Тригонометрические неравенства примеры решения tg. Тригонометрические неравенства

Неравенства – это соотношения вида a › b, где a и b – есть выражения, содержащие как минимум одну переменную. Неравенства могут быть строгими — ‹, › и нестрогими — ≥, ≤.

Тригонометрические неравенства представляют собой выражения вида: F(x) › a, F(x) ‹ a, F(x) ≤ a, F(x) ≥ a, в которых F(x) представлено одной или несколькими тригонометрическими функциями.

Примером простейшего тригонометрического неравенства является: sin x ‹ 1/2. Решать подобные задачи принято графически, для этого разработаны два способа.

Способ 1 — Решение неравенств с помощью построения графика функции

Чтобы найти промежуток, удовлетворяющий условиям неравенство sin x ‹ 1/2, необходимо выполнить следующие действия:

  1. На координатной оси построить синусоиду y = sin x.
  2. На той же оси начертить график числового аргумента неравенства, т. е. прямую, проходящую через точку ½ ординаты ОY.
  3. Отметить точки пересечения двух графиков.
  4. Заштриховать отрезок являющийся, решением примера.

Когда в выражении присутствуют строгие знаки, точки пересечения не являются решениями. Так как наименьший положительный период синусоиды равен 2π, то запишем ответ следующим образом:

Если знаки выражения нестрогие, то интервал решений необходимо заключить в квадратные скобки — . Ответ задачи можно также записать в виде очередного неравенства:

Способ 2 — Решение тригонометрических неравенств с помощью единичной окружности

Подобные задачи легко решаются и с помощью тригонометрического круга. Алгоритм поиска ответов очень прост:

  1. Сначала стоит начертить единичную окружность.
  2. Затем нужно отметить значение аркфункции аргумента правой части неравенства на дуге круга.
  3. Нужно провести прямую проходящую через значение аркфункции параллельно оси абсциссы (ОХ).
  4. После останется только выделить дугу окружности, являющуюся множеством решений тригонометрического неравенства.
  5. Записать ответ в требуемой форме.

Разберем этапы решения на примере неравенства sin x › 1/2. На круге отмечены точки α и β – значения

Точки дуги, расположенные выше α и β, являются интервалом решения заданного неравенства.

Если нужно решить пример для cos, то дуга ответов будет располагаться симметрично оси OX, а не OY. Рассмотреть разницу между интервалами решений для sin и cos можно на схемах приведенных ниже по тексту.

Графические решения для неравенств тангенса и котангенса будут отличаться и от синуса, и от косинуса. Это обусловлено свойствами функций.

Арктангенс и арккотангенс представляют собой касательные к тригонометрической окружности, а минимальный положительный период для обеих функций равняется π. Чтобы быстро и правильно пользоваться вторым способом, нужно запомнить на какой из оси откладываются значения sin, cos, tg и ctg.

Касательная тангенс проходит параллельно оси OY. Если отложить значение arctg a на единичном круге, то вторая требуемая точка будет расположено в диагональной четверти. Углы

Являются точками разрыва для функции, так как график стремится к ним, но никогда не достигает.

В случае с котангенсом касательная проходит параллельно оси OX, а функция прерывается в точках π и 2π.

Сложные тригонометрические неравенства

Если аргумент функции неравенства представлен не просто переменной, а целым выражением содержащим неизвестную, то речь уже идет о сложном неравенстве. Ход и порядок его решения несколько отличаются от способов описанных выше. Допустим необходимо найти решение следующего неравенства:

Графическое решение предусматривает построение обычной синусоиды y = sin x по произвольно выбранным значениям x. Рассчитаем таблицу с координатами для опорных точек графика:

В результате должна получиться красивая кривая.

Для простоты поиска решения заменим сложный аргумент функции

Решать неравенства с тангенсом мы будем с помощью единичной окружности.

Алгоритм решения неравенств с тангенсом:

  1. перерисовываем клише, изображённое на вышестоящем рисунке;
  2. на линии тангенса отмечаем $a$ и проводим до этой точки из начала координат прямую;
  3. точка пересечения этой прямой с полуокружностью будет закрашенной, если неравенство нестрогое и не закрашенное, если строгое;
  4. область будет находится снизу от прямой и до окружности, если неравенство содержит знак “$>$”, и снизу прямой и до окружности, если неравенство содержит знак “$<$”;
  5. для нахождения точки пересечения, достаточно найти арктангенс $a$, т.е. $x_{1}={\rm arctg} a$;
  6. в ответ выписывается полученный промежуток, добавляя к концам $+ \pi n$.

Примеры решения неравенств с помощью алгоритма.

Пример 1: Решить неравенство:

${\rm tg}{x} \leq 1.$

Таким образом, решение примет вид:

$x \in \left(-\frac{\pi}{2} + \pi n; \frac{\pi}{4} + \pi n\right], \ n \in Z.$

Важно! Точки $-\frac{\pi}{2}$ и $\frac{\pi}{2}$ у тангенса всегда (независимо от знака неравенства) выколоты!

Пример 2: Решить неравенство:

${\rm tg}{x} > – \sqrt{3}.$

Отмечаем на линии тангенса точку $- \sqrt{3}$ и проводим прямую из начала координат до неё. Точка пересечения этой прямой с полуокружностью будет не закрашенной, так как неравенство строгое. Область будет находится выше прямой и до окружности, так как знак неравенства $>$. найдём точку пересечения:

$x_{1} = {\rm arctg}{\left(-\sqrt{3}\right)} = -\frac{\pi}{3}.$

$t \in \left(-\frac{\pi}{3} + \pi n; \frac{\pi}{2} + \pi n\right).$

Возвращаемся к исходной переменной:

$\left(2x-\frac{\pi}{3}\right) \in \left(-\frac{\pi}{3} + \pi n; \frac{\pi}{2} + \pi n\right).$

Последнее равносильно системе неравенств

$\left\{\begin{array}{c} 2x-\frac{\pi}{3} > -\frac{\pi}{3} + \pi n, \\ 2x-\frac{\pi}{3} < \frac{\pi}{2}+\pi n, \end{array} \right.$

решив которую мы получим ответ. Действительно,

$\left\{\begin{array}{c} 2x > \pi n, \\ 2x < \frac{5 \pi}{6} + \pi n, \end{array} \right.$

$\left\{\begin{array}{c} x > \frac{\pi n}{2}, \\ x < \frac{5\pi}{12}+\frac{\pi n}{2}. \end{array} \right. $

И окончательно получаем:

$x \in \left(\frac{\pi n}{2}; \frac{5\pi}{12} + \frac{\pi n}{2}\right), \ n \in Z.$

Неравенства, содержащие тригонометрические функции, при решении сводятся к простейшим неравенствам вида cos(t)>a, sint(t)=a и подобным. И уже простейшие неравенства решаются. Рассмотрим на различных примерах способы решения простейших тригонометрических неравенств.

Пример 1 . Решить неравенство sin(t) > = -1/2.

Рисуем единичную окружность. Так как sin(t) по определению - это координата y, отмечаем на оси Оу точку у =-1/2. Проводим через неё прямую, параллельную оси Ох. В местах пересечения прямой с графиком единичной окружности отмечаем точки Pt1 и Pt2. Соединяем двум отрезками начало координат с точками Pt1 и Pt2.

Решением данного неравенства будут все точки единичной окружности расположенные выше данных точек. Другими словами решением будет являться дуга l.. Теперь необходимо указать условия, при которых произвольная точка будет принадлежать дуге l.

Pt1 лежит в правой полуокружности, её ордината равна -1/2, тогда t1=arcsin(-1/2) = - pi/6. Для описания точки Pt1 можно записать следующую формулу:
t2 = pi - arcsin(-1/2) = 7*pi/6. В итоге получаем для t следующее неравенство:

Мы сохраняем знаки неравенств. А так как функция синус функция периодичная, значит решения будут повторяться через каждые 2*pi. Это условие добавляем к полученному неравенству для t и записываем ответ.

Ответ: -pi/6+2*pi*n < = t < = 7*pi/6 + 2*pi*n, при любом целом n.

Пример 2. Решить неравенство cos(t) <1/2.

Нарисуем единичную окружность. Так как согласно определению cos(t) это координата х, отмечаем на грфике на оси Ох точку x = 1/2.
Проводим через эту точку прямую, параллельную оси Оу. В местах пересечения прямой с графиком единичной окружности отмечаем точки Pt1 и Pt2. Соединяем двум отрезками начало координат с точками Pt1 и Pt2.

Решениями будут все точки единичной окружности, которые принадлежать дуге l.. Найдем точки t1 и t2.

t1 = arccos(1/2) = pi/3.

t2 = 2*pi - arccos(1/2) = 2*pi-pi/3 = 5*pi/6.

Получили неравенство для t: pi/3

Так как косинус - это функция периодичная, то решения будут повторяться через каждые 2*pi. Это условие добавляем к полученному неравенству для t и записываем ответ.

Ответ: pi/3+2*pi*n

Пример 3. Решить неравенство tg(t) < = 1.

Период тангенса равняется pi. Найдем решения, которые принадлежат промежутку (-pi/2;pi/2) правая полуокружность. Далее воспользовавшись периодичностью тангенса, запишем все решения данного неравенства. Нарисуем единичную окружность и отметим на ней линию тангенсов.

Если t будет являться решение неравенства, то ордината точки Т = tg(t) должна быть меньше или равна 1. Множество таких точек будет составлять луч АТ. Множество точек Pt, которые будут соответствовать точкам этого луча - дуга l. Причем, точка P(-pi/2) не принадлежит этой дуге.