Уравнение равновесия пространственной системы сходящихся сил. Условия равновесия произвольной системы сил в векторной форме

Произвольную простран-ственную систему сил, как и плос-кую, можно привести к какому-нибудь центру О и заменить од-ной результирующей силой и парой с моментом . Рассуждая так, что для равновесия этой системы сил необходимо и достаточно, чтобы одновременно было R = 0 и M о = 0. Но векторы и могут обратиться в нуль только тогда, когда равны нулю все их проекции на оси координат, т. е. когда R x = R y = R z = 0 и M x = M y = M z = 0 или, когда дей-ствующие силы удовлетворяют условиям:

ΣX i = 0; ΣM x (P i ) = 0;

ΣY i = 0; ΣM y (P i ) = 0;

ΣZ i = 0; ΣM z (P i ) = 0.

Таким образом, для равновесия пространственной системы сил необходимо и достаточно, чтобы суммы проекций всех сил системы на каждую из координатных осей, а также суммы моментов всех сил системы относительно каждой из этих осей равнялись нулю.

Для получения более простых систем уравнений рекомендуется оси проводить так, чтобы они пересекали больше неизвестных сил или были к ним перпендикулярны (если это только излишне не усложняет вычисления проекций и моментов других сил).

Новым элементом в составлении уравнений является вычисление моментов сил относительно осей координат.

В случаях, когда из общего чертежа трудно усмотреть, чему равен момент данной силы относительно какой-нибудь оси, рекоменду-ется изобразить на вспомогательном чертеже проекцию рассматри-ваемого тела (вместе с силой) на плоскость, перпендикулярную к этой оси.

В тех случаях, когда при вычислении момента возникают затруд-нения в определении проекции силы на соответствующую плоскость или плеча этой проекции, реко-мендуется разложить силу на две взаимно перпендикулярные состав-ляющие (из которых одна парал-лельна какой-нибудь координат-ной оси), а затем воспользоваться теоремой Вариньона .

Пример 5. Рама АВ (рис.45) удерживается в равновесии шарниром А и стержнем ВС . На краю рамы находится груз весом Р . Опреде-лим реакции шарнира и усилие в стержне.


Рис.45

Рассматриваем равновесие рамы вместе с грузом.

Строим расчётную схему, изобразив раму свободным телом и показав все силы, действующие на неё: реакции связей и вес груза Р . Эти силы образуют систему сил, произвольно расположенных на плоскости.

Жела-тельно составить такие уравнения, чтобы в каждом было по одной неиз-вестной силе.

В нашей задаче это точка А , где приложены неизвестные и ; точка С , где пересекаются линии действия неизвестных сил и ; точка D - точка пересечения линий действия сил и . Со-ставим уравнение проекций сил на ось у (на ось х проектировать нельзя, т.к. она перпендикулярна прямой АС ).

И, прежде чем составлять уравнения, сделаем еще одно полезное заме-чание. Если на расчётной схеме имеется сила, расположенная так, что плечо её находится непросто, то при определении момента рекоменду-ется предварительно разложить вектор этой силы на две, более удобно направленные. В данной задаче разложим силу на две: и (рис.37) такие, что модули их

Составляем уравнения:

Из второго уравнения находим:

Из третьего

И из первого

Так как получилось S <0, то стержень ВС будет сжат.

Пример 6. Прямоугольная полка весом Р удерживается в гори-зонтальном положении двумя стержнями СЕ и СD , прикреплён-ными к стене в точке Е . Стержни одинаковой длины, AB = 2a , EO = a . Определим усилия в стержнях и ре-акции петель А и В .

Рис.46

Рассматриваем равновесие плиты. Строим расчётную схему (рис.46). Реакции петель принято показывать двумя силами перпенди-кулярными оси петли: .

Силы образуют систему сил, произвольно расположенных в про-странстве. Можем составить 6 уравнений. Неизвестных - тоже шесть.

Какие уравнения составлять - надо подумать. Желательно такие, чтобы они были попроще и чтобы в них было поменьше неизвестных.

Составим такие уравнения:

Из уравнения (1) получим: S 1 =S 2 . Тогда из (4): .

Из (3): Y A =Y B и, по (5), . Значит Из уравнения (6), т.к. S 1 =S 2 , следует Z A =Z B . Тогда по (2) Z A =Z B =P/4.

Из треугольника , где , следует ,

Поэтому Y A =Y B =0,25P, Z A =Z B 0,25P.

Для проверки решения можно составить ещё одно уравнение и по-смотреть, удовлетворяется ли оно при найденных значениях реакций:

Задача решена правильно.

Если система сил находится в равновесии, то ее главный вектор и главный момент равны нулю:

Эти векторные равенства приводят к следующим шести скалярным равенствам:

которые называются условиями равновесия пространственной произвольной системы сил.

Первые три условия выражают равенство нулю главного вектора, следующие три - равенство нулю главного момента системы сил.

В этих условиях равновесия должны учитываться все действующие силы - как активные (задаваемые), так и реакции связей. Последние заранее неизвестны, и условия равновесия становятся уравнениями для определения этих неизвестных - уравнениями равновесия.

Поскольку максимальное число уравнений равно шести, то в задаче на равновесие тела под действием произвольной пространственной систе-мы сил можно определить шесть неизвестных реакций. При большем количестве неизвестных задача становится статически неопределенной.

И еще одно замечание. Если главный вектор и главный момент относительно некоторого центра О равны нулю, то они будут равны нулю относительно любого другого центра. Это прямо следует из материала о перемене центра приведения (доказать самостоятельно). Следовательно, если условия равновесия тела выполняются в одной системе координат, то они будут выполняться и в любой другой неподвижной системе координат. Иными словами, выбор координатных осей при составлении уравнений равновесия совершенно произволен.

Прямоугольная плита (рис. 51, а) весом удерживается в горизонтальном положении сферическим шарниром О, подшипником А и тросом BE, причем точки находятся на одной вертикали. В точке D к плите приложена сила , перпендикулярная стороне OD и наклоненная к плоскости плиты под углом 45°. Определить натяжение троса и реакции опор в точках Он А, если и .

Для решения задачи рассматриваем равновесие плиты. К активным силам Р, G добавляем реакции связей - составляющие реакции сферического шарнира, реакции , подшипника, реакцию троса. Одновременно вводим координатные оси Oxyz (рис. 51, б). Видно, что полученная совокупность сил образует произвольную пространственную систему, в которой силы неизвестны.

Для определения неизвестных составляем уравнения равновесия.

Начинаем с уравнения проекций сил на ось :

Поясним определение проекции вычисление осуществляется в два приема- вначале определяется проекция силы Т на плоскость , далее, проектируя на осъ х (удобнее на ось , параллельную ), находим (см. рис. 51,б):

Этим способом двойного проектирования удобно пользоваться, когда линия действия силы и ось не пересекаются. Далее составляем:

Уравнение моментов сил относительно оси имеет вид:

Моменты сил в уравнении отсутствуют, так как эти силы либо пересекают ось х(), либо ей параллельны . В обоих этих случаях момент силы относительно оси равен нулю (см. с. 41).

Вычисление момента силы часто облегчается, если силу разложить подходящим образом на составляющие и воспользоваться теоремой Вариньона. В данном случае это удобно сделать для силы . Разлагая ее на горизонтальную и вертикальную составляющие, можем написать.

Случаю такого равновесия сил соответствуют два условия равновесия

М= Мо = 0, R* = 0.

Модули главного момента Мо и главного вектора R* рассматриваемой системы определяются по формулам

Mo= (M x 2 + M y 2 + +M z 2) 1/2 ; R*= (X 2 + Y 2 +Z 2) 1/2 .

Они раны нулю только при следующих условиях:

M x = 0, M y =0, M z = 0, X=0, Y=0, Z=0,

которым соответствуют шесть основных уравнений равновесия сил, произвольно расположенных в пространстве

=0; =0;

=0; (5-17)

=0 ; =0.

Три уравнения системы (5-17) слева называются уравнениями моментов сил относительно осей координат, а три справа- уравнениями проекций сил на оси.

При помощи этих формул уравнение моментов можно представить в виде

å (y i Z i - z i Y i)=0; å(z i Х i - x i Z i)=0 ; å(x i Y i - y i X i)=0 . (5-18)

где x i , y i , z i - координаты точек приложения силы Р; Y i , Z i , X i - проекции этой силы на оси координат, могущие иметь любые направления.

Существуют и другие системы шести уравнений равновесия сил, произвольно расположенных в пространстве.

Приведение системы сил к равнодействующей силе.

Если главный вектор системы сил R* не равен нулю, а главный момент Мо или равен нулю, или направлен перпендикулярно к главному вектору, то заданная система сил приводится к равнодействующей силе.

Возможны 2 случая.

1-й случай.

Пусть R*¹ 0; Mo = 0 . В этом случае силы приводят к равнодействующей, линия действия которой проходит через центр приведения О, а сила R* заменяет собой заданную систему сил, т.е. является ее равнодействующей.

2-й случай.

R*¹ 0; Mo¹ 0 и Мо R*. (рис.5.15).

После приведения системы сил к центру О получена сила R* , приложенная в этом центре и равная главному вектору сил, и пара сил, момент которой М равен главному моменту Мо всех сил относительно центра приведения, причем Мо R*.

Выберем силы этой пары R’ и R равными по модулю главному вектору R* , т.е. R= R’ = R*. Тогда плечо этой пары следует взять равным ОК= = М О /R* .Проведем через точку О плоскость I, перпендикулярную к моменту пары сил М . Пара сил R’ , R должна находиться в этой плоскости. Расположим эту пару так, чтобы одна из сил пары R’ была приложена в точке О и направлена противоположно силе R* . Восставим в плоскости I в точке О перпендикуляр к линии действия силы R* , и в точке К на расстоянии ОК= М О /R* от точки О приложим вторую силу пары R .

Отрезок ОК откладываем в такую сторону от точки О, чтобы, смотря навстречу вектору момента М, видеть пару стремящуюся вращать свою плоскость против движения часовой стрелки. Тогда силы R* и R’ , приложенные в точке О, уравновесятся, а сила R пары, приложенная в точке К, заменит собой заданную систему сил, т.е. будет ее равнодействующей. Прямая, совпадающая с линией действия этой силы, является линией действия равнодействующей силы. Рис. 5.15 показывает различие между равнодействующей силой R и силой R* , полученной при приведении сил к центру О.

Равнодействующая R системы сил, приложенная в точке К, имеющая определенную линию действия, эквивалентна заданной системе сил, т.е. заменяет собой эту систему.

Сила же R* в точке О заменяет заданную систему сил только в совокупности с парой сил с моментом М= Мо .

Силу R* можно приложить в любой точке тела, к которой приведены силы. От положения точки зависит только модуль и направление главного момента Мо .

Теорема Вариньона. Момент равнодействующей относительно любой точки равен геометрической сумме моментов составляющих сил относительно этой точки, а момент равнодействующей силы относительно любой оси равен алгебраической сумме моментов, составляющих сил относительно этой оси.

Рассмотрены методы решения задач на равновесие с произвольной пространственной системой сил. Приводится пример решения задачи на равновесие плиты, поддерживаемой стержнями в трехмерном пространстве. Показано, как за счет выбора осей при составлении уравнений равновесия, можно упростить решение задачи.

Содержание

Порядок решения задач на равновесие с произвольной пространственной системой сил

Чтобы решить задачу на равновесие твердого тела с произвольной пространственной системой сил, надо выбрать прямоугольную систему координат и, относительно нее, составить уравнения равновесия.

Уравнения равновесия, для произвольной системы сил, распределенных в трехмерном пространстве, представляют собой два векторных уравнения:
векторная сумма сил, действующих на тело, равна нулю
(1) ;
векторная сумма моментов сил, относительно начала координат, равна нулю
(2) .

Пусть Oxyz - выбранная нами система координат. Спроектировав уравнения (1) и (2) на оси этой системы, получим шесть уравнений:
суммы проекций сил на оси xyz равны нулю
(1.x) ;
(1.y) ;
(1.z) ;
суммы моментов сил относительно осей координат равны нулю
(2.x) ;
(2.y) ;
(2.z) .
Здесь мы считаем, что на тело действуют n сил, включая силы реакций опор.

Пусть произвольная сила , с компонентами , приложена к телу в точке . Тогда моменты этой силы относительно осей координат определяются по формулам:
(3.x) ;
(3.y) ;
(3.z) .

Таким образом, порядок решения задачи, на равновесие с произвольной пространственной системой сил, следующий.

  1. Отбрасываем опоры и заменяем их силами реакций. Если опорой является стержень или нить, то сила реакции направлена вдоль стержня или нити.
  2. Выбираем прямоугольную систему координат Oxyz .
  3. Находим проекции векторов сил на оси координат, , и точек их приложения, . Точку приложения силы можно перемещать вдоль прямой, проведенной через вектор силы. От такого перемещения значения моментов не изменятся. Поэтому выбираем наиболее удобные для расчета точки приложения сил.
  4. Составляем три уравнения равновесия для сил (1.x,y,z).
  5. Для каждой силы, по формулам (3.x,y,z), находим проекции моментов силы на оси координат.
  6. Составляем три уравнения равновесия для моментов сил (2.x,y,z).
  7. Если число переменных больше числа уравнений, то задача статически неопределима. Методами статики ее решить нельзя. Нужно использовать методы сопротивления материалов.
  8. Решаем полученные уравнения.

Упрощение расчетов

В некоторых случаях удается упростить вычисления, если вместо уравнения (2) использовать эквивалентное условие равновесия.
Сумма моментов сил относительно произвольной оси AA′ равна нулю :
(4) .

То есть можно выбрать несколько дополнительных осей, не совпадающих с осями координат. И относительно этих осей составить уравнения (4).

Пример решения задачи на равновесие произвольной пространственной системы сил

Равновесие плиты, в трехмерном пространстве, поддерживается системой стержней.

Найти реакции стержней, поддерживающих тонкую однородную горизонтальную плиту в трехмерном пространстве. Система крепления стержней показана на рисунке. На плиту действуют: сила тяжести G; и сила P, приложенная в точке A, направленная вдоль стороны AB.

Дано:
G = 28 kН ; P = 35 kН ; a = 7,5 м ; b = 6,0 м ; c = 3,5 м .

Решение задачи

Сначала мы решим эту задачу стандартным способом, применимым для произвольной пространственной системы сил. А затем получим более простое решение, основываясь на конкретной геометрии системы, за счет выбора осей при составлении уравнений равновесия.

Решение задачи стандартным способом

Этот метод хоть и приведет нас к довольно громоздким вычислениям, но он применим для произвольной пространственной системы сил, и может применяться в расчетах на ЭВМ.

Отбросим связи и заменим их силами реакций. Связями здесь являются стержни 1-6. Вводим вместо них силы , направленные вдоль стержней. Направления сил выбираем наугад. Если мы не угадаем с направлением какой-либо силы, то получим для нее отрицательное значение.

Проводим систему координат Oxyz с началом в точке O .

Находим проекции сил на оси координат.

Для силы имеем:
.
Здесь α 1 - угол между LQ и BQ . Из прямоугольного треугольника LQB :
м ;
;
.

Силы , и параллельны оси z . Их компоненты:
;
;
.

Для силы находим:
.
Здесь α 3 - угол между QT и DT . Из прямоугольного треугольника QTD :
м ;
;
.

Для силы :
.
Здесь α 5 - угол между LO и LA . Из прямоугольного треугольника LOA :
м ;
;
.

Сила направлена по диагонали прямоугольного параллелепипеда. Она имеет следующие проекции на оси координат:
.
Здесь - направляющие косинусы диагонали AQ :
м ;
;
;
.

Выбираем точки приложения сил. Воспользуемся тем, что их можно перемещать вдоль линий, проведенных через векторы сил. Так, в качестве точки приложения силы можно взять любую точку на прямой TD . Возьмем точку T , поскольку для нее x и z - координаты равны нулю:
.
Аналогичным способом выбираем точки приложения остальных сил.

В результате получаем следующие значения компонентов сил и точек их приложений:
; (точка B );
; (точка Q );
; (точка T );
; (точка O );
; (точка A );
; (точка A );
; (точка A );
; (точка K ).

Составляем уравнения равновесия для сил. Суммы проекций сил на оси координат равны нулю.

;

;

.

Находим проекции моментов сил на оси координат.
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;

Составляем уравнения равновесия для моментов сил. Суммы моментов сил относительно осей координат равны нулю.


;


;


;

Итак, мы получили следующую систему уравнений:
(П1) ;
(П2) ;
(П3) ;
(П4) ;
(П5) ;
(П6) .

В этой системе шесть уравнений и шесть неизвестных. Далее сюда можно подставить численные значения и получить решение системы, используя математическую программу вычисления системы линейных уравнений.

Но, для этой задачи, можно получить решение без использования средств вычислительной техники.

Эффективный способ решения задачи

Мы воспользуемся тем, что уравнения равновесия можно составлять не единственным способом. Можно произвольным образом выбирать систему координат и оси, относительно которых вычисляются моменты. Иногда, за счет выбора осей, можно получить уравнения, которые решаются более просто.

Воспользуемся тем, что, в равновесии, сумма моментов сил относительно любой оси равна нулю . Возьмем ось AD . Сумма моментов сил относительно этой оси равна нулю:
(П7) .
Далее заметим, что все силы, кроме пересекают эту ось. Поэтому их моменты равны нулю. Не пересекает ось AD только одна сила . Она также не параллельна этой оси. Поэтому, чтобы выполнялось уравнение (П7), сила N 1 должна равняться нулю:
N 1 = 0 .

Теперь возьмем ось AQ . Сумма моментов сил относительно нее равна нулю:
(П8) .
Эту ось пересекают все силы, кроме . Поскольку сила не параллельна этой оси, то для выполнения уравнения (П8) необходимо, чтобы
N 3 = 0 .

Теперь возьмем ось AB . Сумма моментов сил относительно нее равна нулю:
(П9) .
Эту ось пересекают все силы, кроме , и . Но N 3 = 0 . Поэтому
.
Момент от силы относительно оси равен произведению плеча силы на величину проекции силы на плоскость, перпендикулярную оси. Плечо равно минимальному расстоянию между осью и прямой, проведенной через вектор силы. Если закручивание происходит в положительном направлении, то момент положителен. Если в отрицательном - то отрицательный. Тогда
.
Отсюда
.

Остальные силы найдем из уравнений (П1), (П2) и (П3). Из уравнения (П2):
N 6 = 0 .
Из уравнений (П1) и (П3):
;

Таким образом, решая задачу вторым способом, мы использовали следующие уравнения равновесия:
;
;
;
;
;
.
В результате мы избежали громоздких расчетов, связанных с вычислениями моментов сил относительно осей координат и получили линейную систему уравнений с диагональной матрицей коэффициентов, которая сразу разрешилась.

N 1 = 0 ; N 2 = 14,0 kН ; N 3 = 0 ; N 4 = -2,3 kН ; N 5 = 38,6 kН ; N 6 = 0 ;

Знак минус указывает на то, что сила N 4 направлена в сторону, противоположную той, которая указана на рисунке.

20. Условие равновесия пространственной системы сил:

21. Теорема о 3-х непараллельных силах: Линии действия трёх непараллельных взаимно уравновешивающихся сил, лежащих в одной плоскости, пересекаются в одной точке.

22. Статически определимые задачи – это задачи, которые можно решать методами статики твёрдого тела, т.е. задачи, в которых число неизвестных не превышает числа уравнений равновесия сил.

Статически не определимые – это системы, в которых число неизвестных величин превышает число независимых уравнений равновесия для данной системы сил

23. Уравнения равновесия плоской системы параллельных сил:

AB не параллельно F i

24. Конус и угол трения: Предельное положение активных сил, под действием которых может иметь место равенство, описывает конус трения c углом (φ).

Если активная сила проходит вне этого конуса, то тогда равновесие невозможно.

Угол φ называют углом трения.

25. Указать размерность коэффициентов трения: коэффициенты трения покоя и трения скольжения-безразмерные величины, коэффициенты трения качения и трения верчения имеют размерность длины(мм,см,м).м

26. Основные допущения, принимаемые при расчёте плоских статически опред.ферм: -стержни фермы считают невесомыми; -крепления стержней в узлах фермы-шарнирные; -внешняя нагрузка накладывается только в узлах фермы; -стержень попадает под связь.

27. Какая связь между стержнями и узлами статически определимой фермы?

S=2n-3 –простая статически определимая ферма, S-количество стержней, n-количество узлов,

если S<2n-3 –не жесткая ферма, равновесие возможно, если внешние силы будут одинаково соотноситься

S>2n-3 – статически не определимая ферма, имеет лишние связи, +расчёт деформации

28. Статически определимая ферма должна удовлетворять условию: S=2n-3; S-количество стержней, n-количество узлов.

29. Метод вырезания узлов: Этот метод состоит в том, что мысленно вырезают узлы фермы, прикладывают к ним соответствующие внешние силы и реакции стержней и составляют уравнения равновесия сил, приложенных к каждому узлу. Условно предполагают, что все стрежни растянуты(реакции стержней направлены от узлов).

30. Метод Риттера: Проводим секущую плоскость, рассекающую ферму на 2 части. Сечение должно начинаться и заканчиваться за пределами фермы. В качестве объекта равновесия можно выбирать любую часть. Сечение проходит по стержням, а не по узлам. Силы, приложенные к объекту равновесия, образуют произвольную систему сил, для которой можно составить 3 уравнения равновесия. Поэтому сечение проводим так, чтобы в него попало не более 3 стержней, усилия в которых неизвестны.



Особенностью метода Риттера является выбор формы уравнения таким образом, чтобы в каждое уравнение равновесия входила одна неизвестная величина. Для этого определяем положения точек Риттера, как точек пересечения линий действия двух неизвестных усилий и записываем уравнения моментов отн. этих точек.

Если точка Риттера лежит в бесконечности, то в качестве уравнения равновесия составляем уравнения проекций на ось, перпендикулярную этим стержням.

31. Точка Риттера- точка пересечения линий действия двух неизвестных усилий. Если точка Риттера лежит в бесконечности, то в качестве уравнения равновесия составляем уравнения проекций на ось, перпендикулярную этим стержням.

32. Центр тяжести объемной фигуры:

33. Центр тяжести плоской фигуры:

34. Центр тяжести стержневой конструкции:

35. Центр тяжести дуги:

36. Центр тяжести кругового сектора:

37. Центр тяжести конуса:

38. Центр тяжести полушара:

39. Метод отрицательных величин: Если твёрд.тело имеет полости, т.е. полости из которых вынута их масса, то мы мысленно заполняем эти полости до сплошного тела, и определяем центр тяжести фигуры, взяв вес, объём, площадь полостей со знаком «-».

40. 1-й инвариант: 1-м инвариантом системы сил называют главные вектор системы сил. Главный вектор системы сил не зависит от центра приведения R=∑ F i

41. 2-й инвариант: Скалярное произведение главного вектора на главный момент системы сил для любого центра приведения есть величина постоянная.

42. В каком случае система сил приводится к силовому винту? В случае, если главный вектор системы сил и её главный момент относительно центра приведения не равны нулю и не перпендикулярны между собой, задан. систему сил можно привести к силовому винту.

43. Уравнение центральной винтовой оси:

44. M x - yR z + zR y = pR x ,
M y - zR x + xR z = pR y ,
M z - xR y + yR x = pR z

45. Момент пары сил как вектор- этот вектор перпендикулярен плоскости действия пары и направлен в сторону, откуда видно вращение пары против хода часовой стрелки. По модулю векторный момент равен произведению одной из сил пары на плечо пары. Векторный момент пары явл. свободным вектором и может быть приложен к любой точке твердого тела.

46. Принцип освобождаемости от связей: Если связи отбрасываются, то их необходимо заменить силами реакций от связи.

47. Веревочный многоугольник- это построение графостатики, которым можно пользоваться для определения линия действия равнодействующей плоской системы сил для нахождения реакций опор.

48. Какая взаимосвязь между верёвочным и силовым многоугольником: Для нахождения неизвестных сил графически в силовом многоугольнике используем дополнительную точку О(полюс), в веревочном многоугольнике находим равнодействующую, перемещая которую в силовой многоугольник находим неизвестные силы

49. Условие равновесия систем пар сил: Для равновесия пар сил действующих на твердое тело необходимо и достаточно чтобы момент эквивалентных пар сил был равен нулю. Следствие: Чтобы уравновесить пару сил необходимо приложить уравновешивающую пару, т.е. пару сил можно уравновесить другой парой сил с равными модулями и противоположно направленными моментами.

Кинематика

1. Все способы задания движения точки:

естественный способ

координатный

радиус-векторный.

2. Как найти уравнение траектории движения точки при координатном способе задания её движения? Для того, чтобы получить уравнение траектории движение материальной точки, при координатном способе задания необходимо исключить параметр t из законов движения.

3. Ускорение точки при координ. способе задания движения:

над иксом 2 точки

над y 2 точки

4. Ускорение точки при векторном способе задания движения:

5. Ускорение точки при естественном способе задания движения:

= = * +v* ; a= + ; * ; v* .

6. Чему равно и как оно направлено нормальное ускорение – направлено по радиусу к центру,