна скоро почувствовала, что она его любит. Пьер ничем не заискивал расположения княжны. Он только с любопытством рассматривал ее. Прежде княжна чувствовала, что в его взгляде на нее были равнодушие и насмешка, и она, как и перед другими людьми, сжималась перед ним и выставляла только свою боевую сторону жизни; теперь, напротив, она чувствовала, что он как будто докапывался до самых задушевных сторон ее жизни; и она сначала с недоверием, а потом с благодарностью выказывала ему затаенные добрые стороны своего характера.
Самый хитрый человек не мог бы искуснее вкрасться в доверие княжны, вызывая ее воспоминания лучшего времени молодости и выказывая к ним сочувствие. А между тем вся хитрость Пьера состояла только в том, что он искал своего удовольствия, вызывая в озлобленной, cyхой и по своему гордой княжне человеческие чувства.
– Да, он очень, очень добрый человек, когда находится под влиянием не дурных людей, а таких людей, как я, – говорила себе княжна.
Перемена, происшедшая в Пьере, была замечена по своему и его слугами – Терентием и Васькой. Они находили, что он много попростел. Терентий часто, раздев барина, с сапогами и платьем в руке, пожелав покойной ночи, медлил уходить, ожидая, не вступит ли барин в разговор. И большею частью Пьер останавливал Терентия, замечая, что ему хочется поговорить.

Известно, что подвод теплоты к рабочему телу в каком-либо процессе сопровождается изменением температуры. Отношение теплоты, подведённой (отведённой) в данном процессе, к изменению температуры называется теплоёмкостью тела .

где dQ - элементарное количество теплоты

dT - элементарное изменение температуры.

Теплоёмкость численно равна количеству теплоты, которое необходимо подвести к системе, чтобы при заданных условиях повысить температуру на 1 градус. Измеряется в [Дж/К].

Количество теплоты, подведённое к рабочему телу, всегда пропорционально количеству рабочего тела. Например, количество теплоты, необходимое для нагревания на 1 градус кирпича и кирпичной стены неодинаково, поэтому для сравнения вводят удельные величины теплоёмкости, отнеся подведённую теплоту к единице рабочего тела. В зависимости от количественной единицы тела, к которому подводится теплота в термодинамике , различают массовую, объёмную и мольную теплоёмкости.

Массовая теплоёмкость - это теплоёмкость, отнесённая к единице массы рабочего тела,

.

Количество теплоты, необходимое для нагревания 1 кг газа на 1 К называется массовой теплоёмкостью.

Единицей измерения массовой теплоёмкости является Дж/(кг К). Массовую теплоёмкость называют также удельной теплоёмкостью.

Объёмная теплоёмкость - теплоёмкость, отнесённая к единице объёма рабочего тела,

.

Количество теплоты, необходимое для нагревания 1 м 3 газа на 1 К называется объёмной теплоёмкостью.

Объёмная теплоёмкость измеряется в Дж/(м 3 К).

Мольная теплоёмкость - теплоёмкость, отнесённая к количеству рабочего тела,

,

где n - количество газа в моль.

Количество теплоты, необходимое для нагревания 1 моль газа на 1 К называется мольной теплоёмкостью.

Мольную теплоёмкость измеряют в Дж/(моль×К).

Массовая и мольная теплоёмкости связаны следующим соотношением:

или С m = mс, где m - молярная масса

Теплоёмкость зависит от условий протекания процесса. Поэтому обычно в выражении для теплоёмкости указывается индекс х, который характеризует вид процесса теплообмена.

.

Индекс х означает, что процесс подвода (или отвода) теплоты идёт при постоянном значении какого-либо параметра, например, давления, объёма.

Среди таких процессов наибольший интерес представляют два: один при постоянном объёме газа, другой при постоянном давлении. В соответствии с этим различают теплоёмкости при постоянном объёме C v и теплоёмкость при постоянном давлении C p .

1) Теплоёмкость при постоянном объёме равна отношению количества теплоты dQ к изменению температуры dT тела в изохорном процессе (V = const):

;

2) Теплоёмкость при постоянном давлении равна отношению количества теплоты dQ к изменению температуры dT тела в изобарном процессе (Р = const):


Для понимания сути этих процессов рассмотрим пример.

Пусть имеется два цилиндра, в которых находится по 1 кг одного и того же газа при одинаковой температуре. Один цилиндр полностью закрыт (V = const), другой цилиндр сверху закрыт поршнем, который оказывает на газ постоянное давление Р (P = const).

Подведём к каждому цилиндру такое количество тепла Q, чтобы температура газа в них повысилась от Т 1 до Т 2 на 1К. В первом цилиндре газ не совершил работу расширения, т.е. количество подведённого тепла будет равно

Q v = c v (T 2 - T 1) ,

здесь индекс v - означает, что теплота подводится к газу в процессе с постоянным объёмом.

Во втором цилиндре, кроме повышения температуры на 1К, произошло ещё передвижение нагруженного поршня (газ изменил объём), т.е. была совершена работа расширения. Количество подведённого тепла в этом случае определится из выражения:

Q р = c р (T 2 - T 1)

Здесь индекс р - означает, что тепло подводится к газу в процессе с постоянным давлением.

Общее количество тепла Q p будет больше Q v на величину, соответствующую работе преодоления внешних сил:

где R - работа расширения 1 кг газа при повышении температуры на 1К при Т 2 - Т 1 = 1К.

Отсюда С р - С v = R

Если поместить в цилиндр не 1 кг газа, а 1 моль, то выражение примет вид

Сm Р - Сm v = R m , где

R m - универсальная газовая постоянная.

Это выражение носит название уравнения Майера .

Наряду с разностью С р - С v в термодинамических исследованиях и практических расчетах широкое применение имеет отношение теплоемкостей С р и С v , которое называется показателем адиабаты .

k = С р / С v .

В молекулярно - кинетической теории для определения k приводится следующая формула k = 1 + 2/n,

где n - число степеней свободы движения молекул (для одноатомных газов n = 3, для двухатомных n = 5, для трёх и более атомных n = 6).

Теплоемкость - это способность поглощать некоторые объемы тепла во время нагревания или отдавать при охлаждении. Теплоемкость тела - это отношение бесконечно малого числа теплоты, что получает тело, к соответствующему приросту его температурных показателей. Величина измеряется в Дж/К. На практике применяют немного другую величину - удельную теплоемкость.

Определение

Что означает удельная теплоемкость? Это величина, относящаяся к единичному количеству вещества. Соответственно, численность вещества можно измерить в кубометрах, килограммах или даже в молях. От чего это зависит? В физике теплоемкость зависит напрямую от того, к какой количественной единице она относиться, а значит, различают молярную, массовую и объемную теплоемкость. В строительной сфере вы не будете встречаться с молярными измерениями, но с другими - сплошь и рядом.

Что влияет на удельную теплоемкость?

Что такое теплоемкость, вы знаете, но вот какие значения влияют на показатель, еще не ясно. На значение удельной теплоемкости напрямую воздействуют несколько компонентов: температура вещества, давление и иные термодинамические характеристики.

Во время роста температуры продукции его удельная теплоемкость растет, однако определенные вещества отличаются совершенно нелинейной кривой в этой зависимости. Например, с возрастанием температурных показателей с нуля до тридцати семи градусов удельная теплоемкость воды начинает понижаться, а если предел будет находиться между тридцатью семью и ста градусами, то показатель, наоборот, возрастет.

Стоит отметить, что параметр зависит еще и от того, каким образом разрешается изменяться термодинамическим характеристикам продукции (давлению, объему и так далее). Например, удельная теплоемкость при стабильном давлении и при стабильном объеме будут отличаться.

Как рассчитать параметр?

Вас интересует, чему равна теплоемкость? Формула расчета следующая: С=Q/(m·ΔT). Что это за значения такие? Q - это количество теплоты, что получает продукция при нагреве (или же выделяемое продукцией во время охлаждения). m - масса продукции, а ΔT - разность окончательной и начальной температур продукции. Ниже приведена таблица теплоемкости некоторых материалов.

Что можно сказать о вычислении теплоемкости?

Вычислить теплоемкость - это задача не из самых простых, особенно если применять исключительно термодинамические методы, точнее это невозможно сделать. Потому физики используют методы статистической физики или же знания микроструктуры продукции. Как произвести вычисления для газа? Теплоемкость газа рассчитывается из вычисления средней энергии теплового движения отдельно взятых молекул в веществе. Движения молекул могут быть поступательного и вращательного типа, а внутри молекулы может быть целый атом или колебание атомов. Классическая статистика говорит, что на каждую степень свободы вращательных и поступательных движений приходится в мольной величина, что равняется R/2, а на каждую колебательную степень свободы значение равняется R. Это правило еще именуют законом равнораспределения.

При этом частичка одноатомного газа отличается всего тремя поступательными степенями свободы, а потому его теплоемкость должна приравниваться к 3R/2, что отлично согласуется с опытом. Каждая молекула двухатомного газа отличается тремя поступательными, двумя вращательными и одной колебательной степенями свободы, а значит, закон равнораспределения будет равняться 7R/2, а опыт показал, что теплоемкость моля двухатомного газа при обычной температуре составляет 5R/2. Почему оказалось такое расхождение теории? Все связано с тем, что при установлении теплоемкости потребуется учитывать разные квантовые эффекты, другими словами, пользоваться квантовой статистикой. Как видите, теплоемкость - это довольно-таки сложное понятие.

Квантовая механика говорит, что любая система частичек, что совершают колебания или же вращения, в том числе и молекула газа, может иметь определенные дискретные значения энергии. Если же энергия теплового движения в установленной системе недостаточна для возбуждения колебаний необходимой частоты, то данные колебания не вносят вклада в теплоемкость системы.

В твердых телах тепловое движение атомов являет собой слабые колебания поблизости определенных положений равновесия, это касается узлов кристаллической решетки. Атом обладает тремя колебательными степенями свободы и по закону мольная теплоемкость твердого тела приравнивается к 3nR, где n- количество имеющихся атомов в молекуле. На практике это значение является пределом, к которому стремится теплоемкость тела при высоких температурных показателях. Значение достигается при обычных температурных изменениях у многих элементов, это касается металлов, а также простых соединений. Также определяется теплоемкость свинца и других веществ.

Что можно сказать о низких температурах?

Мы уже знаем, что такое теплоемкость, но если говорить о низких температурах, то как значение будет рассчитываться тогда? Если речь идет о низких температурных показателях, то теплоемкость твердого тела тогда оказывается пропорциональной T 3 или же так называемый закон теплоемкости Дебая. Главный критерий, позволяющий отличить высокие показатели температуры от низких, является обычное сравнение их с характерным для определенного вещества параметром - это может быть характеристическая или температура Дебая q D . Представленная величина устанавливается спектром колебания атомов в продукции и существенно зависит от кристаллической структуры.

У металлов определенный вклад в теплоемкость дают электроны проводимости. Данная часть теплоемкости высчитывается с помощью статистики Ферми-Дирака, в которой учитываются электроны. Электронная теплоемкость металла пропорциональная обычной теплоемкости, представляет собой сравнительно небольшую величину, а вклад в теплоемкость металла она вносит только при температурных показателях, близких к абсолютному нулю. Тогда решеточная теплоемкость становится очень маленькой, и ею можно пренебречь.

Массовая теплоемкость

Массовая удельная теплоемкость - это количество теплоты, что требуется поднести к единице массы вещества, дабы нагреть продукт на единицу температуры. Обозначается данная величина буквой С и измеряется она в джоулях, поделенных на килограмм на кельвин - Дж/(кг·К). Это все, что касается теплоемкости массовой.

Что такое объемная теплоемкость?

Объемная теплоемкость - это определенное количество теплоты, что требуется подвести к единице объема продукции, дабы нагреть ее на единицу температуры. Измеряется данный показатель в джоулях, поделенных на кубический метр на кельвин или Дж/(м³·К). Во многих строительных справочниках рассматривают именно массовую удельную теплоемкость в работе.

Применение на практике теплоемкости в строительной сфере

Многие теплоемкие материалы применяют активно при строительстве теплоустойчивых стен. Это крайне важно для домов, отличающихся периодическим отоплением. Например, печным. Теплоемкие изделия и стены, возведенные из них, отлично аккумулируют тепло, запасают его в отопительные периоды времени и поэтапно отдают тепло после выключения системы, позволяя таким образом поддерживать приемлемую температуру на протяжении суток.

Итак, чем больше будет запасено тепла в конструкции, тем комфортней и стабильней будет температура в комнатах.

Стоит отметить, что обычный кирпич и бетон, применяемые в домостроении, обладают значительно меньшей теплоемкостью, чем пенополистирол. Если брать эковату, то она в три раза более теплоемкая, нежели бетон. Следует отметить, что в формуле расчета теплоемкости совершенно не зря присутствует масса. Благодаря большой огромная массе бетона или кирпича в сравнении с эковатой позволяет в каменных стенах конструкций аккумулировать огромные объемы тепла и сглаживать все суточные температурные колебания. Только малая масса утеплителя во всех каркасных домах, несмотря на хорошую теплоемкость, является самой слабой зоной у всех каркасных технологий. Чтобы решить данную проблему, во всех домах монтируют внушительные теплоаккумуляторы. Что это такое? Это конструктивные детали, отличающиеся большой массой при достаточно хорошем показателе теплоемкости.

Примеры теплоаккумуляторов в жизни

Что это может быть? К примеру, какие-то внутренние кирпичные стены, большая печь или камин, стяжки из бетона.

Мебель в любом доме или квартире является отличным теплоаккумулятором, ведь фанера, ДСП и дерево фактически в три раза больше могут запасаться теплом лишь на килограмм веса, нежели пресловутый кирпич.

Есть ли недостатки в теплоаккумуляторах? Конечно, главный минус данного подхода состоит в том, что теплоаккумулятор требуется проектировать еще на стадии создания макета каркасного дома. Все из-за того, что он отличается большим весом, и это потребуется учесть при создании фундамента, а после еще представить, как данный объект будет интегрирован в интерьер. Стоит сказать, что учитывать придется не только массу, потребуется оценивать в работе обе характеристики: массу и теплоемкость. К примеру, если применять золото с невероятным весом в двадцать тонн на кубометр в качестве теплоаккумулятора, то продукция будет функционировать как нужно лишь на двадцать три процента лучше, нежели бетонный куб, вес которого составляет две с половиной тонны.

Какое вещество больше всего подходит для теплоаккумулятора?

Наилучшим продуктом для теплоаккумулятора является совсем не бетон и кирпич! Неплохо с этой задачей справляется медь, бронза и железо, но они очень тяжелые. Как ни странно, но лучший теплоаккумулятор - вода! Жидкость имеет внушительную теплоемкость, самую большую среди доступных нам веществ. Больше теплоемкость только у газов гелия (5190 Дж/(кг·К) и водорода (14300 Дж/(кг·К), но их проблематично применять на практике. При желании и необходимости смотрите таблицу теплоемкости нужных вам веществ.

Теплоемкостью называют количество теплоты, которое необходимо сооб­щить телу (газу), чтобы повысить тем­пературу какой-либо количественной единицы на 1° С.

Для определения значений перечис­ленных выше тепло­емкостей доста­точно знать величину одной какой-либо - из них. Удобнее, всего иметь величину мольной теплоем­кости, то­гда массовая теплоемкость:

а объемная теплоемкость:

Объемная и массовая теплоемкости связаны между собой зависимостью:

где - плотность газа при нормаль­ных условиях.

Теплоемкость газа зависит от его тем­пературы. По этому признаку разли­чают среднюю и истинную теплоём­кость.

Если q- количествотеплоты, сообща­емой единице количества газа (или от­нимаемого от него) при изменении температуры газа от t 1 до t 2 то

Представляет собой среднюю тепло­ёмкость в пределах . Предел этого отношения, когда разность температур стремиться к нулю, называют истинной теплоёмко­стью.

ИЗОХОРНЫЙ ПРОЦЕСС ГАЗА

Изохорный процесс – процесс сооб­щения или отнятия теплоты при по­стоянном объеме газа (v = const).

При постоянном объёме давление газа изменяется прямо пропорционально абсолютным температурам:

Внешняя работа газа при v = const равна нулю l=0.

количество теплоты или изменение внутренней энергии газа:

Изохорный процесс на pv – диа­грамме отображается прямой верти­кальной линией - изохора. При по­ложительном количестве тепла ли­ния идёт снизу вверх.

Изменение энтропии находится:

ИЗОБАРНЫЙ ПРОЦЕСС ГАЗА.

Изобарный процесс – процесс сообще­ния или отнятия теплоты при по­стоян­ном давлении = const)

Кривая процесса называется изоба­рой.

Поскольку в изобарном процессе dp=0 то в системе не совершается техническая работа, а количество тепла необходимое для перехода тела из состояния 1 в состояние 2 определяется как:

Таким образом в изобарном термо­динамическом процессе подводимое (отводимое) к телу количество тепла пропорционально изменению энтальпии в данном процессе. Дан­ный вывод справедлив как для обра­тимого так и для необратимого про­цессов, при условии, что система находится в термодинамическом равновесии в начале и конце про­цесса.



В случае обратимого процесса:

Изобарный процесс на pv – диа­грамме отображается прямой гори­зонтальной линией. При подводе тепла в процесс линия простирается слева направо.

Механическая работа в таком про­цессе:

Удельная располагаемая (полезная) внешняя работа:

Изменение удельной внутренней энергии:

Из уравнения состояния идеального газа можно получить следующее соот­ношение для изобарного процесса:

Таким образом, при изобарном про­цессе объём идеального газа пропор­ционален абсолютной температуре. При расширении газа температура по­вышается, при сжатии уменьшается.

Изменение энтропии в изобарном про­цессе может быть расчитано следую­щим образом:

ИЗОТЕРМИЧЕСКИЙ ПРОЦЕСС ГАЗА.

Изотермический процесс – процесс сообщения или. отнятия теплоты при по­стоянной температуре (t - const)

Для изотермического процесса иде­ального газа зависимость между начальными и конечными парамет­рами определяется формулами:

При постоянной температуре объём газа изменяется обратно пропорцио­нально его давлению.

На pv- диаграмме изотермы идеаль­ного газа представляются равносто­ронней гиперболой. Площадь под кри­вой процесса численно выражает ме­ханическую работу в данном процессе.

Работа 1 кг идеального газа находят из уравнений:

Так как в изотермическом процессе t = const, то для идеального газа

Изменение энтропии в изотермиче­ском процессе

выразится следующей форму­лой:

АДИАБАТНЫЙ ПРОЦЕСС ГАЗА.

Процесс протекающий без подвода и отвода теплоты, т.е. при отсутствии теплообмена с окружающей средой, называют адиабатным, а кривая этого процесса –адиабатой. Условия процесса: dq=0 , q=0.

Т.к. dq=0 , то согласно первому закону термодинамики:

Таким образом совершаемая рабочим телом механическая работа в адиабат­ном термодинамическом процессе равна уменьшению внутренней энер­гии тела, техническая работа при этом пропорциональна изменению (умень­шению) энтальпии. В обратимом диа­батном процессе энтропия термодина­мического тела не меняется: S=Const .