Теплоотдача организма осуществляется через. Центры регуляции теплообмена

Между человеком и окружающей его средой постоянно происходит теплообмен. Факторы окружающей среды воздействуют на организм комплексно, и в зависимости от их конкретных значений вегетативные центры (полосатое тело, серый бугор промежуточного мозга) и ретикулярная формация, взаимодействуя с корой головного мозга и посылая по симпатическим волокнам импульсы к мышцам, обеспечивают оптимальное соотношение процессов теплообразования и теплоотдачи.

Терморегуляцией организма называется совокупность физиологических и химических процессов, направленных на поддержание температуры тела в определенных пределах (36,1...37,2 °С). Перегрев тела или его переохлаждение приводит к опасным нарушениям жизненных функций, а в некоторых случаях - к заболеваниям. Терморегуляция обеспечивается изменением двух составляющих теплообмен процессов - теплопродукции и теплоотдачи. На тепловой баланс организма существенно влияет теплоотдача, как наиболее управляемая и изменчивая.

Теплота вырабатывается всем организмом, но более всего поперечнополосатыми мышцами и печенью. Теплообразование организма человека, одетого в домашнюю одежду и находящегося в состоянии относительного покоя при температуре воздуха 15...25°С, сохраняется приблизительно на одном и том же уровне. С понижением температуры оно увеличивается, а при ее повышении с 25 до 35 °С несколько уменьшается. При температуре более 40 °С выработка теплоты начинает увеличиваться. Эти данные свидетельствуют о том, что регуляция производства теплоты в организме главным образом происходит при пониженных температурах окружающей среды.

Теплопродукция возрастает при выполнении физической работы, причем тем больше, чем тяжелее работа. Количество вырабатываемой теплоты зависит также от возраста и состояния здоровья человека.

Различают три вида теплоотдачи организма человека:

излучение (в виде инфракрасных лучей, испускаемых поверхностью тела в направлении предметов с меньшей температурой);

конвекция (нагревание омывающего поверхность тела воздуха);

испарение влаги с поверхности кожи, слизистых оболочек верхних дыхательных путей и легких.

Процентное соотношение между этими видами теплоотдачи человека, находящегося в нормальных условиях в состоянии покоя, выражается следующими цифрами: 45/30/25. Однако указанное соотношение может изменяться в зависимости от конкретных значений параметров микроклимата и тяжести выполняемой работы.

Теплоотдача излучением происходит только в том случае, когда температура окружающих предметов ниже температуры открытых участков кожи (32. ..34, 5 °С) или наружных слоев одежды (27. ..28 °С для легко одетого человека и приблизительно 24 °С для человека в зимней одежде).

20 Промышленная вентиляция. Виды вентиляции.

Вентиляция - регулируемый воздухообмен в помещении. Системы вентиляции предназначены для обеспечения необходимой чистоты, температуры, влажности и подвижности воздуха. Сложные вентиляционные системы, обеспечивающие воздухообмен в промышленных масштабах, называют системами промышленной вентиляции , в случае обеспечения вентиляции в небольших помещениях используют бытовые системы вентиляции . В зависимости от назначения и принципа организации воздухообмена различают следующие виды вентиляции: естественная вентиляция - вентиляция, создающая необходимый воздухообмен: - за счет ветра; - за счет разности удельного веса теплого воздуха, находящегося внутри помещения, и более холодного воздуха снаружи; механическая вентиляция - вентиляция, при которой перемещение воздуха осуществляется с помощью вентиляторов с электроприводом; при приточной вентиляции обеспечивается лишь подача чистого воздуха в помещение, удаление воздуха из него происходит через открывающиеся двери, неплотности в ограждениях и за счёт возникающего избыточного давления; вытяжная вентиляция предназначена для удаления воздуха из вентилируемого помещения и создания в нём разрежения, за счёт которого в это помещение через неплотности в ограждениях и двери может поступать воздух снаружи и из соседних помещений; приточно-вытяжная вентиляция обеспечивает одновременно подачу воздуха в помещение и организованное удаление его; местная вентиляция - вид вентиляции, при котором воздух подает на определенные места (местная приточная вентиляция) и загрязненный воздух удаляется только от мест образования вредных выделений (местная вытяжная вентиляция); общеобменная вентиляция - вентиляция при которой обмен воздуха происходит во всем помещении. Этот вид вентиляции применяется когда выделения вредных факторов незначительны и равномерно распределены по всему объему помещения.

21

Производственное освещение. Классификация производственного освещения. Классификация производственного освещения приведена на рисунке 20.1. Естественное освещение наиболее благоприятно как для органов зрения, так и для организма человека в целом. При недостаточности естественного освещения применяют искусственное или совмещенное.

Естественное освещение производственных помещений через световые проемы в наружных стенах (окна) называют боковым, через световые проемы в перекрытии зданий (фонари) - верхним, а через окна и фонари одновременно - комбинированным.

Рис. 20.1. Виды производственного освещения

Если расстояние от окон до наиболее удаленных от них рабочих мест менее 12м, то предусматривают боковое одностороннее освещение, при большем расстоянии - боковое двустороннее.

Большинство производственных помещений оборудуют системами общего искусственного освещения - когда светильники расположены в верхней (потолочной) зоне. Если расстояние между светильниками одинаковое, то освещение считают равномерным, при размещении светильников ближе к оборудованию - локализованным.

Комбинированным называют такое искусственное освещение, когда к общему добавляется местное. Местным считают освещение, при котором световой поток светильников концентрируется непосредственно на рабочих местах. В соответствии со Строительными нормами и правилами (СНиП) применение только одного местного освещения в производственных помещениях не допускается.

Рабочее освещение устраивают во всех помещениях и на территориях для обеспечения нормальной работы и прохода людей, движения транспорта при отсутствии или недостатке естественного освещения.

Аварийное освещение необходимо для продолжения работ при внезапном отключении рабочего освещения, что может вызвать нарушение процесса обслуживания оборудования или непрерывного технологического процесса, пожар, взрыв, отравление людей, травматизм в местах большого скопления людей и т. п. Наименьшая освещенность рабочих поверхностей, требующих обслуживания в аварийном режиме, должна быть не менее 5 % освещенности, нормируемой для рабочего освещения при системе общего освещения, но не менее 2 лк внутри зданий и 1 лк на открытых площадках.

Дежурным считают освещение производственных объектов в нерабочее время.

Искусственное освещение, создаваемое вдоль границ охраняемых в ночное время территорий, называют охранным.

Эвакуационное освещение устраивают в местах, опасных для прохода людей, а также в основных проходах и на лестницах, служащих для эвакуации людей из производственных зданий при численности работающих более 50, в производственных помещениях с постоянно работающими в них людьми, где выход людей из помещения при внезапном отключении рабочего освещения связан с опасностью травматизма вследствие продолжения работы производственного оборудования, а также в производственных помещениях с численностью работающих более 50 независимо от степени опасности травматизма. Эвакуационное освещение должно обеспечивать минимальную освещенность основных проходов и на ступенях лестниц: в помещениях 0,5 лк, на открытых территориях 0,2 л к. Санитарно-гигиенические требования, предъявляемые к производственному освещению: приближенный к солнечному оптимальный состав спектра; соответствие освещенности на рабочих местах нормативным значениям; равномерность освещенности и яркости рабочей поверхности, в том числе и во времени; отсутствие резких теней на рабочей поверхности и блесткости предметов в пределах рабочей зоны; оптимальная направленность светового потока, способствующая улучшению различения рельефности элементов поверхностей.

Между человеком и окружающей его средой постоянно происходит теплообмен. Факторы окружающей среды воздействуют на организм комплексно, и в зависимости от их конкретных значений вегетативные центры (полосатое тело, серый бугор промежуточного мозга) и ретикулярная формация, взаимодействуя с корой головного мозга и посылая по симпатическим волокнам импульсы к мышцам, обеспечивают оптимальное соотношение процессов теплообразования и теплоотдачи.

Терморегуляцией организма называется совокупность физиологических и химических процессов, направленных на поддержание температуры тела в определенных пределах (36,1...37,2 °С). Перегрев тела или его переохлаждение приводит к опасным нарушениям жизненных функций, а в некоторых случаях — к заболеваниям. Терморегуляция обеспечивается изменением двух составляющих теплообмен процессов — теплопродукции и теплоотдачи. На тепловой баланс организма существенно влияет теплоотдача, как наиболее управляемая и изменчивая.

Теплота вырабатывается всем организмом, но более всего поперечнополосатыми мышцами и печенью. Теплообразование организма человека, одетого в домашнюю одежду и находящегося в состоянии относительного покоя при температуре воздуха 15...25°С, сохраняется приблизительно на одном и том же уровне. С понижением температуры оно увеличивается, а при ее повышении с 25 до 35 °С несколько уменьшается. При температуре более 40 °С выработка теплоты начинает увеличиваться. Эти данные свидетельствуют о том, что регуляция производства теплоты в организме главным образом происходит при пониженных температурах окружающей среды.

Теплопродукция возрастает при выполнении физической работы, причем тем больше, чем тяжелее работа. Количество вырабатываемой теплоты зависит также от возраста и состояния здоровья человека. Усредненные значения теплопродукции взрослого человека в зависимости от температуры окружающего воздуха и тяжести выполняемой работы приведены в таблице 14.3.

14.3. Теплопродукция человека в зависимости от температуры воздуха и тяжести выполняемой работы

Температура воздуха, "С

Теплопродукция, Дж/с

Температура воздуха, °С

Теплопродукция, Дж/с

Состояние покоя

Работа средней тяжести

Легкая работа

Тяжелая и очень тяжелая работа

Различают три вида теплоотдачи организма человека:

излучение (в виде инфракрасных лучей, испускаемых поверхностью тела в направлении предметов с меньшей температурой);

конвекция (нагревание омывающего поверхность тела воздуха);

испарение влаги с поверхности кожи, слизистых оболочек верхних дыхательных путей и легких.

Процентное соотношение между этими видами теплоотдачи человека, находящегося в нормальных условиях в состоянии покоя, выражается следующими цифрами: 45/30/25. Однако указанное соотношение может изменяться в зависимости от конкретных значений параметров микроклимата и тяжести выполняемой работы.

Теплоотдача излучением происходит только в том случае, когда температура окружающих предметов ниже температуры открытых участков кожи (32. ..34, 5 °С) или наружных слоев одежды (27. ..28 °С для легко одетого человека и приблизительно 24 °С для человека в зимней одежде). Основная часть излучения относится к инфракрасному диапазону с длиной волны (4. ..50) * 10-6м. При этом теряемое организмом в единицу времени количество теплоты, Дж/с (1 Дж/с = 1 Вт),

Pp = Sδ(Tч4 - То4),

где S— площадь поверхности тела человека, определяемая по графику (рис. 14.1), м2. Если масса и рост человека неизвестны, то принимают S= 1,5м2; δ — приведенный коэффициент излучения, Вт/(м2*К4): для хлопчатобумажной ткани 5 = 4,2*10-8, для шерсти и шелка δ = 4,3*10 , для кожных покровов человека δ = 5,1*10-8; Тч — температура поверхности тела человека: для раздетого человека 306 К (это соответствует 33 °С); Тo — температура окружающей среды, К.

Рис. 14.1. График для определения площади поверхности тела человека в зависимости от его массы и роста


Теплоотдача конвекцией также происходит в случае, если температура поверхности кожи или верхних слоев одежды выше температуры омывающего их воздуха. При отсутствии ветра прилегающий к поверхности кожи раздетого человека слой воздуха толщиной 4...8 мм нагревается за счет его теплопроводности. Более отдаленные слои нагреваются вследствие естественного движения воздуха или принудительного побуждения. С увеличением скорости движения воздуха толщина окружающего человека пограничного слоя уменьшается до 1 мм, а теплоотдача поверхности тела возрастает в несколько раз. Потери теплоты конвекцией через дыхательные пути меньше, чем от кожного покрова, и происходят в тех случаях, когда температура вдыхаемого воздуха ниже температуры тела. Теплоотдача конвекцией повышается с ростом барометрического давления.

Приближенно потери теплоты в единицу времени конвекцией, Дж/с, можно определить по формуле

Pк1 = 7(0,5 + √v)S(Tч - То)

Рк2 = 8,4(0,273 + √v)S(Tч - То)

где v — скорость движения воздуха, м/с.

Первую формулу используют при скорости движения воздуха v ≤ 0,6 м/с, вторую — при v > 0,6 м/с.

Испарение — это теплоотдача при повышенной температуре воздуха, когда указанные ранее способы теплоотдачи затруднены или невозможны. В обычных условиях на большей части поверхности тела человека происходит неощутимое потоотделение, возникающее в результате диффузии воды без активного участия потовых желез. Исключение составляют поверхности ладоней, подошв и подмышечных впадин (составляющие примерно 10 % поверхности тела), на которых пот выделяется непрерывно.

В результате испарения организм в сутки теряет в среднем около 0,6 л воды. Так как на испарение 1 г воды затрачивается приблизительно 2,5 кДж теплоты, то потери ее за сутки составят приблизительно 1500кДж. С увеличением температуры воздуха и степени тяжести работы за счет более активного проникновения жидкости через стенки оплетающих потовые железы артериальных сосудов и нервной регуляции потоотделение усиливается, достигая за смену 5 л, а в некоторых случаях 10... 12 л. Отдача теплоты также возрастает.

При слишком интенсивном выделении пот не всегда успевает испариться и может выделяться в виде капель. В этом случае влажный слой на коже препятствует теплоотдаче, приводя в дальнейшем к перегреванию организма. Кроме влаги с потом человек теряет большое количество солей (в 1 л пота содержится 2,5...2,6 г хлорида натрия) и водорастворимых витаминов (С, BI, 62), что приводит к сгущению крови и ухудшению работы сердца. Следует отметить, что при потере количества воды, равного 1 % общей массы тела, у человека возникает чувство сильной жажды; утрата 5 % воды приводит к потере сознания, 10% — к смерти.

Количество выделяемого пота зависит и от индивидуальных особенностей организма, а также от степени его приспособляемости к данным климатическим условиям. На интенсивность испарения влаги влияют температура и скорость движения воздуха.

Через дыхательные пути испаряется около 300...350 г влаги в сутки, что приводит к потере 750...875 кДж теплоты.

Общие потери теплоты испарением в единицу времени, Дж/с, можно приближенно определить по формуле

Ри = 0,6547q(1 + kл), где q — интенсивность выделения пота, г/ч, определяемая взвешиванием человека; kл — коэффициент пересчета теплоотдачи через легкие, зависящий от температуры окружающего воздуха: при О "С kл = 0,43, при 18 °С — 0,3, при 28 °С — 0,23, при 35 °С - 0,035 и при 45°С kл = 0,015.

Оглавление темы "Регуляция обмена веществ и энергии. Рациональное питание. Основной обмен. Температура тела и ее регуляция.":
1. Энергетические затраты организма в условиях физической нагрузки. Коэффициент физической активности. Рабочая прибавка.
2. Регуляция обмена веществ и энергии. Центр регуляции обмена веществ. Модуляторы.
3. Концентрация глюкозы в крови. Схема регуляции концентрации глюкозы. Гипогликемия. Гипогликемическая кома. Чувство голода.
4. Питание. Норма питания. Соотношение белков, жиров и углеводов. Энергетической ценность. Калорийность.
5. Рацион беременных и кормящих женщин. Рацион детского питания. Распределение суточного рациона. Пищевые волокна.
6. Рациональное питание как фактор сохранения и укрепления здоровья. Здоровый образ жизни. Режим приема пищи.
7. Температура тела и ее регуляция. Гомойотермные. Пойкилотермные. Изотермия. Гетеротермные организмы.
8. Нормальная температура тела. Гомойотермное ядро. Пойкилотермная оболочка. Температура комфорта. Температура тела человека.
9. Теплопродукция. Первичная теплота. Эндогенная терморегуляция. Вторичная теплота. Сократительный термогенез. Несократительный термогенез.

Существуют следующие пути отдачи тепла организмом в окружающую среду: излучение , теплопроведение , конвекция и испарение .

Излучение - это способ отдачи тепла в окружающую среду поверхностью тела человека в виде электромагнитных волн инфракрасного диапазона (а = 5-20 мкм). Количество тепла, рассеиваемого организмом в окружающую среду излучением, пропорционально площади поверхности излучения и разности средних значений температур кожи и окружающей среды. Площадь поверхности излучения - это суммарная площадь поверхности тех частей тела, которые соприкасаются с воздухом. При температуре окружающей среды 20 °С и относительной влажности воздуха 40-60 % организм взрослого человека рассеивает путем излучения около 40-50 % всего отдаваемого тепла. Теплоотдача путем излучения возрастает при понижении температуры окружающей среды и уменьшается при ее повышении. В условиях постоянной температуры окружающей среды излучение с поверхности тела возрастает при повышении температуры кожи и уменьшается при ее понижении. Если средние температуры поверхности кожи и окружающей среды выравниваются (разность температур становится равной нулю), отдача тепла излучением становится невозможной. Снизить теплоотдачу организма излучением можно за счет уменьшения площади поверхности излучения («сворачивания тела в клубок»). Если температура окружающей среды превышает среднюю температуру кожи, тело человека, поглощая инфракрасные лучи, излучаемые окружающими предметами, согревается.

Рис. 13.4. Виды теплоотдачи . Пути отдачи тепла организмом во внешнюю среду можно условно подразделить на «влажную» теплоотдачу, связанную с испарением пота и влаги с кожи и слизистых оболочек, и на «сухую» теплоотдачу, которая не связана с потерей жидкости.

Теплопроведение - способ отдачи тепла, имеющий место при контакте, соприкосновении тела человека с другими физическими телами. Количество тепла, отдаваемого организмом в окружающую среду этим способом, пропорционально разнице средних температур контактирующих тел, площади контактирующих поверхностей, времени теплового контакта и теплопроводности контактирующего тела. Сухой воздух, жировая ткань характеризуются низкой теплопроводностью и являются теплоизоляторами. Использование одежды из тканей, содержащих большое число маленьких неподвижных «пузырьков» воздуха между волокнами (например, шерстяные ткани), дает возможность организму человека уменьшить рассеяние тепла путем теплопроводности. Влажный, насыщенный водяными парами воздух, вода характеризуются высокой теплопроводностью. Поэтому пребывание человека в среде с высокой влажностью при низкой температуре сопровождается усилением теплопотерь организма. Влажная одежда также теряет свои теплоизолирующие свойства.

Конвекция - способ теплоотдачи организма, осуществляемый путем переноса тепла движущимися частицами воздуха (воды). Для рассеяния тепла конвекцией требуется обтекание поверхности тела потоком воздуха с более низкой температурой, чем температура кожи. При этом контактирующий с кожей слой воздуха нагревается, снижает свою плотность, поднимается и замещается более холодным и более плотным воздухом. В условиях, когда температура воздуха равна 20 °С, а относительная влажность - 40-60 %, тело взрослого человека рассеивает в окружающую среду путем теплопро-ведения и конвекции около 25-30 % тепла (базисная конвекция). При увеличении скорости движения воздушных потоков (ветер, вентиляция) значительно возрастает и интенсивность теплоотдачи (форсированная конвекция).

Отдача тепла организмом путем теплопроведения , конвекции и излу чения, называемых вместе «сухой» теплоотдачей , становится неэффективной при выравнивании средних температур поверхности тела и окружающей среды.


Теплоотдача путем испарения - это способ рассеяния организмом тепла в окружающую среду за счет его затраты на испарение пота или влаги с поверхности кожи и влаги со слизистых оболочек дыхательных путей («влажная» теплоотдача). У человека постоянно осуществляется выделение пота потовыми железами кожи («ощутимая», или железистая, потеря воды), увлажняются слизистые оболочки дыхательных путей («неощутимая» потеря воды) (рис. 13.4). При этом «ощутимая» потеря воды организмом оказывает более существенное влияние на общее количество отдаваемого путем испарения тепла, чем «неощутимая».

При температуре внешней среды около 20 "С испарение влаги составляет около 36 г/ч. Поскольку на испарение 1 г воды у человека затрачивается 0,58 ккал тепловой энергии, нетрудно подсчитать, что путем испарения организм взрослого человека отдает в этих условиях в окружающую среду около 20 % всего рассеиваемого тепла. Повышение внешней температуры, выполнение физической работы, длительное пребывание в теплоизолирующей одежде усиливают потоотделение и оно может возрасти до 500- 2000 г/ч. Если внешняя температура превышает среднее значение температуры кожи, то организм не может отдавать во внешнюю среду тепло излучением, конвекцией и теплопроведением. Организм в этих условиях начинает поглощать тепло извне, и единственным способом рассеяния тепла становится усиление испарения влаги с поверхности тела. Такое испарение возможно до тех пор, пока влажность воздуха окружающей среды остается меньше 100 %. При интенсивном потоотделении, высокой влажности и малой скорости движения воздуха, когда капли пота, не успевая испариться, сливаются и стекают с поверхности тела, теплоотдача путем испарения становится менее эффективной.

Теплообразование, или теплопродукция, определяется интенсивностью обмена веществ. Регуляция теплообразования путем увеличения или уменьшения обмена веществ обозначается как химическая терморегуляция.

Выработанное организмом тепло постоянно отдается в окружающую его внешнюю среду. Если бы не существовала отдача тепла, организм погиб бы от перегревания. Теплоотдача может увеличиваться и уменьшаться. Регуляция теплоотдачи путем изменения осуществляющих ее физиологических функций обозначается как физическая терморегуляция.

Количество образующегося в организме тепла зависит от уровня обмена веществ в органах, который определяется трофической функцией нервной системы. Наибольшее количество тепла образуется в органах с интенсивным обменом веществ - в скелетной мускулатуре и в железах, главным образом в печени и в почках. Наименьшее количество тепла освобождается в костях, хрящах и соединительной .

При повышении температуры окружающей среды теплообразование уменьшается, а при ее понижении - увеличивается. Следовательно, между температурой внешней среды и теплообразованием существуют обратно пропорциональные отношения. Летом теплообразование понижается, а зимой увеличивается.

Соотношение между теплообразованием и теплоотдачей зависит от температуры окружающей среды. При среды 15-25°С теплообразование в покое в одежде находится на одном уровне и уравновешивается теплоотдачей (зона безразличия). Когда температура среды ниже 15°С, то при тех же условиях теплопродукция повышается при 0°С и постепенно снижается к 15°С (нижняя зона повышения обмена). Если температура среды 25-35°С, обмен веществ несколько снижается (зона пониженного обмена) и сохраняется терморегуляция. При повышении температуры среды больше 35°С происходит нарушение терморегуляции, обмен веществ и температура тела повышаются (верхняя зона повышения обмена, зона перегревания). Следовательно, повышение температуры внешней среды или согревание организма уменьшает теплопроизводство только до известного уровня при определенной температуре внешней среды. Эта температура называется критической, так как дальнейшее её повышение ведет уже не к уменьшению, а к увеличению теплообразования и повышению температуры тела. Точно так же при охлаждении существуют критическая температура внешней среды, ниже которой теплопроизводство начинает понижаться.

При мышечном покое увеличение теплообразования при охлаждении тела незначительно.

Особенно значительное увеличение теплообразования при низкой температуре внешней среды наблюдается при дрожи и работе мышц. Неправильные, небольшие сокращения мышц – дрожание и усиленные движения, которые человек делает на холоде с целью согреться и избавиться от озноба или дрожи, повышают трофические функции, значительно увеличивают обмен веществ и производство тепла. Несколько повышается выработка тепла и при «гусиной коже» -сокращение мышц волосяных мешочков.

Необходимо учесть, что ходьба увеличивает теплопроизводство почти в 2 раза, а быстрый бег - в 4-5 раз, температура тела может повыситься на несколько десятых градуса, причем повышение температуры во время работы ускоряет окислительные процессы и тем самым способствует окислению продуктов распада белков. Однако при продолжительной интенсивной работе при температуре внешней среды выше 25°С температура тела может возрасти на 1-1,5°С, что уже вызывает изменения и нарушения жизнедеятельности. Когда во время мышечной работы при высокой температуре внешней среды температура тела повышается более чем до 39°С, может наступить тепловой удар. На долю мышц приходится 65-75% теплообразования, а при интенсивной работе даже 90%.

Остальная доля тепла образуется в железистых органах, главным образом в печени.

Организм в покое непрерывно теряет тепло: 1) теплоизлучением, или отдачей тепла кожей окружающему воздуху; 2) теплопроведением, или непосредственной отдачей тепла тем предметам, которые соприкасаются с кожей; 3) испарением с поверхности кожи и легких.

В условиях покоя 70-80% тепла отдается в окружающую среду кожей теплоизлучением и теплопроведением, а испарением воды в коже (потоотделением) и в легких - около 20%. Отдача тепла нагреванием выдыхаемого воздуха, мочой и калом ничтожна, она составляет 1,5-3% общей теплоотдачи.

При мышечной работе резко возрастает отдача тепла испарением (у человека главным образом потоотделением), доходя до 90% всего суточного теплообразования.

Теплоотдача теплоизлучением и теплопроведением зависит от разности температур кожи и окружающей среды. Чем выше температура кожи, тем больше теплоотдача указанными путями. Л температура кожи зависит от притока к ней крови. При повышении температуры окружающей среды артериолы и капилляры кожи. Но так как разница температуры кожи уменьшается, то абсолютная величина теплоотдачи при высоких температурах окружающей среды меньше, чем при низких.

Когда температура кожи сравнивается с температурой окружающей среды, теплоотдача прекращается. При дальнейшем повышении температуры окружающей среды кожа не только не теряет тепло, но сама нагревается. В этом случае теплоотдача теплоизлучением и теплопровидением отсутствует и сохраняется только теплоотдача испарением.

Наоборот, на холоде артериолы и капилляры кожи суживаются, кожа становится бледной, количество протекающей через пес крови уменьшается, температура кожи понижается, разница температур кожи и окружающей среды сглаживается, и теплоотдача уменьшается.

Человек уменьшает теплоотдачу искусственными покровами (бельем, одеждой и т. д.). Чем больше воздуха в этих покровах, тем легче сохраняется тепло.

Регуляция теплоотдачи испарением воды играет большую роль, особенно при мышечной работе и значительном повышении температуры окружающей среды. При испарении 1 дм 3 воды с поверхности кожи или слизистых оболочек теряется телом 2428,4 кДж.

Потеря воды кожей происходит за счет проникновения воды из глубоких тканей на поверхность кожи и главным образом за счет функционирования потовых желез. При средней температуре окружающей среды взрослый человек ежесуточно теряет испарением с кожи 1674,8-2093,5 кДж.

В связи с резким увеличением потоотделения при повышении температуры окружающей среды и при мышечной работе значительно возрастает и теплоотдача, хотя и не весь пот испаряется.

Большие потери пота сопровождаются потерями больших количеств минеральных солей, так как содержание одной только поваренной соли в поту равно 0,3-0,6%. При потере 5-10дм 3 пота теряется 25-30 грамм поваренной соли. Поэтому если возникшая при обильном потоотделении жажда удовлетворяется водой, то наступают тяжелые расстройства вследствие потери значительных количеств солей (судороги и т. д.). Уже при потере 2 дм 3 пота получается дефицит солей в организме. Эти потери восполняются питьем воды, содержащей 0,5-0,6% поваренной соли, которую рекомендуется пить при обильном длительном потоотделении.

Испарение воды постоянно происходит и с поверхности легких. Выдыхаемый воздух насыщен водяными парами на 95-98% и поэтому чем суше вдыхаемый воздух, тем больше тепла отдается испарением с легких. В обычных условиях легкими ежесуточно испаряется 300-400 см 3 воды, что соответствует 732,7-962,9 кДж. При высокой температуре дыхание учащается, а на холоде становится редким. Испарение воды с поверхности кожи и легких становится единственным путем теплоотдачи, когда температура воздуха достигает температуры тела. В этих условиях в покое испаряется более 100 см 3 пота в час, что позволяет отдавать около 251,2 кДж в час.

Испарение воды с поверхности кожи и легких зависит от относительной влажности воздуха. Оно прекращается в воздухе, насыщенном водяными парами. Поэтому пребывание во влажном горячем воздухе, как, например, бане, тяжело переносится. В сыром воздухе человек плохо чувствует себя, даже при сравнительно невысокой температуре окружающей среды - при 30°С. Плохо переносится кожаная и резиновая одежда, так как она непроницаема для и делает невозможным испарение пота, поэтому под такой одеждой пот накапливается. При высокой температуре воздуха и мышечной работе в кожаной и резиновой одежде у человека повышается температура тела.

Перегревание человека в , насыщенной водяными парами, особенно опасно, так как лишает возможности освобождаться от избытка тепла наиболее действенным способом - испарением.

Наоборот, в сухом воздухе человек сравнительно легко переносит значительно более высокую температуру, чем во влажном.

Большое значение для увеличения теплоотдачи теплоизлучением, теплопроведением и испарением имеет движение воздуха. Увеличение скорости движения воздуха увеличивает теплоотдачу. На сквозняке и на ветру резко увеличивается потеря тепла. Но если окружающий воздух имеет высокую температуру и насыщен водяными парами, то движение воздуха не охлаждает. Следовательно, физическая терморегуляция обеспечивается: 1) сердечнососудистой системой, которая определяет приток и отток крови в кровеносных сосудах кожи, а следовательно, количество тепла, отдаваемого кожей в окружающую среду; 2) системой органов дыхания, т. е. изменениями вентиляции легких; 3) изменением функции потовых желез.

Регуляция теплоотдачи производится нервной системой и посредством гормонов. Существенное значение имеют условные рефлексы на обстановку, в которой неоднократно нагревалось или охлаждалось тело.

Изменение функций сердечнососудистой системы, дыхания и потовых желез рефлекторно регулируется раздражением внешних органов чувств и особенно раздражением рецепторов кожи при изменениях температуры внешней среды, а также раздражением нервных окончаний внутренних органов при колебаниях температуры внутри организма. Физиологические механизмы физической терморегуляции осуществляются большими полушариями, промежуточным, продолговатым и спинным мозгом.

Теплоотдача изменяется при поступлении в гормонов, изменяющих функции органов, участвующих в физической терморегуляции.

13. ТЕПЛООТДАЧА ЧЕЛОВЕКА

Теплоотдача - это теплообмен между поверхностью тела человека и окружающей средой. В сложном процессе сохранения теплового баланса организма регуляция теплоотдачи имеет большое значение. Применительно к физиологии теплообмена теплоотдача рассматривается как переход теплоты, освобождаемой в процессах жизнедеятельности, из организма в окружающую" среду. Теплоотдача осуществляется в основном излучением, конвекцией, кондукцией, испарением. В условиях теплового комфорта и охлаждения наибольшую долю занимают потери тепла радиацией и конвекцией (73-88% общих теплопотерь) {1.5, 1.6}. В условиях, вызывающих перегревание организма, преобладает теплоотдача испарением.

Радиационный теплообмен. В любых условиях жизнедеятельности человека между ним и окружающими телами происходит теплообмен путем инфракрасного излучения (радиационный теплообмен). Человек в процессе своей жизнедеятельности часто подвергается нагревающему воздействию инфракрасных излучений с разными спектральными характеристиками: от солнца, нагретой поверхности земли, зданий, отопительных приборов, и т. д. В производственной деятельности с радиационным нагреванием человек сталкивается, например, в горячих цехах металлургической, стекольной, пищевой промышленности и др.

Излучением человек отдает тепло в случаях, когда температура ограждений, окружающих человека, ниже температуры поверхности тела. В окружающей человека среде часто встречаются поверхности, имеющие температуру значительно ниже температуры тела (холодные стены, застекленные поверхности). При этом потери тепла излучением могут быть причиной местного или общего охлаждения человека. Радиационному охлаждению подвергаются строительные рабочие, рабочие, занятые на транспорте, обслуживающие холодильники и др.

Теплоотдача излучением в комфортных метеорологических, условиях составляет 43,8-59,1% общих теплопотерь. При наличии в помещении ограждений с температурой более низкой, чем температура воздуха, удельный вес теплопотерь человека излучением возрастает и может достигать 71%. Этот способ охлаждения и нагревания оказывает более глубокое воздействие на> организм, чем конвекционный (1.5J. Передача тепла излучением* пропорциональна разности четвертых степеней абсолютных температур поверхностей тела человека и окружающих предметов. При небольшой разности температур, что практически наблюдается в реальных условиях жизнедеятельности человека, уравнение для определения потерь тепла радиацией (Sрад, Вт, можно» записать так:

где а рад - коэффициент излучения, Вт/(м2°С); Spaд - площадь поверхности, тела человека, участвующей в радиационном теплообмене, м2; t1 - температура поверхности тела (одежды) человека, °С; t2 - температура поверхности окружающих предметов, °С.

Коэффициент излучения а рад при известных значениях t1 и t2 может быть определен по табл. 1.3.

Поверхность тела человека, участвующая в радиационном Теплообмене, меньше всей поверхности тела, так как некоторые части тела взаимно облучаются и не принимают участия в обмене. Поверхность тела, участвующая в обмене тепла, может составлять 71-95% всей поверхности тела человека. Для людей, находящихся в положении стоя или сидя, коэффициент эффективности излучения с поверхности тела составляет 0,71; в процессе движения человека он может увеличиваться до 0,95.

Потери тепла радиацией с поверхности тела одетого человека Qрад, Вт, могут быть определены также по уравнению

Конвекционный теплообмен. Передача тепла конвекцией осуществляется с поверхности тела человека (или одежды) движущемуся вокруг него (нее) воздуху. Различают конвекционный теплообмен свободный (обусловленный разностью температур поверхности тела и воздуха) и принудительный (под влиянием движения воздуха). По отношению к общим теплопотерям в условиях теплового комфорта теплоотдача конвекцией составляет 20-30% . Существенно возрастают потери тепла конвекцией в условиях ветра.

С использованием суммарного значения коэффициента теплоотдачи (а рад.конв) могут быть определены значения радиационно-конвективных теплопотерь (Орад.конв) по уравнению

Орад.конв = Орад.конв (tод-tв).

Кондукционный теплообмен. Теплоотдача от поверхности тела человека к соприкасающимся с ним твердым предметам осуществляется проведением (кондукцией). Потери тепла кондукцией в соответствии с законом Фурье могут быть определены по уравнению

Как видно из уравнения, отдача тепла кондукцией тем больше, чем ниже температура предмета, с которым соприкасается человек, чем больше поверхность соприкосновения и меньше толщина пакета материалов одежды.

В обычных условиях удельный вес потерь тепла кондукцией невелик, так как коэффициент теплопроводности неподвижного воздуха незначителен. В этом случае человек теряет тепло кондукцией лишь с поверхности стоп, площадь которых составляет 3% площади поверхности тела. Но иногда (в кабинах сельскохозяйственных машин, башенных кранов, экскаваторов и т. д.) площадь соприкосновения с холодными стенами может быть довольно большой. Кроме того, помимо размера контактирующей поверхности имеет значение и подвергающийся охлаждению участок тела (стопы, поясницы, плеч и т. д.).

Теплоотдача испарением. Важным способом теплоотдачи, особенно при высокой температуре воздуха и выполнении человеком физической работы, является испарение диффузионной влаги и пота. В условиях теплового комфорта и охлаждения человек, находящийся в состоянии относительного физического покоя, теряет влагу путем диффузии (неощутимой перспирации) с поверхности кожи и верхних дыхательных путей. За счет этого человек отдает в окружающую среду 23-27% общего тепла, при этом 1/3 потерь приходится на долю тепла испарением с верхних дыхательных путей и 2/3 - с поверхности кожи. На влагопотери путем диффузии оказывает влияние давлёние водяных паров в воздухе, окружающем человека. Поскольку в земных условиях изменение давления водяных паров невелико, влагопотери вследствие испарения диффузионной влаги принято считать относительно постоянными (30-60 г/ч). Несколько колеблются они лишь в зависимости от кровоснабжения кожи.

Потери тепла путем испарения диффузионной влаги с поверхности кожи Qисп.д, Вт, могут быть определены по уравнению

Теплоотдача при дыхании. Потери тепла вследствие нагревания вдыхаемого воздуха составляют небольшую долю по сравнению с другими видами потерь тепла, однако с увеличением энерготрат и со снижением температуры воздуха теплопотери этого вида увеличиваются.

Потери тепла вследствие нагревания вдыхаемого воздуха Qдых.н, Вт, могут быть определены по уравнению

Qдых.н=0,00 12Qэ.t (34-tв),

где 34 - температура выдыхаемого воздуха, °С (в комфортных условиях) .

В заключение следует отметить, что приведенные выше уравнения для расчета составляющих теплового баланса позволяют лишь ориентировочно оценить теплообмен человека с окружающей средой. Существует также ряд уравнений (эмпирических и аналитических), предложенных разными авторами и позволяющих определить необходимую для расчета теплового сопротивления одежды величину радиационно-конвективных теплопотерь (фрэд конв).

В" связи с этим в исследованиях наряду с расчетными применяются экспериментальные методы оценки теплообмена организма. К ним относятся методы определения общих влагопотерь человека и потерь влаги испарением путем взвешивания раздетого b одетого человека, а также определения радиационно-конвективных теплопотерь с помощью тепломерных датчиков, размещаемых на поверхности тела.

Помимо прямых методов оценки теплообмена человека используются косвенные, отражающие влияние на организм разницы между теплоотдачей и теплопродукцией в единицу времени в конкретных условиях жизнедеятельности. Это соотношение определяет тепловое состояние человека, сохранение которого на оптимальном или допустимом уровне является одной из главных функций одежды. В связи с этим показатели и критерии теплового состояния человека служат физиологической основой как проектирования одежды, так и ее оценки.

СПИСОК ЛИТЕРАТУРЫ

1 1. Иванов К. П. Основные принципы регуляции температурного пзмео-стаза/В кн. Физиология терморегуляции. Л., 1984. С. 113-137.

1.2 Иванов К. П. Регуляция температурного гомеостаза у животных и человека. Ашхабад, 1982.

1 3 Беркович Е. М. Энергетический обмен в норме и патологии. М., 1964.

1.4. Fanger Р. О. Thermal Comfort. Copenhagen, 1970.

K5. Малышева A. E. Гигиенические вопросы радиационного теплообмена человека с окружающей средой. М., 1963.

1 6. Колесников П. А. Теплозащитные свойства одежды. М., 1965

1 7. Витте Н. К- Тепловой обмен человека и его гигиеническое значение. Киев, 1956