Туннельный микроскоп. Туннельный микроскоп как инструмент нанотехнологий

С помощью сканирующего туннельного микроскопа можно разглядеть отдельные атомы вещества без обычного в таких исследованиях вакуума и при комнатной температуре.

Сканирующий туннельный микроскоп (СТМ), созданный 30 лет назад в лаборатории IBM в Цюрихе, с тех пор удерживает пальму первенства по разрешению среди прочих микроскопических методов - ведь он может «рассмотреть» отдельные атомы вплоть до водорода. И не просто рассмотреть – с помощью СТМ можно измерить электронную структуру поверхности, и даже «подвинуть» молекулу или даже отдельный атом.

Устройство сканирующего туннельного микроскопа.

Модификация зонда с помощью фуллерена.

Сканирование поверхности эпитаксиального графена с помощью модифицированного зонда.

Сканирование поверхности дисульфида молибдена с помощью модифицированного зонда.

Принцип работы СТМ основан на эффекте квантового туннелирования. В необычном мире квантовой механики электрону соответствует волновая функция. Она описывает распределение вероятности того, что электрон находится в определённом месте с определённой энергией – в пределах принципа неопределённости Гейзенберга. То есть невозможно определить положение или момент частицы с абсолютной точностью. Таким образом, если электрон находится рядом с потенциальным барьером (в случае туннельного микроскопа роль такого барьера играет промежуток между кончиком зонда и поверхностью), то существует конечная вероятность, что электрон может оказаться по другую сторону этого барьера – на поверхности образца. То есть, вопреки нашей «макро-интуиции», если бросить мячик-электрон об стенку-барьер, то он не отскочит, а туннелирует сквозь стенку и продолжит движение по другую её сторону.

Туннельный эффект сканирующего туннельного микроскопа позволяет изучать как топологию и структуру поверхности микроскопируемого образца, так и её химического состава (см. Рис.1). Прибор «сканирует» поверхность с помощью находящегося под напряжением зонда–иглы, тонкого настолько, что на его кончике умещаются всего несколько атомов. При расстоянии между зондом и поверхностью порядка 0,4–0,7 нм электрон туннелирует на поверхность образца. Ток таких электронов зависит от напряжения на зонде, локальной плотности состояний конкретного атома поверхности, а так же от расстояния между зондом и поверхностью (в последнем случае возникает экспоненциальная зависимость).

У СТМ есть два режима сканирования. При одном из них система обратной связи поддерживает заданное значение туннельного тока, и топография поверхности воспроизводится на основе последовательности движения зонда. При втором режиме зонд сохраняет заданное расстояние от поверхности, и микроскоп отслеживает изменения туннельного тока. В обоих случаях положение зонда отслеживается с помощью пьезо-элементов. Пьезоэлектриками называют материалы, которые меняют свой размер в зависимости от проходящего через них тока (и наоборот – при изменении размера в них меняется ток). Поскольку они обладают сверхточным откликом, они служат распространённым инструментом для очень точного перемещения объектов.

Обычно сканирование проходит в несколько этапов. Сначала, чтобы получить представление о топологии поверхности на данном участке, делается общий скан площадью порядка 1–1,5 микрон. Потом обследуется участок размером около 100 нм, выбранный на основе предыдущего скана, и так далее, пока не мы не дойдём уже до непосредственных измерений того, что нам нужно. Это может быть замер расстояний между атомами, изучение структуры поверхности, карта плотности атомных состояний; с помощью микроскопа можно также манипулировать конкретным атомом или молекулой. Разрешение СТМ в таких измерениях – около Ангстрема (0,1 нм) в плоскости и 0,01 нм в глубину.

Недавно было показано, что добавление некоторых молекул на кончик зонда СТМ улучшает разрешение микроскопа и его химический контраст. Обычно такие измерения проходят в ультраглубоком вакууме, при крайне низких (криогенных) температурах (4–100 градусов выше абсолютного нуля) и требуют идеально чистой поверхности. Такие эксперименты очень трудоёмки – например, ко всему прочему образцы приходится выращивать прямо внутри микроскопа, – и на каждое измерение уходит много времени.

Если бы СТМ удалось приспособить к комнатной температуре, это сильно помогло бы многим физикам, в том числе тем, кто работает с двухмерными кристаллами – графеном и многообещающим семейством дихалькогенидов переходных металлов. Их активно исследуют по всему миру, поскольку такие двухмерные кристаллы в перспективе позволят создавать наноэлектронику атомарной толщины с чётко определённой электронной структурой. В плане электронных и оптоэлектронных свойств интересны не только отдельные двухмерные кристаллы, но и так называемые гетероструктуры Ван дер Ваальса: «слоёный пирог» из графена, нитрида бора и вышеупомянутых дихалькогенидов.

Петер Нирмалрадж (Peter Nirmalraj ) из лаборатории IBM и его коллеги из Швейцарии, Ирландии и США разработал метод, позволяющий наблюдать поверхности в атомном разрешении при комнатной температуре. Исследователи модифицировали зонд СТМ, «прицепив» к нему фуллерен С 60 (который представляет собой шарообразную молекулу из 60 атомов углерода диаметром около 1 нм, похожую по структуре на футбольный мяч). Погружая зонд в силиконовое масло (вязкая неполярная химически инертная жидкость), мы стабилизируем фуллерен, и он дольше держится на кончике зонда. В то же время масло отлично защищает поверхность образца от воздействия атмосферы без необходимости откачивать камеру для измерений до ультраглубокого вакуума.

Как же посадить молекулу из 60 атомов на кончик зонда диаметром сопоставимого размера? Для этого на заранее подготовленную подложку наносится раствор, содержащий фуллерены заданного размера. Высушенная подложка сканируется с помощью зонда (см. Рис.2, над сканом указан туннельный ток во время измерения и напряжение на зонде). Кончик иглы приближается к выбранному фуллерену и «огибает» его, как показано на иллюстрации. При правильно подобранной комбинации напряжения на зонде и туннельного тока фуллерен цепляется за зонд. Затем делается тестовый скан того же участка, чтобы убедиться в правильной работе модифицированного зонда, и можно менять подложку с фуллеренами на кювету с образцами, погруженными в масло.

Гибридный зонд протестировали на образцах графена и дисульфида молибдена MoS 2 – популярного представителя дихалькогенидов переходных металлов. Измерения показали, что с такой конфигурацией микроскопа можно детально изучить структуру поверхности и точно определить длину межатомных связей – не хуже, чем при низкой температуре в вакууме.

Образец графена для эксперимента вырастили на поверхности кристалла карбида кремния (SiC) с помощью эпитаксии (то есть последовательного выращивания одного кристалла на поверхности другого). На Рис.3 хорошо видна граница между двухслойным и однослойным графеном, и чётко различимы атомы углерода в решётке из «сот». Также хорошо видна типичная «рябь» на поверхности однослойного графена – она стабилизирует двухмерную структуру и обычно не оказывает существенного влияния на электронные свойства.

На Рис.4 показаны измерения MoS 2 (его химическая структура изображена в виде шариков, соединённых «палочками» химической связи). На предварительном скане хорошо видна слоистость кристалла, и можно точно измерить толщину каждого слоя. Также видна периодическая «сетка Муара», которая возникает из-за несовпадения постоянной решётки MoS 2 и подложки из золота, на которой его растили. Для сравнения, период сетки Муара составляет около 32 Ангстрем (3,2 нм), тогда как постоянная решётки MoS 2 составляет 3,2 Ангстрема. Полностью результаты работы опубликованы в Nature Communications .

Главное же здесь в том, что зонд для СТМ с фуллереном смог правильно измерить межатомные расстояния и толщину слоёв графена и дисульфида молибдена. Это означает, что измерения при комнатной температуре и с погружением зонда в силиконовое масло не уступают результатам, полученным в вакууме и при низкой температуре. Помимо электронных свойств самих материалов и наноустройств их них, важным фактором является стабильность на воздухе, поскольку подобные структуры могут легко окисляться. Чтобы выбрать наиболее перспективные материалы и их комбинации для потенциальных приложений, наряду с электронными и структурными свойствами, важно оценить воздействие атмосферы и растворителей на кристаллическую и электронную структуру, и метод Петера Нирмалраджа позволяет провести такие измерения сравнительно легко и быстро.

сканирующая туннельная микроскопия; в ней между электропроводящим острием и образцом приложено небольшое напряжение (~0.01-10 В) и регистрируется туннельный ток в зазоре, зависящий от свойств и расположения атомов на исследуемой поверхности образца.

Очень важно, что помимо исследовательских функций сканирующая туннельная микроскопия может выполнять еще и активные - обеспечивать захват отдельных атомов, перенос их в новую позицию, атомарную сборку проводников шириной в один атом, локальные химические реакции, манипулирование отдельными молекулами.

Сканирующий туннельный микроскоп (СТМ) исторически является предшественником всех сканирующих зондовых микроскопов. СТМ был первым устройством, давшим реальные изображения поверхностей с атомным разрешением.

В качестве зонда в СТМ используется острая проводящая игла. Между острием иглы и образцом прикладывается рабочее напряжение, и при подводе острия к образцу примерно до 0,5–1,0 нм электроны с образца начинают “туннелировать” через зазор к острию, или наоборот, в зависимости от полярности рабочего напряжения. На основании данных о токе туннелирования в СТМ проводится визуализация топографии. Чтобы происходило туннелирование, как образец, так и острие должны быть проводниками или полупроводниками. Изображений непроводящих материалов СТМ дать не может.

Останавливаясь на физических принципах, положенных в основу работы СТМ, отметим, что процесс туннелирования электронов происходит при перекрытии волновых функций атомов острия сканирующей иглы и поверхности. Туннельный ток между двумя металлическими телами описывается уравнением I = 10exp[–C (z ) 1/2 ]. При типичной высоте потенциального барьера  = 4 эВ туннельный ток снижается на порядок, если зазор z уменьшается на 0,1 нм. Эти свойства и являются причиной того, что острие туннельного микроскопа обычно должно находится так близко к образцу – на расстоянии 0,5–1 нм. Экспоненциальная зависимость туннельного тока от расстояния придает СТМ очень высокую чувствительность: считается, что с помощью туннелирования можно измерять объекты порядка 0,001 нм. Схема работы сканирующего туннельного микроскопа

Основное приложение СТМ – это измерения топографии. Именно благодаря своей чрезвычайно высокой чувствительности СТМ способен формировать изображения поверхностей с субангстремной точностью по вертикали и атомным латеральным (т.е. в горизонтальном направлении) разрешением.

Существуют два варианта конструкции СТМ в зависимости от режима сканирования образцов. В режиме постоянной высоты острие иглы перемещается в горизонтальной плоскости над образцом, а ток туннелирования изменяется. Исходя из данных о величинах тока туннелирования, промеренных в каждой точке сканирования поверхности образца, строится образ топографии.

Схема работы СТМ: а – в режиме постоянной высоты; б – в режиме постоянного тока

В режиме постоянного тока СТМ задействуется система обратной связи для поддержания постоянного тока туннелирования путем подстройки высоты сканирующего устройства над поверхностью в каждой точке. Например, когда система детектирует увеличение туннельного тока, то она подстраивает напряжение, прикладываемое к пьезоэлектрическому сканирующему устройству, так, чтобы отвести острие дальше от образца. В режиме постоянного тока визуализация топографии осуществляется на основании данных о величине вертикальных перемещений сканирующего устройства. Если система поддерживает ток туннелирования постоянным в пределах нескольких процентов, то расстояние между острием и образцом будет постоянным с погрешностью в несколько сотых ангстрема.

У каждого режима есть преимущества и недостатки. Режим постоянной высоты более быстрый, так как системе не приходится передвигать сканирующее устройство вверх и вниз, но при этом можно получить полезную информацию только с относительно гладких поверхностей. В режиме постоянного тока можно с высокой точностью измерять нерегулярные поверхности, но измерения занимают больше времени.

Сканирующая туннельная спектроскопия (СТС) является наряду с измерениями топографии другой важной областью приложения СТМ. В первом приближении образ, составленный из значений тока туннелирования, отражает топографию поверхности образца. Если же говорить более точно, туннельный ток соответствует электронной плотности состояний поверхности. В действительности СТМ регистрирует количество заполненных или незаполненных электронных состояний вблизи поверхности Ферми в диапазоне значений энергии, определяемом прикладываемым рабочим напряжением. Можно сказать, что СТМ измеряет скорее не физическую топографию, а поверхность постоянной вероятности туннелирования.

Туннельный эффектявляется принципиально квантовомеханическим эффектом, не имеющим аналога в классической физике, и потому представляет огромный интерес. Он основан на корпускулярно - волновом дуализме - двойственной природе элементарных частиц (рис. 5).

С точки зрения классической механики, очевидно, что никакое материальное тело, имеющее энергию E, не может преодолеть потенциальный барьер высотой V0 , если V0>E. Например, если принять за материальное тело мяч, а за потенциальный барьер – очень высокий бетонный забор, то понятно, что если кинуть мяч в сторону забора недостаточно высоко – так, что его энергии не хватит на перелет стоящего перед ним барьера, то он, ударившись о преграду, отскочит назад. Однако если в качестве материального тела рассмотреть электрон, то оказывается, что даже если высота потенциально го барьера выше, чем собственная энергия электрона, то он с определенной вероятностью может оказаться с другой стороны барьера, лишь незначительно изменив свою энергию, как если бы в “заборе” оказалась некая “дырка” или туннель. Это является следствием того, что электрону присущи как корпускулярные, так и волновые свойства. Будь электрон классической частицей, обладающей энергией E, он, встретив на своем пути преграду, требующую для преодоления большей энергии, должен был бы отразиться от этой преграды. Однако, будучи одновременно и волной, он проходит сквозь эту преграду, подобно тому, как рентгеновские волны свободно проходят сквозь материальные объекты.

Классическая частица, обладающая полной энергией E и находящаяся в потенциальном поле, может пребывать лишь в тех областях пространства, в которых ее полная энергия не превышает потенциальную энергию U взаимодействия с полем. Поскольку волновая функция квантовой частицы отлична от нуля во всем пространстве и вероятность нахождения частицы в определенной области пространства задается квадратом модуля волновой функции, то и в запрещенных (с точки зрения классической механики) областях волновая функция отлична от нуля.

Таким образом, над поверхностью любого проводника или полупроводника всегда наблюдается некоторое количество свободных электронов, “вышедших” за его пределы не в результате термоэлектронной эмиссии, а благодаря туннельному эффекту. Если взять два проводящих вещества, расположить их на расстоянии 0,5 нм друг от друга и приложить к ним сравнительно малую разность потенциалов (0,1_1 В), то между ними возникнет электрический ток, обусловленный туннельным эффектом, который называется туннельным током.

Если повторить тот же опыт, но к поверхности интересующего тела поднести острый предмет, например, очень тонкую иглу с кончиком в атом толщиной, то, проводя ею над изучаемым объектом (сканируя его поверхность) можно получать ин формацию о строении объекта на атомном уровне.



В туннельном сканирующем микроскопе система пьезокристаллов, управляемая компьютером, обеспечивает трехкоординатное перемещение металлического зонда на расстоянии порядка 0,1 HM от исследуемой поверхности. Между ней и зондом прикладывают напряжение около 1 В и регистрируют возникающий туннельный ток. Компьютер управляет вертикальным перемещением зонда так, чтобы ток поддерживался на заданном постоянном уровне, и горизонтальными перемещениями по осям c и у (сканированием). Воспроизводимое на дисплее семейство кривых, отвечающих перемещениям зонда, является изображением эквипотенциальной поверхности, поэтому атомы изображаются полусферами различных радиусов.

Достоинства метода сканирующей микроскопии: сверхвысокое разрешение (атомного порядка, 10-2 нм); возможность размещать образец не в вакууме (как в электронных микроскопах), а в обычной воздушной среде при атмосферном давлении, в атмосфере инертного газа и даже в жидкости, что особенно важно для изучения гелеобразных и макромолекулярных структур (белков, ДНК, РНК, вирусов).

Сканирующий зондовый микроскоп

Наиболее молодое и вместе с тем перспективное направление в исследовании свойств поверхности - сканирующая зондовая микроскопия. Зондовые микроскопы имеют рекордное разрешение - менее 0,1 нм Они могут измерить взаимодействие между поверхностью и сканирующим ее микроскопическим острием - зондом - и выводят трехмерное изображение на экран компьютера.

Методы зондовой микроскопии позволяют не только видеть атомы и молекулы, но и воздействовать на них. При этом - что особенно важно - объекты могут изучаться не обязательно в вакууме (что обычно для электронных микроскопов), но и в различных газах и жидкостях.

Изобрели зондовый - сканирующий туннельный микроскоп в 1981 году сотрудники Исследовательского центра фирмы ИБМ Г. Биннинг и X. Рорер (США) Через пять лет за это изобретение они были удостоены Нобелевской премии.

Биннинг и Рорер попытались сконструировать прибор для исследования участков поверхности размером менее 10 нм. Итог превзошел самые смелые ожидания: ученым удалось увидеть отдельные атомы, размер которых в поперечнике составляет лишь около одного нм. Очень тонкое металлическое острие - отрицательно заряженный зонд - подводится на близкое расстояние к образцу, тоже металлическому, заряженному положительно. В тот момент, когда"расстояние между ними достигнет несколько межатомных расстояний, электроны начнут свободно проходить через него - "туннелировать": через зазор потечет ток

Важное значение для работы микроскопа имеет резкая зависимость силы туннельного тока от расстояния между острием и поверхностью образца. При уменьшении зазора всего на 0,1 нм ток возрастет примерно в 10 раз. Поэтому даже неровности размером с атом вызывают заметные колебания величины тока.

Чтобы получить изображение, зонд сканирует поверхность, а электронная система считывает величину тока. В зависимости от того, как эта величина меняется, острие либо опускается или поднимается. Таким образом, система поддерживает величину тока постоянной, а траектория движения острия повторяет рельеф поверхности, огибая возвышенности и углубления (рис. 6).

Острие перемещает пьезосканер, который представляет собой манипулятор из материала, способного изменяться под действием электрического напряжения. Пьезосканер чаще всего имеет форму трубки с несколькими электродами, которая удлиняется или изгибается, перемещая зонд по разным направлениям с точностью до тысячных долей нанометра

Схема работы сканирующего туннельного микроскопа

Рабочим органом СТМ - зондом - служит токопроводящая металлическая игла. Зонд подводится к изучаемой поверхности на очень близкое расстояние (~0,5 нм) и при подаче на зонд постоянного напряжения между ними возникает туннельный ток.

Острие перемещает пьезосканер, который представляет собой манипулятор из материала, способного изменяться под действием электрического напряжения. Пьезосканер чаще всего имеет форму трубки с несколькими электродами, которая удлиняется или изгибается, перемещая зонд по разным направлениям с точностью до тысячных долей нанометра.

При качественном рассмотрении барьер можно считать прямоугольным с эффективной высотой, равной средней работе выхода материалов:

Как известно из квантовой механики, вероятность туннелирования электрона (коэффициент прохождения) через одномерный барьер прямоугольной формы равна

где A 0 - амплитуда волновой функции электрона, движущегося к барьеру; At -амплитуда волновой функции электрона, прошедшего сквозь барьер; k – константа затухания волновой функции в области, соответствующей потенциальному барьеру; ΔZ - ширина барьера. Для туннельного контакта двух металлов константу затухания можно представить в виде

где m - масса электрона, ϕ * - средняя работа выхода электрона, h – постоянная Планка. При приложении к туннельному контакту разности потенциалов V между зондом и образцом появляется туннельный ток.

Информация о движении острия преобразуется в изображение поверхности, которое строится по точкам на экране. Участки разной высоты для наглядности окрашиваются в различные цвета.

В идеале на конце острия зонда должен находиться один неподвижный атом. Если же на конце иглы случайно оказалось несколько выступов, изображение может двоиться, троиться. Для устранения дефекта иглу травят в кислоте, придавая ей нужную форму.

Более подробно формирование изображения с помощью сканирующего туннельного микроскопа приведено на рис. 7.


Рис.7 . Формирование СТМ изображений поверхности по методу постоянного туннельного тока (а) и постоянного среднего расстояния (б)

При исследовании атомарно гладких поверхностей часто более эффективным оказывается получение СТМ изображения поверхности по методу постоянной высоты Z = const . В этом случае зонд перемещается над поверхностью на расстоянии нескольких ангстрем, при этом изменения туннельного тока регистрируются в качестве СТМ изображения поверхности (рис. 7 (б)). Сканирование производится либо при отключенной обратной связью (ОС), либо со скоростями, превышающими скорость реакции ОС, так что ОС отрабатывает только плавные изменения рельефа поверхности. В данном способе реализуются очень высокие скорости сканирования и высокая частота получения СТМ изображений, что позволяет вести наблюдение за изменениями, происходящими на поверхности, практически в реальном времени. Высокое пространственное разрешение СТМ определяется экспоненциальной зависимостью туннельного тока от расстояния до поверхности. Разрешение в направлении по нормали к поверхности достигает долей ангстрема. Латеральное же разрешение зависит от качества зонда и определяется, в основном, не макроскопическим радиусом кривизны кончика острия, а его атомарной структурой. При правильной подготовке зонда на его кончике с большой вероятностью находится либо одиночный выступающий атом, либо небольшой кластер атомов, который локализует его на размерах, много меньших, чем характерный радиус кривизны острия. Действительно, туннельный ток протекает между поверхностными атомами образца и атомами зонда. Атом, выступающий над поверхностью зонда, находится ближе к поверхности на расстояние, равное величине периода кристаллической решетки. Поскольку зависимость туннельного тока от расстояния экспоненциальная, то ток в этом случае течет, в основном, между поверхностью образца и выступающим атомом на кончике зонда.

Рис. 8. Реализация атомарного разрешения в сканирующем туннельном микроскопе

С помощью таких зондов удается получать пространственное разрешение вплоть до атомарного, что продемонстрировано многими исследовательскими группами на образцах из различных материалов.

С помощью туннельного микроскопа удалось сделать ряд открытий. Например, обнаружили, что атомы на поверхности кристалла расположены не так, как внутри, и часто образуют сложные структуры.

С помощью туннельного микроскопа можно изучать лишь проводящие ток объекты. Однако он позволяет наблюдать и тонкие диэлектрики в виде пленки, когда их помещают на поверхность проводящего материала. И хотя этот эффект еще не нашел полного объяснения, тем не менее его с успехом применяют для изучения многих органических пленок и биологических объектов - белков, вирусов.

Возможности микроскопа велики. С помощью иглы микроскопа даже наносят рисунки на металлические пластины. Для этого используют в качестве "пишущего" материала отдельные атомы - их осаждают на поверхность или удаляют с нее. Таким образом, в 1991 году сотрудники фирмы ИБМ написали атомами ксенона на поверхности никелевой пластины название своей фирмы - IBM. Букву "I" составили всего 9 атомов, а буквы "В" и "М" - 13 атомов каждую.

Атомно-силовые микроскопы (ACM)

Сканирование в контакте с образцом довольно часто приводит к его деформации и разрушению. Воздействие зонда на поверхность может быть полезным, например, при изготовлении микросхем. Однако зонд способен легко порвать тонкую полимерную пленку или повредить бактерию, вызвав ее гибель. Чтобы избежать этого, кантилевер приводят в резонансные колебания вблизи поверхности и регистрируют изменение амплитуды, частоты или фазы колебаний, вызванных взаимодействием с поверхностью. Такой метод позволяет изучать живые микробы колеблющаяся игла действует на бактерию, как легкий массаж, не причиняя вреда и позволяя наблюдать за ее движением, ростом и делением

В 1987 году И. Мартин и К. Викрамасингх (США) предложили в качестве зондирующего острия использовать намагниченную микроиглу. В результате появился магнитно-силовой микроскоп.

Такой микроскоп позволяет разглядеть отдельные магнитные области в материале - домены - размером до 10 нм. Его также применяют и для сверхплотной записи информации, формируя на поверхности пленки домены с помощью полей иглы и постоянного магнита. Подобная запись в сотни раз плотнее, чем на современных магнитных и оптических дисках.

На самом деле, туннельный микроскоп, в отличие от привычного оптического, не дает в прямом смысле увеличенное изображение объекта. Удивительная трехмерная картинка с атомами – всего лишь интерпретация результатов взаимодействия иглы и поверхности образца, график, показывающий, как меняется ток при движении иглы параллельно поверхности.

На рис. 7 показано изображение, полученные в СТМ.



СТМ имеет одно существенное ограничение: объект исследования должен быть проводящим – металл или полупроводник, иначе не будет туннельного тока. Получается, что в туннельный микроскоп нельзя «рассмотреть» ни один изолятор, например алмаз. Пока осваивали туннельный метод, появилась новая идея: в 1986 году Биннинг предложил вариант микроскопа, названного атомно-силовым.

Лекция 7 (2 часа). Атомно-силовой микроскоп

Принципы действия атомно-силового и туннельного мик­роскопов практически одинаковы, только в отличие от тун­нельного работа атомно-силового микроскопа основана на ис­пользовании сил межатомных связей. На малых расстояниях (около 0,1 нм) между атомами двух тел действуют силы отталки­вания, а на больших - силы притяжения.

В сканирующем атомно-силовом микроскопе такими тела­ми служат исследуемая поверхность и скользящее над нею ост­рие. В качестве зонда в АСМ обычно используется алмазная иг­ла. При изменении силы F, действующей между поверхностью и острием, пружинка, на которой оно закреплено, отклоняется, и это регистрируется датчиком. Величина отклонения упругого элемента (пружинки) несет информацию о рельефе поверхности.

В общем, туннельный и атомно-силовой микроскопы очень похожи, но у них есть одно важное отличие - конструкция иглы. В туннельном игла принципиально закреплена очень жестко и никогда не должна касаться поверхности, а в атомно-силовом обязательно на упругом подвесе (кантилевере) и может работать даже в прямом контакте с образцом. Для СТМ чем острее игла, тем лучше, а в атомно-силовом микроскопе слишком острая игла будет давать слишком маленький сигнал, который трудно зарегистрировать. Первое время кантилеверы для АСМ делали из золотой фольги с алмазным наконечником или из бытовой алюминиевой фольги с вольфрамовой проволочкой, а потом перешли на кремниевые, которые широко используются до сих пор. Колебания кантилевера регистрируют с помощью напыленного на него маленького, зеркальца.

Атомно-силовой микроскоп (АСМ) был изобретён в 1986 году Гердом Биннигом, Кэлвином Куэйтом и Кристофером Гербером. В основе работы АСМ лежит силовое взаимодействие между зондом и поверхностью, для регистрации которого используются специальные зондовые датчики, представляющие собой упругую консоль с острым зондом на конце (рис. 7). Сила, действующая на зонд со стороны поверхности, приводит к изгибу консоли. Регистрируя величину изгиба, можно контролировать силу взаимодействия зонда с поверхностью.

По мере приближения иглы к поверхности ее атомы все сильней притягиваются к атомам образца. Сила притяжения будет возрастать, пока игла и поверхность не сблизятся нас­только, что их электронные облака начнут отталкиваться элект­ростатически. При дальнейшем сближении электростатическое отталкивание экспоненциально ослабляет силу притяжения. Эти силы уравновешиваются на расстоянии между атомами около 0,2 нм.


Рис.11. Схематическое изображение зондового датчика АСМ

Качественно работу АСМ можно пояснить на примере сил Ван-дер-Ваальса.

Наиболее часто энергию ван-дер-ваальсова взаимодействия двух атомов, находящихся на расстоянии r друг от друга, аппроксимируют степенной функцией – потенциалом Леннарда-Джонса:

Первое слагаемое в данном выражении описывает дальнодействующее

притяжение, обусловленное, в основном, диполь - дипольным взаимодействием атомов. Второе слагаемое учитывает отталкивание атомов на малых расстояниях. Параметр ro – равновесное расстояние между атомами, 0 U - значение энергии в минимуме, (рис.12).


Рис. 12. Качественный вид потенциала Леннарда – Джонса

Потенциал Леннарда-Джонса позволяет оценить силу взаимодействия зонда с образцом. Общую энергию системы можно получить, суммируя элементарные взаимодействия для каждого из атомов зонда и образца, (рис.12).


Рис. 13. К расчету энергии взаимодействия зонда и образца

Тогда для энергии взаимодействия получаем:

где n (r) S и n (r") P - плотности атомов в материале образца и зонда.

Соответственно сила, действующая на зонд со стороны поверхности, может быть вычислена следующим образом:

В общем случае данная сила имеет как нормальную к поверхности, так и латеральную (лежащую в плоскости поверхности образца) составляющие. Реальное взаимодействие зонда с образцом имеет более сложный характер, однако основные черты данного взаимодействия сохраняются - зонд АСМ испытывает притяжение со стороны образца на больших расстояниях и отталкивание на малых.

Лекция 8 (2ч.). Средства сканирования поверхности. Разновидности АСМ .

Получение АСМ изображений рельефа поверхности связано с регистрацией малых изгибов упругой консоли зондового датчика. В атомно-силовой микроскопии для этой цели широко используются оптические методы (рис. 14).


Рис. 14. Схема оптической регистрации изгиба консоли зондового датчика АСМ

Оптическая система АСМ юстируется таким образом, чтобы излучение

полупроводникового лазера фокусировалось на консоли зондового датчика, а

отраженный пучок попадал в центр фоточувствительной области фотоприемника. В качестве позиционно - чувствительных фотоприемников применяются четырехсекционные полупроводниковые фотодиоды.


Рис. 15. Соответствие между типом изгибных деформаций консоли зондового датчика и изменением положения пятна засветки на фотодиоде

Основные регистрируемые оптической системой параметры - это деформации изгиба консоли под действием Z-компонент сил притяжения или отталкивания (FZ ) и деформации кручения консоли под действием латеральных компонент сил (FL ) взаимодействия зонда с поверхностью. Если обозначить исходные значения фототока в секциях фотодиода через I01, I02, I03, I04 , а через I1, I2, I3, I4 - значения токов после изменения положения консоли, то разностные токи с различных секций фотодиода ΔIi = Ii - I0i будут однозначно характеризовать величину и направление изгиба консоли зондового датчика АСМ. Действительно, разность токов вида

пропорциональна изгибу консоли под действием силы, действующей по нормали к поверхности образца (рис. 15 (а)).

А комбинация разностных токов вида

характеризует изгиб консоли под действием латеральных сил (рис. 15 (б)). Величина ΔI Z используется в качестве входного параметра в петле обратной

связи атомно-силового микроскопа. Система обратной связи (ОС) обеспечивает Δ I Z = const с помощью пьезоэлектрического исполнительного

элемента, который поддерживает изгиб консоли ΔZ равным величине ΔZ 0, задаваемой оператором

Рис. 16. Упрощенная схема организации обратной связи в атомно-силовом микроскопе

При сканировании образца в режиме ΔZ = const зонд перемещается вдоль поверхности, при этом напряжение на Z-электроде сканера записывается в память компьютера в качестве рельефа поверхности Z = f (x,y ). Пространственное разрешение АСМ определяется радиусом закругления зонда и чувствительностью системы, регистрирующей отклонения консоли. В настоящее время реализованы конструкции АСМ, позволяющие получать атомарное разрешение при исследовании поверхности образцов.

Поскольку АСМ не требует, чтобы образцы были проводящими, он позволяет исследовать свойства проводников и изоляторов, молекул ДНК и других мягких материалов.

Сегодня СТМ и АСМ уже стали широко распространенными исследовательскими инструментами. Появилась целая индустрия, где можно найти всё: от игл и кантилеверов до сложных исследовательских комплексов. И тем не менее работа с туннельным микроскопом, как и 20 лет назад, остается уделом профессиональных физиков. Чтобы получить даже на фирменном СТМ за полмиллиона долларов изображение какого-нибудь необычного материала с разрешением в сотые доли ангстрема, потребуется немалое мастерство.

И все же туннельный микроскоп при достаточном умении и средствах не только наблюдать, но и создавать уникальные картины. Когда напряжение между иглой образцом и иглой несколько больше, чем в рабочем режиме туннелирования, атом образца (на самом деле ион) может «перескочить» на иглу. Сменив напряжение, можно заставить его «спрыгнуть» обратно. Если в промежутке между этими событиями игла сдвинулась, атом вернется уже на другое место. Подучается, что можно как угодно манипулировать атомами! Всё, что для этого нужно, - хороший туннельный микроскоп, охлажденный до нескольких градусов выше абсолютного нуля (чтобы атомы не разбегались под действием теплового движения), подходящая игла и масса терпения. Первыми продемонстрировали ловкость рук сотрудники IBM. Они выложили логотип своей фирмы атомами ксенона на поверхности никеля (рис. 17).

Рис. 17. Логотип IBM из атомов ксенона

С тех пор прошло уже больше 15 лет, но до сих пор такое развлечение могут себе позволить всего лишь несколько исследовательских групп в мире.

Атомно-силовая микроскопия оказалась настолько эффективной, что на ее основе были созданы другие специфические методики, позволяющие получать картины не только рельефа поверхности, но и многих других показателей. В частности, на сегодняшний день наиболее распространены следующие разновидности АСМ:

1. Магнитно-силовой микроскоп (МСМ) в качестве зонда использует намагниченное острие. Его взаимодействие с поверхностью образца позволяет регистрировать магнитные микрополя и представлять их в качестве карты намагниченности.

2. Электро-силовой микроскоп (ЭСМ) - в нем острие и образец рассматриваются как конденсатор, и измеряется изменение ёмкости вдоль поверхности образца.

3. Сканирующий тепловой микроскоп регистрирует распределение температуры по поверхности образца. Его разрешение достигает порядка 50 нм, так как в меньших масштабах такая макроскопическая характеристика вещества как температура не применима.

4. Сканирующий фрикционный микроскоп "скребется" по поверхности, составляя карту сил трения.

5. Магниторезонансный микроскоп позволяет получать изображение спинов отдельных электронов, отслеживая реакцию поверхности на быстро изменяющееся магнитное поле зонда.

6. Атомно-силовой акустический микроскоп позволяет очень точно измерять модуль Юнга в каждой точке как мягких, так и твердых образцов. Одним из недостатков АСМ является невозможность изучить глубинную структуру образца - ведь зонд скользит по поверхности и не может заглянуть внутрь. Однако и это ограничение удалось обойти - ученые уже построили настоящий дизассемблер, названный трехмерным атомно-зондовым томографом, который сканирует небольшой участок, потом «выщипывает» слой толщиной в один атом и сканирует участок снова, записывая параметры каждого нового атома. Современные томографы успевают «выщипать» 20.000 атомов в секунду - т.е. 72 миллиона атомов в час.

Нанотехнология - это технология общего назначения, то есть она применима во всех сферах производства, как то в:

1. Материаловедении;

2. Авиации и космонавтики;

3. Электроники, компьютерных технологиях, робототехнике;

4. Промышленности;

5. Вооружении;

6. Медицине;

Схема работы сканирующего туннельного микроскопа:
control voltages of piezotube ;
piezoelectric tube with electrodes - трубка с электродами;
tunneling current amplifier - амперметр для измерения величины туннельного тока ;
distance control and scanning unit - модуль для перемещения иглы и контроля расстояния игла-образец;
tip - игла;
sample - образец, карту рельефа которого требуется построить;
tunneling voltage ;
data processing and display - модуль для обработки результатов измерений и вывода карты рельефа

Сканирующий туннельный микроскоп (СТМ, англ. STM - scanning tunneling microscope ) - вариант сканирующего зондового микроскопа , предназначенный для измерения рельефа проводящих поверхностей с высоким пространственным разрешением.

Принцип работы

В СТМ острая металлическая игла подводится к образцу на расстояние нескольких ангстрем (0.1 нм ). При подаче на иглу относительно образца небольшого потенциала возникает туннельный ток . Величина этого тока экспоненциально зависит от расстояния образец-игла. Типичные значения силы тока - 1-1000 при расстояниях образец-игла около 1 . Сканирующий туннельный микроскоп первый из класса сканирующих зондовых микроскопов ; атомно-силовой и сканирующий ближнепольный оптический микроскопы были разработаны позднее.

В процессе сканирования игла движется вдоль поверхности образца, туннельный ток поддерживается стабильным за счёт действия обратной связи, и показания следящей системы меняются в зависимости от топографии поверхности. Такие изменения фиксируются, и на их основе строится карта высот. Другая методика предполагает движение иглы на фиксированной высоте над поверхностью образца. В этом случае фиксируется изменение величины туннельного тока и на основе данной информации идёт построение топографии поверхности .

Устройство

Сканирующий туннельный микроскоп (СТМ) включает следующие элементы:

  • зонд (иглу),
  • систему перемещения зонда относительно образца по двум (X-Y) или трём (X-Y-Z) координатам,
  • регистрирующую систему.

Регистрирующая система фиксирует значение функции, зависящей от величины тока между иглой и образцом, либо перемещения иглы по оси Z. Обычно регистрируемое значение обрабатывается системой отрицательной обратной связи, которая управляет положением образца или зонда по одной из координат (Z). В качестве системы обратной связи чаще всего используется ПИД-регулятор . Ограничения на использование метода накладываются, во-первых, условием проводимости образца (поверхностное сопротивление должно быть не больше 20 Ом /см ² ), во-вторых, условием «глубина канавки должна быть меньше её ширины», потому что в противном случае может наблюдаться туннелирование с боковых поверхностей. Но это только основные ограничения. На самом деле их намного больше. Например, технология заточки иглы не может гарантировать одного острия на конце иглы, а это может приводить к параллельному сканированию двух разновысотных участков. Кроме ситуации глубокого вакуума , во всех остальных случаях мы имеем на поверхности осаждённые из воздуха частицы, газы и т. д. Технология грубого сближения также оказывает колоссальное влияние на действительность полученных результатов. Если при подводе иглы к образцу мы не смогли избежать удара иглы о поверхность, то считать иглу состоящей из одного атома на кончике пирамиды будет большим преувеличением.

История создания

Сканирующий туннельный микроскоп (СТМ) в современном виде изобретен в 1981 году (принципы этого класса приборов были заложены ранее другими исследователями)

Сканирующая туннельная микроскопия (STM) - это рабочий режим сканирующего зондового микроскопа SPM-ХЕ. STM является предшественником всех сканирующих зондовых микроскопов. Он был изобретен в 1981 Гердом Биннигом (Gerd Binnig) и Генрихом Рорером (Heinrich Rohrer) в компании IBM Zurich. Пять лет спустя они были удостоены нобелевской премии за свое изобретение по физике. STM явился первым микроскопом, который позволил получать изображения поверхности с очень точным, атомарным разрешением.

Работа сканирующей туннельной микроскопии и АСМ проводимости очень схожи за исключением то, что в STM используется заостренная проводящая игла вместо проводящего кантилевера, как в АСМ проводимости. Напряжение сдвига подается между зондом и образцом. Когда зонд приближается к поверхности на расстояние около 10 Å, электроны от образца начинают «проходить» через промежуток 10 Å в зонд или, наоборот, в зависимости от сдвига напряжения, как показано на рисунке 1. Результирующий туннельный ток меняется в зависимости от дистанции «зонд-образец». Образец и зонд должны быть проводниками или полупроводниками. STM не используется для создания изображений диэлектриков.

Рисунок 1. Схема системы СТМ серии XE

Рисунок 2. Сравнение методов (a) постоянной высоты и (b) постоянного туннельного тока для СТМ

Зависимость туннельного тока от дистанции является экспоненциальной. По квантовой теории механики туннельный ток (I t) вычисляется как:

I t = e -kd

где d - это дистанция между зондом и поверхностью образца.

Если расстояние между зондом и поверхностью образца изменяется на 10% (порядка 1 Å), туннельный ток изменяется на один порядок. Подобная экспоненциальная зависимость обеспечивает микроскопу STM превосходную чувствительность. СТМ способен изобразить поверхность образца с точностью в доли ангстрема в вертикальном направлении и с атомарным разрешением в латеральной плоскости.

В сканирующей туннельной микроскопии могут использоваться разные методы: получение «топографического» (при постоянном токе) изображения и разных напряжений сдвига; получение токовых сканов при разной, но постоянной, высоте сканирования; при линейном сдвиге напряжения и определенном расположении зонда в момент записи туннельного тока. Последний пример представляет собой кривую зависимости тока от напряжения (I-V) электронной структуры в конкретной точке XY поверхности образца. STM можно настроить для получения кривых I-V в каждой точке поверхности, чтобы иметь трехмерное изображение электронной структуры. При наличии в схеме синхронного усилителя можно получить зависимости dI/dV (проводимость) или dI/dz (рабочая функция) от V. Все указанные варианты зондирования электронной структуры поверхности применяют в микроскопе STM.

Схема методик измерений при постоянной высоте и постоянном токе показана на рисунке 2. В режиме постоянной высоты зонд перемещается в горизонтальной плоскости над поверхностью образца и туннельный ток изменяется в зависимости от рельефных и электронных свойств поверхности. Tуннельный ток измеряется в каждой точке поверхности образца, топографическое изображение поверхности представлено на рисунке 2 (a).

В режиме постоянного тока сканирующей туннельной микроскопии применяется обратная связь, которая поддерживает постоянное значение туннельного тока путем регулировки высоты сканера в каждой конкретной точке измерения, как показано на рисунке 2 (b). Например, когда система обнаруживает увеличение туннельного тока, она регулирует его с помощью Z- сканера путем увеличения дистанции между зондом и образцом. В режиме постоянного тока перемещение сканера обеспечивает получение перечня данных. Если система сохраняет туннельный ток постоянным с погрешностью в нескольких процентов, дистанция «зонд-образец» также будет постоянной в пределах нескольких сотен ангстрем. Каждый из двух методов имеет преимущества и недостатки. Режим постоянной высоты работает быстрее, так как система не перемещает сканер вверх-вниз, но он удобен только для изучения достаточно гладких поверхностей. Режим постоянного тока измеряет рельефность с высокой точностью, но требует больше времени.

После первой аппроксимацией сигнал туннельного тока создает топографическое изображение образца. Туннельный ток соответствует электронной плотности поверхности. STM чувствителен к количеству заполненных или незаполненных электронных уровней около уровня Ферми, в пределах энергетического ряда, определенного напряжением сдвига. Это больше, чем просто измерение физической топографии (рельефа), микроскоп измеряет саму возможность постоянного прохождения электронов для данной поверхности.

С пессимистической точки зрения чувствительность STM к местной электронной структуре может стать причиной сложностей, связанных с получением топографии. Например, если область образца покрыта окислами, туннельный ток стремительно падает, если зонд создает отверстие в поверхности.

С оптимистической точки зрения чувствительность СТМ к местной электронной структуре может иметь огромное преимущество. Другие методики для получения информации об электронных свойствах образца собирают данные с большой поверхности образца, от нескольких микрон до нескольких миллиметров. СТМ можно использоваться как инструмент для анализа поверхности, который сканирует электронные свойства поверхности образца с атомарной точностью. На рисунке 3 показана (a) топография и (b) STM изображение высокого порядка (HOPG).

Рисунок 3. (a) Топография и (b) STM изображение HOPG (размер скана 5 нм)

Для режимов XE-STM предлагается два токовых усилителя: «внутренний STM» и «внешний STM». «Внутренний STM» - это режим STM, в котором применяется токовый усилитель фиксированного усиления, размещенный в модуле головки с изменяемой длиной. Во «внутреннем STM» диапазон значений измеренного туннельного тока фиксирован, так как усиление постоянно. Во «внешнем STM» измеренный туннельный ток можно изменять благодаря переменному коэффициенту усиления. «Внешний STM» - это режим STM, в котором применяется внешний малошумный токовый усилитель с переменным усилением (см. «Внешний малошумный токовый усилитель»).

Режим спектроскопии «I/V» обеспечивает получение кривых зависимостей тока (I) от напряжения (V) для изучения электрических свойств поверхности образца. Кривая «I/V» - это график зависимости тока от напряжения зонда относительно образца.

Необходимые опции

Внутренний

  • Зонды STM и держатель зонда STM

Внешний

  • Зонды STM и держатель зондов STM
  • Внешний малошумный токовый усилитель
  • Модуль головки и несущий модуль