Треугольник паскаля разделен на четыре фрагмента. Разложение бинома используя значения факториала




История треугольника. Первое упоминание треугольной последовательности биномиальных коэффициентов под названием meru-prastaara встречается в комментарии индийского математика X века Халаюдхи к трудам другого математика, Пингалы. Треугольник исследуется также Омаром Хайямом около 1100 года, поэтому в Иране эту схему называют треугольником Хайяма. В 1303 году была выпущена книга «Яшмовое зеркало четырёх элементов» китайского математика Чжу Шицзе, в которой был изображен треугольник Паскаля на одной из иллюстраций; считается, что изобрёл его другой китайский математик, Ян Хуэй (поэтому китайцы называют его треугольником Яна Хуэя). На титульном листе учебника арифметики, написанном в 1529 году Петром Апианом, астрономом из Ингольтштадского университета, также изображён треугольник Паскаля. А в 1653 году (в других источниках в 1655 году) вышла книга Блеза Паскаля «Трактат об арифметическом треугольнике».


Свойства треугольника Паскаля. Если очертить треугольник Паскаля, то получится равнобедренный треугольник. В этом треугольнике на вершине и по бокам стоят единицы. Каждое число равно сумме двух расположенных над ним чисел. Продолжать треугольник можно бесконечно. Строки треугольника симметричны относительно вертикальной оси. Имеет применение в теории вероятностей обладает занимательными свойствами.


Свойства треугольника Паскаля. Числа треугольника симметричны(равны) относительно вертикальной оси. первое и последнее числа равны 1. второе и предпоследнее числа равны n. третье число равно треугольному числу, что также равно сумме номеров предшествующих строк. четвёртое число является тетраэдрическим. Сумма чисел восходящей диагонали, начинающейся с первого элемента (n-1)-й строки, есть n-е число Фибоначчи. Если вычесть из центрального числа в строке с чётным номером соседнее число из той же строки, то получится число Каталана. Сумма чисел n-й строки треугольника Паскаля равна 2n. Простые делители чисел треугольника Паскаля образуют симметричные самоподобные структуры. Если в треугольнике Паскаля все нечётные числа окрасить в чёрный цвет, а чётные в белый, то образуется треугольник Серпинского. Все числа в n-й строке, кроме единиц, делятся на число n, если и только если n является простым числом. Если в строке с нечётным номером сложить все числа с порядковыми номерами вида 3n, 3n+1, 3n+2, то первые две суммы будут равны, а третья на 1 меньше. Каждое число в треугольнике равно количеству способов добраться до него из вершины, перемещаясь либо вправо-вниз, либо влево-вниз.




Знаменитый американский учёный Мартин Гарднер сказал: «треугольник Паскаля так прост, что выписать его может и десятилетний ребёнок. В то же время он таит в себе неисчерпаемые сокровища и связывает воедино различные аспекты математики, не имеющие на первый взгляд между собой ничего общего. Столь необычные свойства позволяют считать треугольник Паскаля одной из наиболее изящных схем во всей математике».



Вариации на тему "Треугольник Паскаля"

История

Треугольник Паскаля является, пожалуй, одной из наиболее известных и изящных числовых схем во всей математике.

Блез Паскаль, французский математик и философ, посвятил ей специальный "Трактат об арифметическом треугольнике".

Впрочем, эта треугольная таблица была известна задолго до 1665 года - даты выхода в свет трактата.

Так, в 1529 году треугольник Паскаля был воспроизведен на титульном листе учебника арифметики, написанного астрономом Петром Апианом.

Изображен треугольник и на иллюстрации книги "Яшмовое зеркало четырех элементов" китайского математика Чжу Шицзе, выпущенной в 1303 году.

Омар Хайям, бывший не только философом и поэтом, но и математиком, знал о существовании треугольника в 1110 году, в свою очередь заимствовав его из более ранних китайских или индийских источников.

Построение треугольника Паскаля

Треугольник Паскаля - это просто бесконечная числовая таблица "треугольной формы", в которой на вершине и по боковым сторонам стоят единицы, каждое из остальных чисел равно сумме двух чисел, стоящих над ним слева и справа в предшествующей строке. Таблица обладает симметрией относительно оси, проходящей через его вершину.

Свойства треугольника Паскаля

Свойства строк

    Сумма чисел n-й строки Паскаля равна 2 n (потому что при переходе от каждой строки к следующей сумма членов удваивается, а для нулевой строки она равна 20=1) Все строки Паскаля симметричны (потому что при переходе от каждой строки к следующей свойство симметричности сохраняется, а нулевая строка симметрична) Каждый член строки Паскаля с номером n тогда и только тогда делится на т, когда т - простое число, а n - степень этого простого числа

Треугольные числа
Вдоль диагоналей, параллельных сторонам треугольника, выстроены треугольные, тетраэдрические и другие числа. Треугольные числа указывают количество шаров или других предметов, уложенных в виде треугольника (эти числа образуют следующую последовательность: 1,3,6,10,15,21,..., в которой 1- первое треугольное число, 3- второе треугольное число, 6-третье и т. д. до m-ro, которое показывает, сколько членов треугольника Паскаля содержится в первых m его строках - от нулевой до (m-1)-й).

Тетраэдрические числа
Члены последовательности 1,4, 10, 20, 36, 56,... называются пирамидальными, или, более точно, тетраэдрическими числами: 1- первое тетраэдрическое число, 4- второе, 10- третье и т. д. до m-ro. Эти числа показывают, сколько шаров может быть уложено в виде треугольной пирамиды (тетраэдра).

Числа Фибоначчи
В 1228 году выдающийся итальянский математик Леонардо из Пизы, более известный сейчас под именем Фибоначчи, написал свою знаменитую "Книгу об абаке". Одна из задач этой книги - задача о размножении кроликов - приводила к последовательности чисел 1,1,2,3,5,8,13,21..., в которой каждый член, начиная с третьего, представляет собой сумму двух предыдущих членов. Эта последовательность носит название ряда Фибоначчи, члены ряда Фибоначчи называют числами Фибоначчи. Обозначая n-е число Фибоначчи через

Между рядом Фибоначчи и треугольником Паскаля существует любопытная связь. Образуем для каждой восходящей диагонали треугольника Паскаля сумму всех стоящих на этой диагонали чисел. Получим для первой диагонали 1, для второй 1, для третьей 2, для четвертой 3, для пятой 5. Мы получили не что иное, как пять начальных чисел Фибоначчи. Оказывается, что всегда сумма чисел n-й диагонали есть n-е число Фибоначчи. Для доказательства интересующего нас предложения достаточно показать, что сумма всех чисел, составляющих n-ю и (n+1) диоганали треугольника Паскаля равна сумме чисел, составляющих его т+2-ю диагональ.

Биномиальные коэффициенты
Числа, стоящие по горизонтальным строкам, являются биномиальными коэффициентами. Строка с номером n состоит из коэффициентов разложения бинома (1+n)n. Покажем это при помощи операции Паскаля. Но сначала представим, как биномиальные коэффициенты определяются.

Возьмем бином 1+х и начнем возводить его в степени 0, 1, 2, 3 и т. д., располагая получающиеся при этом многочлены по возрастающим степеням буквы х. Мы получим

1.(1+х)0=1,
2.(1+х)1=1+х,
3. (1 +х)2=(1 +х)(1 +х)= 1 +2х+х2,
4.(1+х)3=1+Зх+Зх2+хЗ
и т. д.

Вообще, для любого целого неотрицательного числа n
(1+x)n=a0+a1x+a2x2+...+apxp,
где a0,a1,...,ap

Последнее соотношение можно переписать в виде а из соотношений 1-4 получаем

Образовался треугольник Паскаля, каждый элемент которого

Именно это фундаментальное свойство треугольника Паскаля связывает его не только с комбинаторикой и теорией вероятностей, но и с другими областями математики и ее приложений.

Решение задач с применением треугольника Паскаля

Старинные задачи о случайном
Еще в глубокой древности появились различные азартные игры. В Древней Греции и Риме широкое распространение получили игры в астрагалы, когда игроки бросали кости животных. Также пользовались популярностью игральные кости - кубики с нанесенными на гранях точками. Позднее азартные игры распространились в средневековой Европе.

Эти игры подарили математикам массу интересных задач, которые потом легли в основу теории вероятностей. Очень популярны были задачи о дележе ставки. Ведь, как правило, игра велась на деньги: игроки делали ставки, а победитель забирал всю сумму. Однако игра иногда прерывалась раньше финала, и возникал вопрос: как разделить деньги.

Многие математики занимались решением этой проблемы, но до середины XVII века так и не нашли его. В 1654 году между французскими математиками Блезом Паскалем, уже хорошо известным нам, и Пьером Ферма возникла переписка по поводу ряда комбинаторных задач, в том числе и задач о дележе ставки. Оба ученых, хотя и несколько разными путями, пришли к верному решению, деля ставку пропорционально вероятности выигрыша всей суммы при продолжении игры.

Следует отметить, что до них никто из математиков вероятность событий не вычислял, в их переписке теория вероятностей и комбинаторика впервые были научно обоснованы, и поэтому Паскаль и Ферма считаются основателями теории вероятностей.

Рассмотрим одну из задач Ферма, решенную Паскалем с помощью своей числовой таблицы.

Пусть до выигрыша всей встречи игроку А недостает двух партий, а игроку В - трех партий. Как справедливо разделить ставку, если игра прервана?

Паскаль складывает количество партий, недостающих игрокам, и берет строку таблицы, в которой количество членов равно найденной сумме, т. е. 5. Тогда доля игрока А будет равна сумме трех (по количеству партий, недостающих игроку В) первых членов пятой строки, а доля игрока В - сумме оставшихся двух чисел. Выпишем эту строку: 1,4,6,4, 1. Доля игрока А равна 1+4+6=11, а доля В -1+4=5.

Другие арифметические треугольники

Рассмотрим треугольники, построение которых связано с известными однопараметрическими комбинаторными числами. Создание таких треугольников основано на принципе построения рассматриваемого выше треугольника Паскаля.

Треугольник Люка

Рассмотрим построенный арифметический треугольник. Данный треугольник носит название треугольника Люка, так как суммы чисел, стоящих на восходящих диагоналях, дают последовательность чисел Люка: 1, 3, 4, 7, 11, 18, / которые могут быть определены как

Ln=Ln-1+Ln-2, L0=2, L1=1

Каждый элемент треугольника определяется по правилу Паскаля Ln+1,k=Ln, k-1+Ln, k при начальных условиях L1,0=1, L1,1=2 и L0,k=0

т. е. n-я строка треугольника люка может быть получена сложением n-й и (n-1)-й строк треугольника Паскаля.

Треугольник Фибоначчи

Из чисел (fm, n), удовлетворяющих уравнениям
fm, n=fm-1,n+fm-2,n,
fm, n=fm-1,n-1+fm-2,n-2, где с начальными условиями f0,0=f1,0=f1,1=f2,1=1 строится следующий треугольник.

fm, n =fn fn-m, m Є n Є 0, где fn - n - е число Фибоначчи. Построенный треугольник назван треугольником Фибоначчи.

Треугольник Трибоначчи

Рассмотрим еще один треугольник, создание которого основано на методе построения треугольника Паскаля. Это треугольник Трибоначчи. Он назван так потому, что суммы элементов, стоящих на восходящих диагоналях, образуют последовательность чисел Трибоначчи: 1,1,2,4,7,13,24,44,..., которая может быть определена следующим рекуррентным соотношением: tn+3 = tn+2 + tn+1 + tn с начальными условиями t0 = 1, t1 = 1, t2 = 2

"Знаковый треугольник"

Построение "знакового треугольника"

Перед нами треугольник, составленный из одних знаков, плюсов и минусов, по принципу образования треугольника Паскаля. В отличие от последнего, он расположен основанием вверх.

Сначала задается первая строка, состоящая из произвольного количества знаков и их расположения. Каждый знак следующей строки получается путем перемножения двух вышестоящих знаков.

Одной из наших задач является установить, при каком количестве знаков первой строки число минусов и плюсов будет одинаковым. Общее количество знаков в таблице можно определить формулой

где n - число знаков в первой строке.

Образуется последовательность чисел, при которых количество минусов и плюсов может быть равным: 3, 4, 7, 8, 11, 12, 15, 16,..., каждое из которых показывает количество знаков в первой строке. Однако не установлено, при каком расположении знаков число минусов и плюсов будет однозначно одинаковым.

Второй нашей задачей, касающейся треугольника произведения знаков, является установление наименьшего количества плюсов, которое может иметь "знаковый треугольник".

Существует интересная последовательность знаков первой строки: +, -, -, +, -, -, ... (или -, -, + ,- ,- ,+ , ...), при которой число плюсов, как до сих пор считается, будет наименьшим и равным 1/3 от общего числа знаков, т. е. равным

Важно заметить, что если постепенно обходить треугольник, то последовательность знаков +, -, -, ... сохранится.

Обратим внимание на тот факт, что наименьшее количество плюсов, равное 1/3 от общего числа знаков, можно увидеть и в треугольнике при n = 2.

Рассмотрим следующие выражения со степенями (a + b) n , где a + b есть любой бином, а n - целое число.

Каждое выражение - это полином. Во всех выражениях можно заметить особенности.

1. В каждом выражении на одно слагаемое больше, чем показатель степени n.

2. В каждом слагаемом сумма степеней равна n, т.е. степени, в которую возводится бином.

3. Степени начинаются со степени бинома n и уменьшаются к 0. Последний член не имеет множителя a. Первый член не имеет множителя b, т.е. степени b начинаются с 0 и увеличиваются до n.

4. Коэффициенты начинаются с 1 и увеличиваются на определенные значения до "половины пути", а потом уменьшаются на те же значения обратно к 1.

Давайте рассмотрим коэффициенты подробнее. Предположим, что мы хотим найти значение (a + b) 6 . Согласно особенности, которую мы только что заметили, здесь должно быть 7 членов
a 6 + c 1 a 5 b + c 2 a 4 b 2 + c 3 a 3 b 3 + c 4 a 2 b 4 + c 5 ab 5 + b 6 .
Но как мы можем определить значение каждого коэффициента, c i ? Мы можем сделать это двумя путями. Первый метод включает в себя написание коэффициентов треугольником, как показано ниже. Это известно как Треугольник Паскаля :


Есть много особенностей в треугольнике. Найдите столько, сколько сможете.
Возможно вы нашли путь, как записать следующую строку чисел, используя числа в строке выше. Единицы всегда расположены по сторонам. Каждое оставшееся число это сумма двух чисел, расположенных выше этого числа. Давайте попробуем отыскать значение выражения (a + b) 6 путем добавления следующей строки, используя особенности, которые мы нашли:

Мы видим, что в последней строке

первой и последнее числа 1 ;
второе число равно 1 + 5, или 6 ;
третье число это 5 + 10, или 15 ;
четвертое число это 10 + 10, или 20 ;
пятое число это 10 + 5, или 15 ; и
шестое число это 5 + 1, или 6 .

Таким образом, выражение (a + b) 6 будет равно
(a + b) 6 = 1 a 6 + 6 a 5 b + 15 a 4 b 2 + 20 a 3 b 3 + 15 a 2 b 4 + 6 ab 5 + 1 b 6 .

Для того, чтобы возвести в степень (a + b) 8 , мы дополняем две строки к треугольнику Паскаля:

Тогда
(a + b) 8 = a 8 + 8a 7 b + 28a 6 b 2 + 56a 5 b 3 + 70a 4 b 4 + 56a 3 b 5 + 28a 2 b 6 + 8ab 7 + b 8 .

Мы можем обобщить наши результаты следующим образом.

Бином Ньютона с использованием треугольника Паскаля

Для любого бинома a+ b и любого натурального числа n,
(a + b) n = c 0 a n b 0 + c 1 a n-1 b 1 + c 2 a n-2 b 2 + .... + c n-1 a 1 b n-1 + c n a 0 b n ,
где числа c 0 , c 1 , c 2 ,...., c n-1 , c n взяты с (n + 1) ряда треугольника Паскаля.

Пример 1 Возведите в степень: (u - v) 5 .

Решение У нас есть (a + b) n , где a = u, b = -v, и n = 5. Мы используем 6-й ряд треугольника Паскаля:
1 5 10 10 5 1
Тогда у нас есть
(u - v) 5 = 5 = 1 (u) 5 + 5 (u) 4 (-v) 1 + 10 (u) 3 (-v) 2 + 10 (u) 2 (-v) 3 + 5 (u)(-v) 4 + 1 (-v) 5 = u 5 - 5u 4 v + 10u 3 v 2 - 10u 2 v 3 + 5uv 4 - v 5 .
Обратите внимание, что знаки членов колеблются между + и -. Когда степень -v есть нечетным числом, знак -.

Пример 2 Возведите в степень: (2t + 3/t) 4 .

Решение У нас есть (a + b) n , где a = 2t, b = 3/t, и n = 4. Мы используем 5-й ряд треугольника Паскаля:
1 4 6 4 1
Тогда мы имеем

Разложение бинома используя значения факториала

Предположим, что мы хотим найти значение (a + b) 11 . Недостаток в использовании треугольника Паскаля в том, что мы должны вычислить все предыдущие строки треугольника, чтобы получить необходимый ряд. Следующий метод позволяет избежать этого. Он также позволяет найти определенную строку - скажем, 8-ю строку - без вычисления всех других строк. Этот метод полезен в вычислениях, статистике и он использует биномиальное обозначение коэффициента .
Мы можем сформулировать бином Ньютона следующим образом.

Бином Ньютона с использованием обозначение факториала

Для любого бинома (a + b) и любого натурального числа n,
.

Бином Ньютона может быть доказан методом математической индукции. Она показывает почему называется биноминальным коэффициентом .

Пример 3 Возведите в степень: (x 2 - 2y) 5 .

Решение У нас есть (a + b) n , где a = x 2 , b = -2y, и n = 5. Тогда, используя бином Ньютона, мы имеем


Наконец, (x 2 - 2y) 5 = x 10 - 10x 8 y + 40x 6 y 2 - 80x 4 y 3 + 80x 2 y 4 - 35y 5 .

Пример 4 Возведите в степень: (2/x + 3√x ) 4 .

Решение У нас есть (a + b) n , где a = 2/x, b = 3√x , и n = 4. Тогда, используя бином Ньютона, мы получим


Finally (2/x + 3√x ) 4 = 16/x 4 + 96/x 5/2 + 216/x + 216x 1/2 + 81x 2 .

Нахождение определенного члена

Предположим, что мы хотим определить тот или иной член термин из выражения. Метод, который мы разработали, позволит нам найти этот член без вычисления всех строк треугольника Паскаля или всех предыдущих коэффициентов.

Обратите внимание, что в биноме Ньютона дает нам 1-й член, дает нам 2-й член, дает нам 3-й член и так далее. Это может быть обощено следующим образом.

Нахождение (k + 1) члена

(k + 1) член выражения (a + b) n есть .

Пример 5 Найдите 5-й член в выражении (2x - 5y) 6 .

Решение Во-первых, отмечаем, что 5 = 4 + 1. Тогда k = 4, a = 2x, b = -5y, и n = 6. Тогда 5-й член выражения будет

Пример 6 Найдите 8-й член в выражении (3x - 2) 10 .

Решение Во-первых, отмечаем, что 8 = 7 + 1. Тогда k = 7, a = 3x, b = -2 и n = 10. Тогда 8-й член выражения будет

Общее число подмножеств

Предположим, что множество имеет n объектов. Число подмножеств, содержащих k элементов есть . Общее число подмножеств множества есть число подмножеств с 0 элементами, а также число подмножеств с 1 элементом, а также число подмножеств с 2-мя элементами и так далее. Общее число подмножеств множества с n элементами есть
.
Теперь давайте рассмотрим возведение в степень (1 + 1) n:

.
Так. общее количество подмножеств (1 + 1) n , или 2 n . Мы доказали следующее.

Полное число подмножеств

Полное число подмножеств множества с n элементами равно 2 n .

Пример 7 Сколько подмножеств имеет множество {A, B, C, D, E}?

Решение Множество имеет 5 элементов, тогда число подмножеств равно 2 5 , или 32.

Пример 8 Сеть ресторанов Венди предлагает следующую начинку для гамбургеров:
{кетчуп, горчица, майонез, помидоры, салат, лук, грибы, оливки, сыр }.
Сколько разных видов гамбургеров может предложить Венди, исключая размеры гамбургеров или их количество?

Решение Начинки на каждый гамбургер являются элементами подмножества множества всех возможных начинок, а пустое множество это просто гамбургер. Общее число возможных гамбургеров будет равно

. Таким образом, Венди может предложить 512 различных гамбургеров.

Треугольник Паскаля

Введение 3

1.Определение треугольника Паскаля 4

2.Построение треугольника Паскаля 6

3.Свойства треугольника Паскаля и их применения 7

4.Применение свойств треугольника Паскаля 13

Заключение 16

Список использованной литературы 17

Треугольник Паскаля так прост,

что выписать его сможет даже

десятилетний ребенок.

В тоже время он таит в себе

неисчерпаемые сокровища и связывает

воедино различные аспекты математики,

не имеющие на первый взгляд между

собой ничего общего.

Столь необычные свойства позволяют

наиболее изящных схем

во всей математике".
Мартин Гарднер

"Математические новеллы"

Введение

В школьном курсе алгебры рассматриваются формулы сокращенного умножения второй и третей степени, но меня заинтересовала задача возведение двучлена в более высокую степень.

Изучая треугольник Паскаля знакомимся с множеством интересных и удивительных свойств. Применение этих свойств поможет при решение задач комбинаторики. Изучение этих свойств и их применение рассмотрено в данной работе.

  1. Определение треугольника Паскаля

Треугольник Паскаля - арифметический треугольник, образованный биномиальными коэффициентами. Назван в честь Блеза Паскаля, данный треугольник представлен на рисунке 1.

Если очертить треугольник Паскаля, то получится равнобедренный треугольник. В этом треугольнике на вершине и по бокам стоят единицы. Каждое число равно сумме двух, расположенных над ним чисел. Продолжать треугольник можно бесконечно. Строки треугольника симметричны относительно вертикальной оси. Имеет применение в теории вероятности и обладает занимательными свойствами.

Рисунок 1 Треугольник Паскаля
Из истории.

Первое упоминание треугольной последовательности биномиальных коэффициентов под названием meru-prastaara встречается в комментарии индийского математика X века Халаюдхи к трудам другого математика, Пингалы. Треугольник исследуется также Омаром Хайямом около 1100 года, поэтому в Иране эту схему называют треугольником Хайяма. В 1303 году была выпущена книга «Яшмовое зеркало четырёх элементов» китайского математика Чжу Шицзе, в которой был изображен треугольник Паскаля на одной из иллюстраций; считается, что изобрёл его другой китайский математик, Ян Хуэй (поэтому китайцы называют его треугольником Яна Хуэя). Данный треугольник приведен на рисунке 2. На титульном листе учебника арифметики, написанном в 1529 году Петром Апианом, астрономом из Ингольтштадского университета, также изображён треугольник Паскаля. А в 1653 году (в других источниках в 1655 году) вышла книга Блеза Паскаля «Трактат об арифметическом треугольнике».

Рисунок 2 Треугольник Яна Хуэя в китайском средневековом манускрипте, 1303 год

  1. Построение треугольника Паскаля

Треугольник Паскаля часто выписывают в виде равнобедренного треугольника рисунок 3, в котором на вершине и по боковым сторонам стоят единицы, каждое из остальных чисел равно сумме двух чисел, стоящих над ним слева и справа в предшествующей строке. Треугольник можно продолжать неограниченно. Он обладает симметрией относительно вертикальной оси, проходящей через его вершину.

Рисунок 3 Треугольник Паскаля

  1. Свойства треугольника Паскаля и их применения

1 - Второе число каждой строки соответствует её номеру.
2 - Третье число каждой строки равно сумме номеров строк, ей предшествующих.
3 – Треугольник Паскаля представляет собой различные системы измерения пространства:

одномерное, двухмерное, трехмерное, четырехмерное и т.д. На рисунке 4 каждая зеленая линия показывает пространство, т.е. то количество шаров которые можно выложить друг под другом.

Рисунок 4 Треугольник Паскаля

3.1 – Одномерное пространство - первая зеленая линия

Это треугольные числа в одномерном пространстве - сколько бы шаров мы не взяли - больше одного расположить не сможем.

3.2. – Двухмерное пространство – вторая зеленая линия

Треугольное число - это число кружков, которые могут быть расставлены в форме равностороннего треугольника, смотри рисунок 5.

Рисунок 5 Треугольное число

Последовательность треугольных чисел для n = 0, 1, 2, … начинается так:

0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120

Классический пример треугольных чисел встречающихся в повседневной жизни – это начальная расстановка шаров в бильярде, представлена на рисунке 6.

Рисунок 6 Треугольные числа на бильярдном столе
3.3 – Трехмерное пространство это третья зеленая линия.

Это треугольные числа в трехмерном пространстве т.е. один шар мы можем положить на три – итого четыре, под три подложим шесть, представлено на рисунке 7.

Рисунок 7 Расположение четырех шаров в трехмерном пространстве
4 - Сумма чисел n-й восходящей диагонали, проведенной через строку треугольника с номером n − 1, есть n-е число Фибоначчи:

Числа Фибоначчи - элементы числовой последовательности

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946,…

в которой каждое последующее число равно сумме двух предыдущих чисел. Название по имени средневекового математика Леонардо Пизанского (известного как Фибоначчи).

Более формально, последовательность чисел Фибоначчи задается линейным рекуррентным соотношением:

Иногда числа Фибоначчи рассматривают и для отрицательных номеров n как двусторонне бесконечную последовательность, удовлетворяющую тому же рекуррентному соотношению. Члены с такими номерами легко получить с помощью эквивалентной формулы «назад»: F n = F n + 2 − F n + 1


n

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

8

9

10

F n

-55

34

-21

13

-8

5

-3

2

-1

1

0

1

1

2

3

5

8

13

21

34

55

5 - Если вычесть из центрального числа в строке с чётным номером соседнее число из той же строки, то получится число Каталана.

Числа Катала́на - числовая последовательность, встречающаяся в многих задачах комбинаторики. Последовательность названа в честь бельгийского математика Каталана, хотя была известна ещё Л. Эйлеру.

Первые несколько чисел Каталана:

1, 1, 2, 5, 14, 42, 132, 429, 1430,…

Числа Каталана удовлетворяют рекуррентному соотношению

И для
6 - Сумма чисел n-й строки треугольника Паскаля равна 2 n .
7 - Простые делители чисел треугольника Паскаля образуют симметричные самоподобные структуры.

Рассмотрите треугольник, построенный "относительно" числа 7, то есть, числа, не делящиеся на 7 без остатка, нарисованы черным цветом, делящиеся - белым, и попробуем увидеть закономерность.

Рисунок 8 Треугольник Паскаля относительно делителя 7

8 - Если в треугольнике Паскаля все нечётные числа окрасить в чёрный цвет, а чётные - в белый, то образуется треугольник Серпинского. Данный треугольник представлен на рисунке 9.

Рисунок 9 Треугольник Серпинского

  1. Применение свойств треугольника Паскаля


  1. Предположим, что вы входите в город как показано на схеме синей стрелкой, и можете двигаться только вперед, точнее, все время выбирая, вперед налево, или вперед направо. Узлы, в которые можно попасть только единственным образом, отмечены зелеными смайликами, точка, в которую можно попасть двумя способами, показана красным смаликом, а тремя, соответственно, розовым. Это один из вариантов построения треугольника, предложенный Гуго Штейнгаузом в его классическом "Математическом калейдоскопе".


  1. Практическая значимость треугольника Паскаля заключается в том, что с его помощью можно запросто восстанавливать по памяти не только известные формулы квадратов суммы и разности, но и формулы куба суммы (разности), четвертой степени и выше.
Например, четвертая строчка треугольника как раз наглядно демонстрирует биномиальные коэффициенты для бинома четвертой степени:

Альтернатива треугольнику Паскаля:

перемножить почленно четыре скобки:

вспомнить разложение бинома Ньютона четвертой степени:

общий член разложения бинома n-й степени: ,

где Т – член разложения; – порядковый номер члена разложения.


  1. Используя свойства треугольника Паскаля мы можем вычислить сумму чисел натурального ряда. Например: нам необходимо вычислить сумму натурального ряда от 1 до 9. "Спустившись" по диагонали до числа 9, мы увидим слева снизу от него число 45. Оно то и дает искомую сумму.

Заключение

В работе приведены треугольник Паскаля, его интересные и удивительные свойства. Треугольник Паскаля применяется при решении различных алгебраических задач.

Данная работа позволяет научиться возводить двучлен в любую целую положительную степень, познакомиться с биномом Ньютона.

Список использованной литературы


  1. В.А. Успенский Популярные лекции по математике «Треугольник Паскаля» Главная редакция физико-математической литературы Москва «Наука» 1979г..

  2. Квант «Треугольник Паскаля».

  3. В. Байдикова Вариации на тему «Треугольник Паскаля»

  4. Энциклопедия юного математика.

  5. О. В. Кузьмин Треугольник и пирамида Паскаля: свойства и обобщения

Числовой треугольник Паскаля

В верхней строчке треугольника располагается одинокая единица. В остальных строках каждое число является суммой двух своих соседей этажом выше - слева и справа. Если какой-то из соседей отсутствует, он считается равным нулю. Треугольник бесконечно простирается вниз; мы приводим лишь восемь верхних строчек: 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 …

Обозначим буквой n номер строки треугольника, а буквой k - номер числа в строке (нумерация начинается в обоих случаях с нуля). Чаще всего число в n -ой строке и на k -ом месте в этой строке обозначается C n k , реже - n k .

Назовём лишь некоторые факты, относящиеся к треугольнику Паскаля.

Числа в n -ой строке треугольника являются биномиальными коэффициентами , то есть коэффициентами в разложении n -ой степени бинома Ньютона : a + b n = ∑ k = 0 n C n k ⁢ a k ⁢ b n − k .

Сумма всех чисел в n -ой строке равна n -ой степени двойки: ∑ k = 0 n C n k = 2 n . Эта формула получается из формулы бинома, если положить a = b = 1 .

Можно доказать явную формулу для вычисления биномиального коэффициента: C n k = n ! k ! ⁢ n − k ! .

Если строки в треугольнике Паскаля выровнять по левому краю, то суммы чисел, расположенных вдоль диагоналей, идущих слева направо и снизу вверх, равны числам Фибоначчи - 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 … (каждое число в этой последовательности равно сумме двух предыдущих, а начинают последовательность две единицы): 1 ⬃ 1 2 1 ⬃ ⬃ 3 5 1 1 ⬃ ⬃ 8 13 1 2 1 ⬃ ⬃ 21 34 1 3 3 1 ⬃ ⬃ 55 89 1 4 6 4 1 ⬃ ⬃ 144 233 1 5 10 10 5 1 ⬃ ⬃ 377 610 1 6 15 20 15 6 1 ⬃ ⬃ 987 1597 1 7 21 35 35 21 7 1 ⬃ ⬃ 2584 4181 … ⬃ ⬃

Если раскрасить нечётные числа в треугольнике Паскаля в один цвет, а чётные - в другой, получится такая картина (на рисунке 10.1. «Треугольник Паскаля - Серпинского» указанным образом раскрашены числа в первых 128 строчках):


Похожее изображение можно построить следующим образом. В закрашенном треугольнике перекрасим в другой цвет его серединный треугольник (образованный серединами сторон исходного). Три маленьких треугольника, расположенные по углам большого, останутся закрашенными в прежний цвет. Поступим с каждым из них точно так же, как мы поступили с большим, то есть перекрасим в каждом серединный треугольник. То же самое сделаем с оставшимися треугольниками старого цвета. Если эту процедуру проделывать до бесконечности, на месте исходного треугольника останется двухцветная фигура. Та её часть, которая не перекрашена, называется треугольником Серпинского . Несколько первых этапов построения треугольника Серпинского показаны на рисунке 10.2. «Построение треугольника Серпинского» .


Важным свойством треугольника Серпинского является его самоподобие - ведь он состоит из трёх своих копий, уменьшенных в два раза (это части треугольника Серпинского, содержащиеся в маленьких треугольниках, примыкающих к углам). Самоподобие - одно из характерных свойств фракталов , о которых мы ещё поговорим в главе 44. «L-системы » . Треугольник Серпинского также будет упомянут в этой главе.

О таинственной связи треугольника Паскаля с простыми числами мы вычитали в книге в небольшой заметке Ю. Матиясевича . Заменим в треугольнике Паскаля числа на их остатки от деления на номер строки. Расположим строки в полученном треугольнике таким образом, чтобы следующая строка начиналась на две колонки правее начала предыдущей (см. рисунок 10.3. «Связь треугольника Паскаля с простыми числами»). Тогда столбцы с простыми номерами будут состоять из одних нулей, а в столбцах, чьи номера составные, найдётся ненулевое число.