Тип земной коры и максимальная глубина. Строение земной коры и состав её слоев

По современным представлениям геологии наша планета состоит из нескольких слоев - геосфер. Они различаются по физическим свойствам, химическому составу и В центре Земли находится ядро, за ним идет мантия, потом - земная кора, гидросфера и атмосфера.

В данной статье мы рассмотрим строение земной коры, являющейся верхней частью литосферы. Она представляет собой внешнюю твердую оболочку мощность которой так мала (1,5 %), что ее можно сравнить с тонкой пленкой в масштабах всей планеты. Однако, несмотря на это, именно верхний слой земной коры имеет для человечества большой интерес, как источник полезных ископаемых.

Кора земли условно разделяется на три слоя, каждый из которых по-своему примечателен.

  1. Верхний слой - осадочный. Он достигает толщины от 0 до 20 км. Осадочные породы образовываются вследствие отложения веществ на суше, либо их оседания на дне гидросферы. Они входят в состав земной коры, располагаясь в ней сменяющими друг друга пластами.
  2. Средний слой - гранитный. Его толщина может колебаться от 10 до 40 км. Это магматическая порода, образовавшая твердый слой в результате извержений и последующих застываний магмы в земной толще при высоком давлении и температуре.
  3. Нижний слой, входящий в строение земной коры - базальтовый, тоже имеет магматическое происхождение. В нем содержится большее количество кальция, железа и магния, и его масса больше, чем у гранитной породы.

Структура земной коры не везде одинакова. Особенно разительные отличия имеют океаническая кора и континентальная. Под океанами земная кора тоньше, а под материками толще. Наибольшую толщину она имеет в районах горных массивов.

В состав входят два слоя - осадочный и базальтовый. Под базальтовым слоем находится поверхность Мохо, а за ней верхняя мантия. Океаническое дно имеет сложнейшие рельефные формы. Среди всего их разнообразия особое место занимают огромных размеров срединно-океанические хребты, в которых из мантии зарождается молодая базальтовая океаническая кора. Магма имеет доступ на поверхность через глубинный разлом - рифт, который проходит по центру хребта вдоль вершин. Снаружи магма растекается, тем самым постоянно раздвигая стенки ущелья в стороны. Такой процесс получил название «спрединг».

Строение земной коры более сложное на континентах, нежели под океанами. Континентальная кора занимает гораздо меньшую площадь, чем океаническая - до 40% земной поверхности, но имеет намного большую мощность. Под она достигает толщины 60-70 км. Континентальная кора имеет трехслойное строение - осадочный слой, гранитный и базальтовый. На участках, которые называются щитами, гранитный слой находится на поверхности. Как пример - сложенный из гранитных пород.

Подводная крайняя часть материка - шельф, также имеет континентальное строение земной коры. К нему относятся и острова Калимантан, Новая Зеландия, Новая Гвинея, Сулавеси, Гренландия, Мадагаскар, Сахалин и др. А также внутренние и окраинные моря: Средиземное, Азовское, Черное.

Проводить границу между гранитным слоем и базальтовым можно лишь условно, так как они имеют сходную скорость прохождения сейсмических волн, по которой определяют плотность земных слоев и их состав. Базальтовый слой соприкасается с поверхностью Мохо. Осадочный слой может иметь разную толщину, что зависит от располагающейся на нем формы рельефа. В горах, например, он или вообще отсутствует или имеет очень малую толщину, ввиду того что рыхлые частицы перемещаются вниз по склонам под воздействием внешних сил. Но зато он очень мощен в предгорных районах, впадинах и котловинах. Так, в он достигает 22 км.

Земная кора внешняя твердая оболочка Земли, верхняя часть литосферы. От мантии Земли земная кора отделена поверхностью Мохоровичича.

Принято выделять материковую и океаническую кору, которые различаются по своему составу, мощности, строению и возрасту. Материковая кора расположена под материками и их подводными окраинами (шельфом). Земная кора материкового типа толщиной от 35-45 км расположена под равнинами до 70 км в области молодых гор. Наиболее древние участки материковой коры имеют геологический возраст, превышающий 3 миллиарда лет. Она состоит из таких оболочек: коры вы­ветривания, осадочной, метаморфической, гранитной, базальтовой.

Океаническая земная кора значительно моложе, её возраст не превышает 150-170 миллионов лет. Она имеет меньшую мощность 5-10 км. В пределах океанической земной коры отсутствует граничный слой. В строении земной коры океанического типа выделяют следую­щие слои: неуплотненных осадочных пород (до 1 км), вулкани­ческий океанический, который состоит из уплотненных осадков (1-2 км), базальтовый (4-8 км).

Каменная оболочка Земли не представляет собой единого целого. Она состоит из отдельных блоков литосферных плит. Всего на земном шаре насчитывается 7 крупных и несколько более мелких плит. К крупным относятся Евразиатская, Североамериканская, Южноамериканская, Африканская, Индо–Австралийская (Индийская), Антарктическая и Тихоокеанская плиты. В пределах всех крупных плит, за исключением последней, расположены материки. Границы литосферных плит проходят, как правило, вдоль срединно-океанических хребтов и глубоководных желобов.

Литосферные плиты постоянно изменяются: две плиты могут спаиваться в единую в результате коллизии; в результате рифтинга может произойти раскол плиты на несколько частей. Литосферные плиты могут погружаться в мантию земли, достигая при этом земное ядро. Поэтому разделение земной коры на плиты не однозначно: с накоплением новых знаний некоторые границы плит признаются несуществующими, выделяются новые плиты.

В пределах литосферных плит расположены участки с различными типами земной коры. Так, восточная часть Индо-Австралийской (Индийской) плиты – материк, а западная расположена в основании Индийского океана. У Африканской плиты материковая земная кора с трёх сторон окружена океанической. Подвижность атмосферной плиты определяется соотношением в её пределах материковой и океанической коры.

При столкновении литосферных плит возникает складкообразование слоев горных пород. Складчатые пояса подвижные, сильно расчленённые участки земной поверхности. В их развитии выделяется два этапа. На начальном этапе земная кора испытывает преимущественно опускания, происходит накопление осадочных горных пород и их метаморфизация. На заключительном этапе опускание сменяется поднятием, горные породы сминаются в складки. В течение последнего миллиарда лет на Земле было несколько эпох интенсивных горообразований: байкальское горообразование, каледонское, герцинское, мезозойское и кайнозойское. В соответствии с этим выделяют различные области складчатости.

Впоследствии горные породы, из которых состоит складчатая область, теряют подвижность и начинают разрушаться. На поверхности накапливаются осадочные породы. Образуются устойчивые участки земной коры платформы. Они обычно состоят из складчатого фундамента (остатки древних гор), перекрытого сверху слоями горизонтально залегающих осадочных пород, образующих чехол. В соответствии с возрастом фундамента выделяют древние и молодые платформы. Участки пород, где фундамент погружён на глубину и перекрыт осадочными породами, называют плитами. Места выхода фундамента на поверхность называют щитами. Они более характерны для древних платформ. В основании всех материков расположены древние платформы, края которых являются складчатыми областями разного возраста.

Распространение платформенных и складчатых областей можно увидеть на тектонической географической карте, или на карте строения земной коры.

Остались вопросы? Хотите знать больше о строении земной коры?
Чтобы получить помощь репетитора – зарегистрируйтесь .

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

– ограничена поверхностью суши или дном Мирового океана. Имеет она и геофизическую границу, которой является раздел Мохо . Граница характеризуется тем, что здесь резко нарастают скорости сейсмических волн. Установил её в $1909$ г. хорватский ученый А. Мохоровичич ($1857$-$1936$).

Земную кору слагают осадочные, магматические и метаморфические горные породы, а по составу в ней выделяется три слоя . Горные породы осадочного происхождения, разрушенный материал которых переотложился в нижние слои и образовал осадочный слой земной коры, покрывает всю поверхность планеты. В некоторых местах он очень тонкий и, возможно, прерывается. В других местах он достигает мощности нескольких километров. Осадочными являются глина, известняк, мел, песчаник и др. Образуются они путем осаждения веществ в воде и на суше, лежат обычно пластами. По осадочным породам можно узнать о существовавших на планете природных условиях, поэтому геологи их называют страницами истории Земли . Осадочные породы подразделяются на органогенные , которые образуются путем накопления останков животных и растений и неорганогенные , которые в свою очередь подразделяются на обломочные и хемогенные .

Готовые работы на аналогичную тему

  • Курсовая работа Строение земной коры 400 руб.
  • Реферат Строение земной коры 230 руб.
  • Контрольная работа Строение земной коры 190 руб.

Обломочные породы являются продуктом выветривания, а хемогенные – результат осаждения веществ, растворенных в воде морей и озер.

Магматические породы слагают гранитный слой земной коры. Образовались эти породы в результате застывания расплавленной магмы. На континентах мощность этого слоя $15$-$20$ км, он совсем отсутствует или очень сильно сокращается под океанами.

Магматическое вещество, но бедное кремнеземом слагает базальтовый слой, имеющий большой удельный вес. Слой этот хорошо развит в основании земной коры всех областей планеты.

Вертикальная структура и мощность земной коры различны, поэтому выделяют несколько её типов. По простой классификации существует океаническая и материковая земная кора.

Материковая земная кора

Материковая или континентальная кора отличается от океанической коры толщиной и устройством . Континентальная кора расположена под материками, но её край не совпадает с береговой линией. С точки зрения геологии настоящим материком является вся площадь сплошной материковой коры. Тогда получается, что геологические материки больше географических материков. Прибрежные зоны материков, называемые шельфом – это есть временно залитые морем части материков. Такие моря как Белое, Восточно-Сибирское, Азовское – расположены на материковом шельфе.

В континентальной земной коре выделяются три слоя :

  • Верхний слой – осадочный;
  • Средний слой – гранитный;
  • Нижний слой – базальтовый.

Под молодыми горами такой тип коры имеет толщину$ 75$ км, под равнинами – до $45$ км, а под островными дугами – до $25$ км. Верхний осадочный слой материковой коры формируется глинистыми отложениями и карбонатами мелководных морских бассейнов и грубообломочными фациями в краевых прогибах, а также на пассивных окраинах континентов атлантического типа.

Вторгшаяся в трещины земной коры магма сформировала гранитный слой в составе которого есть кремнезем, алюминий и другие минералы. Толщина гранитного слоя может доходить до $25$ км. Слой этот очень древний и имеет солидный возраст – $3$ млрд. лет. Между гранитным и базальтовым слоем, на глубине до $20$ км, прослеживается граница Конрада . Она характеризуется тем, что скорость распространения продольных сейсмических волн здесь увеличивается, на $0,5$ км/сек.

Формирование базальтового слоя произошло в результате излияния на поверхность суши базальтовых лав в зонах внутриплитного магматизма. Базальты содержат больше железа, магния и кальция, поэтому они тяжелее гранита. В пределах этого слоя скорость распространения продольных сейсмических волн от $6,5$-$7,3$ км/сек. Там, где граница становится размытой, скорость продольных сейсмических волн растет постепенно.

Замечание 2

Общая масса земной коры от массы всей планеты составляет всего $0,473$ %.

Одну из первых задач, связанную с определением состава верхней континентальной коры, взялась решать молодая наука геохимия . Так как кора состоит из множества самых разнообразных пород, эта задача была весьма сложной. Даже в одном геологическом теле состав пород может сильно варьироваться, а в разных районах могут быть распространены разные типы пород. Исходя из этого, задача заключалась в определении общего, среднего состава той части земной коры, которая на континентах выходит на поверхность. Эту первую оценку состава верхней земной коры сделал Кларк . Он работал сотрудником геологической службы США и занимался химическим анализом горных пород. В ходе многолетних аналитических работ, ему удалось обобщить результаты и рассчитать средний состав пород, который был близок к граниту . Работа Кларка подверглась жесткой критике и имела противников.

Вторую попытку по определению среднего состава земной коры предпринял В. Гольдшмидт . Он предположил, что двигающийся по континентальной коре ледник , может соскребать и смешивать выходящие на поверхность породы, которые в ходе ледниковой эрозии будут отлагаться. Они то и будут отражать состав средней континентальной коры. Проанализировав состав ленточных глин, которые во время последнего оледенения отлагались в Балтийском море , он получил результат, близкий к результату Кларка. Разные методы дали одинаковые оценки. Геохимические методы подтверждались. Этими вопросами занимались, и широкое признание получили оценки Виноградова, Ярошевского, Ронова и др .

Океаническая земная кора

Океаническая кора расположена там, где глубина моря больше $ 4$ км, а это значит, что она занимает не все пространство океанов. Остальная площадь покрыта корой промежуточного типа. Кора океанического типа устроена не так, как континентальная кора, хотя тоже разделяется на слои. В ней практически совсем отсутствует гранитный слой , а осадочный очень тонкий и имеет мощность менее $1$ км. Второй слой пока еще неизвестен , поэтому его называют просто вторым слоем . Нижний, третий слой – базальтовый . Базальтовые слои континентальной и океанической коры похожи скоростями сейсмических волн. Базальтовый слой в океанической коре преобладает. Как говорит теория тектоники плит, океаническая кора постоянно формируется в срединно-океанических хребтах, потом она от них отходит и в областях субдукции поглощается в мантию. Это свидетельствует о том, что океаническая кора является относительно молодой . Наибольшее количество зон субдукции характерно для Тихого океана , где с ними связаны мощные моретрясения.

Определение 1

Субдукция – это опускание горной породы с края одной тектонической плиты в полурасплавленную астеносферу

В том случае, когда верхней плитой является континентальная плита, а нижней – океаническая – образуются океанические желоба .
Её толщина в разных географических зонах варьируется от $5$-$7$ км. С течением времени толщина океанической коры практически не изменяется. Связано это с количеством расплава, выделяющегося из мантии в срединно-океанических хребтах и толщиной осадочного слоя на дне океанов и морей.

Осадочный слой океанической коры небольшой и редко превышает толщину в $0,5$ км. Состоит он из песка, отложений останков животных и осажденных минералов. Карбонатные породы нижней части на большой глубине не обнаруживаются, а на глубине больше $4,5$ км карбонатные породы замещаются красными глубоководными глинами и кремнистыми илами.

Базальтовые лавы толеитового состава сформировали в верхней части базальтовый слой , а ниже лежит дайковый комплекс .

Определение 2

Дайки – это каналы, по которым базальтовая лава изливается на поверхность

Базальтовый слой в зонах субдукции превращается в экголиты , которые погружаются в глубину, потому что имеют большую плотность окружающих мантийных пород. Их масса составляет около $7$ % от массы всей мантии Земли. В пределах базальтового слоя скорость продольных сейсмических волн составляет $6,5$-$7$ км/сек.

Средний возраст океанической коры составляет $100$ млн. лет, в то время как самые старые её участки имеют возраст $156$ млн. лет и располагаются во впадине Пиджафета в Тихом океане. Сосредоточена океаническая кора не только в пределах ложа Мирового океана, она может быть и в закрытых бассейнах, например, северная впадина Каспийского моря. Океаническая земная кора имеет общую площадь $306$ млн. км кв.

Изучение внутреннего строения планет, в том числе нашей Земли – чрезвычайно сложная задача. Мы не можем физически “пробурить” земную кору вплоть до ядра планеты, поэтому все знания полученные нами на данный момент – это знания полученные “на ощупь”, причем самым буквальным образом.

Как работает сейсморазведка на примере разведки нефтяных месторождений. «Прозваниваем» землю и «слушаем», что принесет нам отраженный сигнал

Дело в том, что наиболее простой и надежный способ узнать что же находится под поверхностью планеты и входит в состав её коры – это изучении скорости распространения сейсмических волн в недрах планеты.

Известно, что скорость продольных сейсмических волн возрастает в более плотных средах и напротив, уменьшается в рыхлых грунтах. Соответственно, зная параметры разных типов породы и имея расчетные данные о давлении и т.п., “слушая” полученный ответ, можно понять через какие слои земной коры прошел сейсмический сигнал и как глубоко они находятся под поверхностью.

Изучение строения земной коры с помощью сейсмоволн

Сейсмические колебания могут быть вызваны источни­ками двух видов: естественными и искусственными . Естествен­ными источниками колебаний являются землетрясения, волны которых несут необходимую информацию о плотности по­род, сквозь которые они проникают.

Арсенал искусственных источников колебаний более обширен, но в первую очередь ис­кусственные колебания вызываются обыкновенным взрывом, однако есть и более “тонкие” способы работы – генераторы направленных импульсов, сейсмовибраторов и т.п.

Проведением взрывных работ и изучением скоростей сейсмических волн занимается сейсморазведка - одна из важнейших отраслей современной геофизики.

Что же дало изучение сейсмических волн внутри Земли? Анализ их распространения выявил несколько скачков изменения ско­рости при прохождении через недра планеты.

Земная кора

Первый скачок, при котором скорости возрастают с 6,7 до 8,1 км/с, как счи­тают геологи, регистрирует подошву земной коры . Эта по­верхность располагается в разных местах планеты на различных уровнях, от 5 до 75 км. Граница земной коры и нижележащей оболочки - мантии, получила название «поверхности Мохоровичича» , по имени впервые установившего ее югославского ученого А. Мохо­ровичича.

Мантия

Мантия залегает на глубинах до 2 900 км и делится на две части: верхнюю и нижнюю. Граница между верхней и нижней мантией также фиксируется по скачку скорости рас­пространения продольных сейсмических волн (11,5 км/с) и располагается на глубинах от 400 до 900 км.

Верхняя ман­тия имеет сложное строение. В ее верхней части имеется слой расположенный на глубинах 100-200 км, где проис­ходит затухание поперечных сейсмических волн на 0,2- 0,3 км/с, а скорости продольных волн, по существу, не ме­няются. Этот слой назван волноводом . Его толщина обычно равняется 200-300 км.

Часть верхней мантии и кора, залегаю­щие над волноводом, называются литосферой , а сам слой пониженных скоростей - астеносферой .

Таким образом, литосфера представляет собой жесткую твердую оболочку, подстилаемую пластичной астеносфе­рой. Предполагается, что в астеносфере возникают процес­сы, вызывающие движение литосферы.

Внутреннее строение нашей планеты

Ядро Земли

В подошве мантии происходит резкое уменьшение ско­рости распространения продольных волн с 13,9 до 7,6 км/с. На этом уровне лежит граница между мантией и ядром Зем­ли , глубже которой поперечные сейсмические волны уже не распространяются.

Радиус ядра достигает 3500 км, его объем: 16% объема планеты, а масса: 31% массы Земли.

Многие ученые считают, что ядро находится в расплавленном состоя­нии. Его внешняя часть характеризуется резко пониженными значениями скоростей продольных волн, во внутренней ча­сти (радиусом в 1200 км) скорости сейсмических волн вновь возрастают до 11 км/с. Плотность пород ядра равна 11 г/см 3 , и она обуславливается наличием тяжелых элементов. Таким тяжелым элементом может быть железо. Вероятнее всего, железо является составной частью ядра, так как ядро чисто железного или железо-никелевого состава должно иметь плотность, на 8-15% превышающую существующую плот­ность ядра. Поэтому к железу в ядре, по-видимому, при­соединены кислород, сера, углерод и водород.

Геохимический метод изучения строения пла­нет

Имеется еще один путь изучения глубинного строения пла­нет - геохимический способ . Выделение различных оболочек Земли и других планет земной группы по физическим параметрам находит достаточно четкое геохимическое подтверждение, основанное на теории гетерогенной аккреции, согласно кото­рой состав ядер планет и их внешних оболочек в основной своей части является исходно различным и зависит от само­го раннего этапа их развития.

В результате этого процесса в ядре концентрировались наиболее тяжелые (железо-никелевые ) компоненты, а во внешних оболочках - более легкие сили­катные (хондритовые ), обогащенные в верхней мантии лету­чими веществами и водой.

Важнейшей особенностью планет земной группы ( , Земля, ) явля­ется то, что их внешняя оболочка, так называемая кора , со­стоит из двух типов вещества: «материкового » - полевошпа­тового и «океанического » - базальтового.

Материковая (континентальная) кора Земли

Материковая (континентальная) кора Земли сложена гранитами или породами, близкими им по составу, т. е. породами с большим количеством полевых шпатов. Образование «гра­нитного» слоя Земли обусловлено преобразованием более древних осадков в процессе гранитизации.

Гранитный слой надо рассматривать как специ­фическую оболочку коры Земли - единственной планеты, на которой получили широкое развитие процессы дифферен­циации вещества с участием воды и имеющей гидросферу, кислородную атмосферу и биосферу. На Луне и, вероятно, на планетах земной группы континентальная кора слагается габбро-анортозитами - породами, состоящими из большого количества полевого шпата, правда, несколько другого соста­ва, чем в гранитах.

Этими породами сложены древнейшие (4,0-4,5 млрд. лет) поверхности планет.

Океаническая (базальтовая) кора Земли

Океаническая (базальтовая) кора Земли образована в ре­зультате растяжения и связана с зонами глубинных разло­мов, обусловивших проникновение к базальтовым очагам верхней мантии. Базальтовый вулканизм накладывается на ра­нее сформировавшуюся континентальную кору и является от­носительно более молодым геологическим образованием.

Проявления базаль­тового вулканизма на всех планетах земного типа, по-видимому, аналогичны. Широкое развитие базальтовых «морей» на Луне, Марсе, Меркурии, очевидно, связано с растяжени­ем и образованием вследствие этого процесса зон проницае­мости, по которым базальтовые расплавы мантии устрем­лялись к поверхности. Этот механизм проявления базальто­вого вулканизма является более или менее сходным для всех планет земной группы.

Спутница Земли - Луна также имеет оболочечное строе­ние, в целом повторяющее земное, хотя и имеющее разительно отличие по составу.

Тепловой поток Земли. Горячее всего в районе разломов земной коры, а холоднее – в районах древних материковых плит

Метод измерения теплового потока для изучения строения пла­нет

Еще один путь изучения глубинного строения Земли - это изучение ее теплового потока. Известно, что Земля, го­рячая изнутри, отдает свое тепло. О нагреве глубоких гори­зонтов свидетельствуют извержения вулканов, гейзеры, го­рячие источники. Тепло - главный энергетический источник Земли.

Прирост температуры с углублением от поверхно­сти Земли в среднем составляет около 15° С на 1 км. Это значит, что на границе литосферы и астеносферы, располо­женной примерно на глубине 100 км, температура должна быть близкой к 1500° С. Установлено, что при такой темпера­туре происходит плавление базальтов. Это означает, что астеносферная оболочка может служить источником магмы ба­зальтового состава.

С глубиной изменение температуры про­исходит по более сложному закону и находится в зависи­мости от изменения давления. Согласно расчетным данным, на глубине 400 км температура не превышает 1600° С и на границе ядра и мантии оценивается в 2500-5000° С.

Установлено, что выделение тепла происходит постоян­но по всей поверхности планеты. Тепло - важнейший физи­ческий параметр. От степени нагрева горных пород зависят некоторые их свойства: вязкость, электропроводность, магнитность, фазовое состояние. Поэтому по термическому состоянию можно судить о глубинном строении Земли.

Изме­рение температуры нашей планеты на большой глубине - задача технически сложная, так как измерениям доступны лишь первые километры земной коры. Однако внутренняя температура Земли может быть изучена косвенным путем при измерениях теплового потока.

Несмотря на то, что основным источ­ником тепла на Земле является Солнце, суммарная мощность теплового потока нашей планеты превышает в 30 раз мощность всех электростанций Земли.

Измерения показали, что средний тепловой поток на кон­тинентах и в океанах одинаков. Этот результат объясняется тем, что в океанах большая часть тепла (до 90%) поступает из мантии, где интенсивнее происходит процесс переноса вещества движущимися потоками - конвекцией .

Конвек­ция - процесс, при котором разогретая жидкость расширяет­ся, становясь легче, и поднимается, а более холодные слои опускаются. Поскольку мантийное вещество ближе по сво­ему состоянию к твердому телу, конвекция в нем протека­ет в особых условиях, при невысоких скоростях течения ма­териала.

Какова же тепловая история нашей планеты? Ее пер­воначальный разогрев, вероятно, связан с теплом, образован­ным при соударении частиц и их уплотнении в собственном поле силы тяжести. Затем тепло явилось результатом радио­активного распада. Под воздействием тепла возникла слои­стая структура Земли и планет земной группы.

Радиоактив­ное тепло в Земле выделяется и сейчас. Существует гипоте­за, согласно которой на границе расплавленного ядра Земли продолжаются и поныне процессы расщепления вещества с выделением огромного количества тепловой энергии, разо­гревающей мантию.

Земная кора - твердый поверхностный слой нашей планеты. Она образовалась миллиарды лет назад и постоянно изменяет свой вид под влиянием внешних и внутренних сил. Часть её скрыта под водой, другая - образует сушу. Земная кора состоит из различных химических веществ. Давайте узнаем из каких.

Поверхность планеты

Спустя сотни миллионов лет после возникновения Земли, её внешний слой из кипящих расплавленных пород начал остывать и образовал земную кору. Год от года поверхность изменялась. На ней появлялись трещины, горы, вулканы. Ветер сглаживал их, чтобы через время они появились вновь, но уже в других местах.

Благодаря внешним и внутренним твёрдый слой планеты неоднороден. С точки зрения структуры, можно выделить такие элементы земной коры:

  • геосинклинали или складчатые области;
  • платформы;
  • краевые разломы и прогибы.

Платформы представляют собой обширные малоподвижные участки. Их верхний слой (до глубины в 3-4 км) покрывают осадочные породы, которые залегают горизонтальными слоями. Нижний уровень (фундамент) сильно смят. Он сложен метаморфозными породами и может содержать магматические вкрапления.

Геосинклинали - это тектонически активные участки, где происходят процессы горообразования. Они возникают в местах соединения океанического дна и материковой платформы, или в прогибе дна океана между материками.

Если горы образуются близко к границе платформы, могут возникать краевые разломы и прогибы. Они достигают до 17 километров в глубину и тянутся вдоль горного образования. Со временем здесь скапливаются осадочные породы и образуются месторождения полезных ископаемых (нефти, каменные и калийные соли и т. д.).

Состав коры

Масса коры составляет 2,8·1019 тонн. Это всего лишь 0,473 % от массы всей планеты. Содержание в ней веществ не такое разнообразное, как в мантии. Её формируют базальты, граниты и осадочные породы.

На 99,8 % земная кора состоит из восемнадцати элементов. На остальные приходится только 0,2 %. Самыми распространёнными являются кислород и кремний, которые составляют основное количество массы. Кроме них, кора богата алюминием, железом, калием, кальцием, натрием, углеродом, водородом, фосфором, хлором, азотом, фтором и т. д. Содержание этих веществ видно в таблице:

Название элемента

Кислород

Алюминий

Марганец

Редчайшим элементом считается астат - крайне неустойчивое и ядовитое вещество. К редким также относится теллур, индий, таллий. Часто они рассеяны и не содержат больших скоплений в одном месте.

Континентальная кора

Материковая или континентальная кора - это то, что мы обычно называем сушей. Она довольно стара и покрывает около 40 % всей планеты. Многие её участки достигают возраста от 2 до 4,4 миллиардов лет.

Материковая земная кора состоит из трёх слоёв. Сверху её покрывает прерывистый осадочный чехол. Породы в нем залегают слоями или пластами, так как формируются вследствие спрессовывания и уплотнения осадков солей или остатков микроорганизмов.

Нижний и более древний слой представлен гранитами и гнейсами. Они не всегда скрыты под осадочными породами. В некоторых местах они выходят на поверхность в виде кристаллических щитов.

Самый нижний слой состоит из метаморфических пород наподобии базальтов и гранулитов. Базальтовый слой может достигать 20-35 километров.

Океаническая кора

Часть земной коры, скрытая под водами Мирового океана, называется океанической. Она тоньше и моложе континентальной. По возрасту кора не достигает и двухсот миллионов лет, а её толщина составляет примерно 7 километров.

Материковая земная кора состоит из осадочных пород из глубоководных остатков. Ниже располагается базальтовый слой толщиной 5-6 километров. Под ним начинается мантия, представленная здесь в основном перидотитами и дунитами.

Каждые сто миллионов лет кора обновляется. Она поглощается в зонах субдукции и формируется вновь в области срединно-океанических хребтов, при помощи выходящих наружу минералов.