Уравнение шредингера вывод формулы. Уравнение Шредингера

Обще уравнение Шредингера. Уравнение Шредингера для стационарных состояний

Статистическое толкование волн де Бройля (см. § 216) и соотношение неопределенностей Гейзенберга (см. 5 215) привели к выводу, что уравнением движения в квантовой механике, описывающим движение микрочастиц в различных силовых полях, должно быть уравнение, из которого бы вытекали наблюдаемые на опыте волновые свойства частиц. Основное уравнение должно быть уравнением относительно волновой функции Ψ (х, у, z, t), так как именно она, или, точнее, величина |Ψ| 2 , определяет вероятность пребывания частицы в момент времени t в объеме dV, т. е. в области с координатами x и x+dx, y иy+dy, z и z+dz. Так как искомое уравнение должно учитывать волновые свойства частиц, то оно должно быть волновым уравнением, подобно уравнению, описывающему электромагнитные волны.

Основное уравнение нерелятивистской квантовой механики сформулировано в 1926 г. Э. Шредингером. Уравнение Шредингера,как и все основные уравнения физики (например, уравнения Ньютона в классической механике и уравнения Максвелла для электромагнитного поля), не выводится, а постулируется. Правильность этого уравнения подтверждается согласием с опытом получаемых с его помощью результатов, что, в свою очередь, придает ему характер закона природы. Уравнение Шредингера имеет вид

где h=h/(2π), m-масса частицы, ∆ -оператор Лапласа (),

i - мнимая единица, U (х, у, z, t) - потенциальная функция частицы в силовом поле, в котором она движется, Ψ (х, у, z, t) - искомая волновая функция частицы.

Уравнение (217.1) справедливо для любой частицы (со спином, равным 0; см. § 225), движущейся с малой (по сравнению со скоростью света) скоростью, т. е. со скоростью υ<<с. Оно дополняется условиями, накладываемыми на волновую функцию: 1) волновая функция должна быть конечной, однозначной и непрерывной (см. § 216); 2) производные

должны быть непрерывны; 3) функция |Ψ| 2 должна быть интегрируема; это условие в простейших случаях сводится к условию нормировки вероятностей (216.3).

Чтобы прийти к уравнению Шредингера, рассмотрим свободно движущуюся частицу, которой, согласно идее де Бройля, сопоставляется плоская волна. Для простоты рассмотрим одномерный случай. Уравнение плоской волны, распространяющейся вдоль оси х, имеет вид (см. § 154)

Или в комплексной записи . Следовательно, плоская волна де Бройля имеет вид

(217.2)

(учтено, что ω = E/h, k=p/h). В квантовой механике показатель экспоненты берут со знаком минус, но поскольку физический смысл имеет только |Ψ| 2 , то это (см. (217.2)) несущественно. Тогда

,

; (217.3)

Используя взаимосвязь между энергией Е и импульсом p (E = p 2 /(2m)) и подставляя выражения (217.3), получим дифференциальное уравнение

которое совпадает с уравнением (217.1) для случая U= 0 (ми рассматривали свободную частицу).

Если частица движется в силовом поле, характеризуемом потенциальной энергией U, то полная энергия Е складывается из кинетической и потенциальной энергий. Проводя аналогичные рассуждения используя взаимосвязь между Еи р (для данного случая р 2 /(2m)=E -U), прядем к дифференциальному уравнению, совпадающему с (217.1).

Приведенные рассуждения не должны восприниматься как вывод уравнения Шредингера. Они лишь поясняют, как можно прийти к этому уравнению. Доказательством правильности уравнения Шредингера является согласие с опытом тех выводов, к которым оно приводит.

Уравнение (217.1) является общим уравнением Шредингера. Его также называют уравнением Шредингера, зависящем от времени. Для многих физических явлений, происходящих в микромире, уравнение (217.1) можно упростить, исключив зависимость Ψ от времени, иными словами, найти уравнение Шредингера для стационарных состоянии - состоянии с фиксированными значениями энергии. Это возможно, если силовое поле, в котором частица движется, стационарно, т. е. функция U = U(х, у, z) не зависит явно от времени и имеет смысл потенциальной энергии. В данном случае решение уравнения Шредингера может быть представлено в виде произведения двух функций, одна из которых есть функция только координат, другая - только времени, причем зависимость от времени выражается множителем

,

где Е - полная энергия частицы, постоянная в случае стационарного поля. Подставляя (217.4) в (217.1), получим

откуда после деления на общий множитель е – i (E/ h) t и соответствующих преобразований придем к уравнению, определяющему функцию ψ:

(217.5)

Уравнение (217.5) называетсяуравнением Шредингера для стационарных состояний.

В это уравнение в качестве параметра входит полная энергия Е частицы. В теории дифференциальных уравнений доказывается, что подобные уравнения имеют бесчисленное множество решений, из которых посредством наложения граничных условий отбирают решения, имеющие физический смысл. Для уравнения Шредингера такими условиями являются условия регулярности волновых функций: волновые функции должны быть конечными, однозначными и непрерывными вместе со своими первыми производными. Таким образом, реальный физический смысл имеют только такие решения, которые выражаются регулярными функциями ψ. Но регулярные решения имеют место не при любых значениях параметра Е, а лишь при определенном их наборе, характерном для данной задачи. Эти значения энергии называютсясобственными. Решения же, которые соответствуютсобственным значениям энергии, называютсясобственными функциями. Собственные значения Е могут образовывать как непрерывный, так и дискретный ряд. В первом случае говорят о непрерывном, или сплошном, спектре, во втором - о дискретном спектре.

Уравнение Шрёдингера названо в честь австрийского физика Эрвина Шрёдингера (E. Schrödinger). Это основной теоретический инструмент квантовой механики. В квантовой механике уравнение Шрёдингера играет такую же роль, как уравнение движения (второй закон Ньютона) в механике классической. Уравнение Шрёдингера записывается для так называемой y - функции (пси - функции). В общем случае пси - функция – это функция координат и времени: y = y (x,y,z,t ). Если микрочастица находится в стационарном состоянии, то пси - функция не зависит от времени: y = y (x,y,z ).

В простейшем случае одномерного движения микрочастицы (например, только по оси x ) уравнение Шрёдингера имеет вид:

где y (x) – пси - функция, зависящая только от одной координаты x ; m масса частицы; - постоянная Планка (=h/2π ); E – полная энергия частицы, U – потенциальная энергия. В классической физике величина (E –U ) равнялась бы кинетической энергии частицы. В квантовой механике вследствие соотношения неопределенностей понятие кинетической энергии лишено смысла. Заметим, что потенциальная энергия U – это характеристика внешнего силового поля , в котором движется частица. Это величина вполне определенная. Она также является функцией координат, в данном случае U = U (x,y,z).

В трехмерном случае, когда y = y (x,y,z), вместо первого слагаемого в уравнении Шрёдингера следует записать сумму трех частных производных от пси-функции по трем координатам.

Для чего применяется уравнение Шрёдингера? Как уже отмечалось, это основное уравнение квантовой механики. Если его записать и решить (что вообще не простая задача) для конкретной микрочастицы, то мы получим значение пси-функции в любой точке пространства, в котором движется частица. Что это дает? Квадрат модуля пси-функции характеризуетвероятность обнаружения частицы в той или иной области пространства. Возьмем некоторую точку в пространстве с координатами x , y , z (рис.6). Какова вероятность обнаружить частицу в этой точке? Ответ: эта вероятность равна нулю! (точка не имеет размеров, попасть в точку частица просто физически не может). Значит, вопрос поставлен некорректно. Поставим его иначе: какова вероятность обнаружить частицу в малой области пространства объемом dV = dx dy dz с центром в выбранной точке? Ответ:

где dP – элементарная вероятность обнаружить частицу в элементарном объеме dV . Уравнение (22) справедливо для действительной пси-функции (она может быть и комплексной, в этом случае в уравнение (22) надо подставлять квадрат модуля пси-функции). Если область пространства имеет конечный объем V , то вероятность P обнаружить частицу в этом объеме находится интегрированием выражения (22) по объему V :

Напомним, что вероятностное описание движения микрочастиц – основная идея квантовой механики. Таким образом, с помощью уравнения Шрёдингера решается основная задача квантовой механики: описание движения исследуемого объекта, в данном случае квантово-механической частицы.

Отметим еще ряд важных обстоятельств. Как видно из формулы (21), уравнение Шрёдингера является дифференциальным уравнением второго порядка. Следовательно, в процессе его решения появятся две произвольные постоянные. Как их найти? Для этого используют так называемые граничные условия : из конкретного содержания физической задачи должно быть известно значение пси-функции на границах области движения микрочастицы. Кроме того, используется так называемое условие нормировки , которому должна удовлетворять пси-функция:

Смысл этого условия прост: вероятность обнаружить частицу хоть где-нибудь внутри области ее движения есть достоверное событие, вероятность которого равна единице.

Именно граничные условия наполняют решение уравнения Шрёдингера физическим смыслом. Без этих условий решение уравнения есть чисто математическая задача, лишенная физического смысла. В следующем разделе на конкретном примере рассмотрено применение граничных условий и условия нормировки при решении уравнения Шрёдингера.

Пси-функция

Волнова́я фу́нкция (функция состояния , пси-функция , амплитуда вероятности ) - комплекснозначная функция , используемая вквантовой механике для вероятностного описания состоянияквантовомеханической системы . В широком смысле - то же самое, что и вектор состояния .

Вариант названия «амплитуда вероятности» связан со статистической интерпретацией волновой функции: плотность вероятности нахождения частицы в данной точке пространства в данный момент времени равна квадрату абсолютного значения волновой функции этого состояния.

Физический смысл квадрата модуля волновой функции

Волновая функция зависит от координат (или обобщённых координат) системы и, в общем случае, от времени, и формируется таким образом, чтобы квадрат её модуля представлял собой плотность вероятности (для дискретных спектров - просто вероятность) обнаружить систему в положении, описываемом координатами в момент времени :

Тогда в заданном квантовом состоянии системы, описываемом волновой функцией , можно рассчитать вероятность того, что частица будет обнаружена в любой области пространства конечного объема : .

Набор координат, которые выступают в роли аргументов функции , представляет собой полный набор физических величин , которые можно измерить в системе. В квантовой механике возможно выбрать несколько полных наборов величин, поэтому волновая функция одного и того же состояния может быть записана от разных аргументов. Выбранный для записи волновой функции полный набор величин определяетпредставление волновой функции . Так, возможны координатное представление, импульсное представление, в квантовой теории поля используется вторичное квантование и представление чисел заполнения или представление Фока и др.

Если волновая функция, например, электрона в атоме, задана в координатном представлении, то квадрат модуля волновой функции представляет собой плотность вероятности обнаружить электрон в той или иной точке пространства. Если эта же волновая функция задана в импульсном представлении, то квадрат её модуля представляет собой плотность вероятности обнаружить тот или иной импуль с .

1. Введение

Квантовая теория родилась в 1900 г., когда Макс Планк предложил теоретический вывод о соотношении между температурой тела и испускаемым этим телом излучением - вывод, который долгое время ускользал от других ученых, Как и его предшественники, Планк предположил, что излучение испускают атомные осцилляторы, но при этом считал, что энергия осцилляторов (и, следовательно, испускаемого ими излучения) существует в виде небольших дискретных порций, которые Эйнштейн назвал квантами. Энергия каждого кванта пропорциональна частоте излучения. Хотя выведенная Планком формула вызвала всеобщее восхищение, принятые им допущения оставались непонятными, так как противоречили классической физике.

В 1905 г. Эйнштейн воспользовался квантовой теорией для объяснения некоторых аспектов фотоэлектрического эффекта - испускания электронов поверхностью металла, на которую падает ультрафиолетовое излучение. Попутно Эйнштейн отметил кажущийся парадокс: свет, о котором на протяжении двух столетий было известно, что он распространяется как непрерывные волны, при определенных обстоятельствах может вести себя и как поток частиц.

Примерно через восемь лет Нильс Бор распространил квантовую теорию на атом и объяснил частоты волн, испускаемых атомами, возбужденными в пламени или в электрическом заряде. Эрнест Резерфорд показал, что масса атома почти целиком сосредоточена в центральном ядре, несущем положительный электрический заряд и окруженном на сравнительно больших расстояниях электронами, несущими отрицательный заряд, вследствие чего атом в целом электрически нейтрален. Бор предположил, что электроны могут находиться только на определенных дискретных орбитах, соответствующих различным энергетическим уровням, и что "перескок" электрона с одной орбиты на другую, с меньшей энергией, сопровождается испусканием фотона, энергия которого равна разности энергий двух орбит. Частота, по теории Планка, пропорциональна энергии фотона. Таким образом, модель атома Бора установила связь между различными линиями спектров, характерными для испускающего излучение вещества, и атомной структурой. Несмотря на первоначальный успех, модель атома Бора вскоре потребовала модификаций, чтобы избавиться от расхождений между теорией и экспериментом. Кроме того, квантовая теория на той стадии еще не давала систематической процедуры решения многих квантовых задач.

Новая существенная особенность квантовой теории проявилась в 1924 г., когда де Бройль выдвинул радикальную гипотезу о волновом характере материи: если электромагнитные волны, например свет, иногда ведут себя как частицы (что показал Эйнштейн), то частицы, например электрон при определенных обстоятельствах, могут вести себя как волны. В формулировке де Бройля частота, соответствующая частице, связана с ее энергией, как в случае фотона (частицы света), но предложенное де Бройлем математическое выражение было эквивалентным соотношением между длиной волны, массой частицы и ее скоростью (импульсом). Существование электронных волн было экспериментально доказано в 1927 г. Клинтоном Дэвиссоном и Лестером Джермером в Соединенных Штатах и Джоном-Паджетом Томсоном в Англии.

Под впечатлением от комментариев Эйнштейна по поводу идей де Бройля Шрёдингер предпринял попытку применить волновое описание электронов к построению последовательной квантовой теории, не связанной с неадекватной моделью атома Бора. В известном смысле он намеревался сблизить квантовую теорию с классической физикой, которая накопила немало примеров математического описания волн. Первая попытка, предпринятая Шрёдингер в 1925 г., закончилась неудачей.

Скорости электронов в теории II Шрёдингер были близки к скорости света, что требовало включения в нее специальной теории относительности Эйнштейна и учета предсказываемого ею значительного увеличения массы электрона при очень больших скоростях.

Одной из причин постигшей Шрёдингер неудачи было то, что он не учел наличия специфического свойства электрона, известного ныне под названием спина (вращение электрона вокруг собственной оси наподобие волчка), о котором в то время было мало известно.

Следующую попытку Шрёдингер предпринял в 1926 г. Скорости электронов на этот раз были выбраны им настолько малыми, что необходимость в привлечении теории относительности отпадала сама собой.

Вторая попытка увенчалась выводом волнового уравнения Шрёдингера, дающего математическое описание материи в терминах волновой функции. Шрёдингер назвал свою теорию волновой механикой. Решения волнового уравнения находились в согласии с экспериментальными наблюдениями и оказали глубокое влияние на последующее развитие квантовой теории.

Незадолго до того Вернер Гейзенберг, Макс Борн и Паскуаль Иордан опубликовали другой вариант квантовой теории, получивший название матричной механики, которая описывала квантовые явления с помощью таблиц наблюдаемых величин. Эти таблицы представляют собой определенным образом упорядоченные математические множества, называемые матрицами, над которыми по известным правилам можно производить различные математические операции. Матричная механика также позволяла достичь согласия с наблюдаемыми экспериментальными данными, но в отличие от волновой механики не содержала никаких конкретных ссылок на пространственные координаты или время. Гейзенберг особенно настаивал на отказе от каких-либо простых наглядных представлений или моделей в пользу только таких свойств, которые могли быть определены из эксперимента.

Шрёдингер показал, что волновая механика и матричная механика математически эквивалентны. Известные ныне под общим названием квантовой механики, эти две теории дали долгожданную общую основу описания квантовых явлений. Многие физики отдавали предпочтение волновой механике, поскольку ее математический аппарат был им более знаком, а ее понятия казались более "физическими"; операции же над матрицами - более громоздкими.

Функция Ψ. Нормировка вероятности.

Обнаружение волновых свойств микрочастиц свидетельствовало о том, что классическая механика не может дать правильного описания поведения подобных частиц. Возникла необходимость создать механику микрочастиц, которая учитывала бы также и их волновые свойства. Новая механика, созданная Шрёдингером, Гайзенбергом, Дираком и другими, получила название волновой или квантовой механики.

Плоская волна де Бройля

(1)

является весьма специальным волновым образованием, соответствующим свободному равномерному движению частицы в определенном направлении и с определенным импульсом. Но частица, даже в свободном пространстве и в особенности в силовых полях, может совершать и другие движения, описываемые более сложными волновыми функциями. В этих случаях полное описание состояния частицы в квантовой механике дается не плоской волной де Бройля, а какой-то более сложной комплексной функцией

, зависящей от координат и времени. Она называется волновой функцией. В частном случае свободного движения частицы волновая функция переходит в плоскую волну де Бройля (1). Сама по себе волновая функция вводится как некоторый вспомогательный символ и не относится к числу непосредственно наблюдаемых величин. Но ее знание позволяет статистически предсказывать значения величин, которые получаются экспериментально и потому имеют реальный физический смысл.

Через волновую функцию определяется относительная вероятность обнаружения частицы в различных местах пространства. На этой стадии, когда говорится только об отношениях вероятностей, волновая функция принципиально определена с точностью до произвольного постоянного множителя. Если во всех точках пространства волновую функцию умножить на одно и то же постоянное (вообще говоря, комплексное) число, отличное от нуля, то получится новая волновая функция, описывающая в точности то же состояние. Не имеет смысла говорить, что Ψ равна нулю во всех точках пространства, ибо такая «волновая функция» никогда не позволяет заключить об относительной вероятности обнаружения частицы в различных местах пространства. Но неопределенность в определении Ψ можно значительно сузить, если от относительной вероятности перейти к абсолютной. Распорядимся неопределенным множителем в функции Ψ так, чтобы величина |Ψ|2dV давала абсолютную вероятность обнаружения частицы в элементе объема пространства dV. Тогда |Ψ|2 = Ψ*Ψ (Ψ* - комплексно сопряжённая с Ψ функция) будет иметь смысл плотности вероятности, которую следует ожидать при попытке обнаружения частицы в пространстве. При этом Ψ будет определена все еще с точностью до произвольного постоянного комплексного множителя, модуль которого, однако, равен единице. При таком определении должно быть выполнено условие нормировки:

(2)

где интеграл берется по всему бесконечному пространству. Оно означает, что во всем пространстве частица будет обнаружена с достоверностью. Если интеграл от |Ψ|2 берётся по определённому объёму V1 – мы вычисляем вероятность нахождения частицы в пространстве объёма V1.

Нормировка (2) может оказаться невозможной, если интеграл (2) расходится. Так будет, например, в случае плоской волны де Бройля, когда вероятность обнаружения частицы одинакова во всех точках пространства. Но такие случаи следует рассматривать как идеализации реальной ситуации, в которой частица не уходит на бесконечность, а вынуждена находиться в ограниченной области пространства. Тогда нормировка не вызывает затруднений.

Итак, непосредственный физический смысл связывается не с самой функцией Ψ, а с ее модулем Ψ*Ψ. Почему же в квантовой теории оперируют с волновыми функциями Ψ, а не непосредственно с экспериментально наблюдаемыми величинами Ψ*Ψ? Это необходимо для истолкования волновых свойств вещества - интерференции и дифракции. Здесь дело обстоит совершенно так же, как во всякой волновой теории. Она (во всяком случае в линейном приближении) принимает справедливость принципа суперпозиции самих волновых полей, а не их интенсивностей и, таким образом, достигает включения в теорию явлений интерференции и дифракции волн. Так и в квантовой механике принимается в качестве одного из основных постулатов принцип суперпозиции волновых функций, заключающийся в следующем.

Классическая механика в силу наличия волновых свойств у микрочастиц не может дать правильного описания их поведения. Это возможно сделать с помощью квантовой механики, созданной Шредингером, Гейзенбергом, Дираком и др.

Основным уравнением квантовой механики является уравнение Шредингера. Состояние микрочастиц в квантовой механике описывается волновой функцией или Ψ (пси)-функцией. Эта функция является функцией координат и времени и может быть найдена путем решения уравнения


(уравнение Шредингера),

где m - масса частицы; h = h/2π – постоянная Планка; Ψ – волновая функция или пси-функция, являющаяся функцией координат и времени
- оператор Лапласа;U=U(x,y,z, t) – потенциальная энергия частицы в силовом поле, в котором она движется; i =
- мнимая единица.

Уравнение Шредингера, как и уравнение Ньютона в классической механике, не может быть получено теоретически, а представляет собой обобщение большого числа опытных фактов. Справедливость этого соотношения доказывается тем, что все вытекающие из него следствия самым точным образом согласуются с опытными фактами.

Из уравнения Шредингера следует, что вид волновой функции Ψ определяется потенциальной энергией U, т.е. характером тех сил, которые действуют на частицу. В общем виде потенциальная энергия U есть функция координат и времени. Для стационарного (не меняющегося во времени) силового поля потенциальная энергия U явно от времени не зависит. В этом случае волновая функция Ψ распадается на два множителя, один из которых зависит только от времени, второй – только от координат.

,

где Е – полная энергия частицы.

Подставляя эту функцию в уравнение Шредингера, получим

;
или

Это уравнение Шредингера для стационарных состояний. Оба уравнения справедливы для любой частицы, движущейся с малой (v«c) скоростью. Кроме того, на волновую функцию накладываются дополнительные условия:


В последнее уравнение в качестве параметра входит полная энергия Е частицы. Из теории дифференциальных уравнений подобные уравнения имеют решения (из бесчисленного их множества), отражающие физический смысл, не при любых значениях параметра Е, а лишь при определенном их наборе, характерном для данной задачи. Решения, имеющие физический смысл, получают лишь при наложении вышеперечисленных условий. Значения энергии Е, при которых решения уравнения Шредингера имеют физический смысл, называются собственными . Решения, т.е. волновые функции, которые соответствуют собственным значениям энергии, называются собственными функциями.

Волновая функция и ее статистический смысл

Положение частицы в пространстве в данный момент времени в квантовой механике определяется знанием волновой функции Ψ. Вероятность dw того, что частица находится в элементе объема dV, пропорциональна квадрату модуля волновой функции |Ψ| 2 и объему элемента dV

Величина |Ψ| 2 = (квадрат модуля Ψ-функции) имеет смысл плотности вероятности, т.е. определяет вероятность нахождения частицы в единичном объеме в окрестности точки с координатами x, y, z.

Таким образом, физический смысл имеет не сама Ψ-функция, а квадрат ее модуля |Ψ| 2 . Вероятность найти частицу в момент времени t в конечном объеме V согласно теореме сложения вероятностей, равна

.

Волновую функцию необходимо нормировать таким образом, чтобы вероятность достоверного события обращалась в единицу. Это будет выполняться, если за объем интегрирования V принять бесконечный объем всего пространства. Условия нормировки вероятностей

,

где интеграл вычисляется по всему бесконечному пространству, т.е. по координатам x, y, z от -∞ до +∞.

При этом волновая функция должна удовлетворять трем раннее перечисленным условиям:

1. Должна быть конечной (вероятность не может быть больше 1).

2. Должна быть однозначной (вероятность не может быть неоднозначной величиной).

    Должна быть непрерывной (вероятность не может изменяться скачком).

Двойственная природа света и вещества. Уравнение де Броиля.

Сосуществование двух серьезных научных теорий, каждая из которых объясняла одни свойства света, но не могла объяснить другие. Вместе же эти две теории полностью дополняли друг друга.

Свет одновременно обладает свойствами непрерывных электромагнитных волн и дискретных фотонов.

Взаимосвязь между корпускулярными и волновыми свойствами света находит простое толкование при статистическом подходе к распространению света.

Взаимодействие фотонов с веществом (например, при прохождении света через дифракционную решетку) приводит к перераспределению фотонов в пространстве и возникновению дифракционной картины на экране. Очевидно, что освещенность в различных точках экрана прямо пропорциональна вероятности попадания фотонов в эти точки экрана. Но, с другой стороны, из волновых представлений видно, что освещенность пропорциональна интенсивности света J, а та, в свою очередь, пропорциональна квадрату амплитуды А 2 . Отсюда вывод: квадрат амплитуды световой волны в какой-либо точке есть мера вероятности попадания фотонов в эту точку .

Уравнение де Броиля.

Физический смысл соотношения де Бройля: одна из физических характеристик любой частицы - ее скорость. Волна описывается длиной или частотой. Соотношение, связывающее импульс квантовой частицы р с длиной волны λ, которая ее описывает: λ = h/p где h - постоянная Планка.Иными словами, волновые и корпускулярные свойства квантовой частицы фундаментальным образом взаимосвязаны.

14)Вероятностная трактовка волн де Броиля. Если считать электрон частицей, то, чтобы электрон оставался на своей орбите, у него должна быть одна и та же скорость (или, вернее, импульс) на любом расстоянии от ядра. Если же считать электрон волной, то, чтобы он вписался в орбиту заданного радиуса, надо, чтобы длина окружности этой орбиты была равна целому числу длины его волны. Главный же физический смысл соотношения де Бройля в том, что мы всегда можем определить разрешенные импульсы или длины волн электронов на орбитах. Однако, соотношение де Бройля показывает, для большинства орбит с конкретным радиусом либо волновое, либо корпускулярное описание покажет, что электрон не может находиться на этом расстоянии от ядра.

Волны де Бройля не являются Э.М. или механическими волнами, а являются волнами вероятности. Модуль волны характеризует вероятность нахождения частицы в пространстве.

Соотношение неопределенностей Гейзенберга.

Δx*Δp x > h/2

где Δx - неопределенность (погрешность измерения) пространственной координаты микрочастицы, Δp - неопределенность импульса частицы на ось х, а h - постоянная Планка, равняется примерно 6,626 x 10 –34 Дж·с.

Чем меньше неопределенность в отношении одной переменной (например, Δx), тем более неопределенной становится другая переменная (Δv) На самом деле, если нам удастся абсолютно точно определить одну из измеряемых величин, неопределенность другой величины будет равняться бесконечности. Т.е. если бы нам удалось абсолютно точно установить координаты квантовой частицы, о ее скорости мы не имели бы ни малейшего представлении.

Уравнение Шредингера и его смысл.

Шрёдингер применил к понятию волн вероятности классическое дифференциальное уравнение волновой функции. Уравнение Шрёдингера описывает распространение волны вероятности нахождения частицы в заданной точке пространства. Пики этой волны (точки максимальной вероятности) показывают, в каком месте пространства скорее всего окажется частица. Вышеупомянутая волновая функция распределения вероятности, обозначаемая греческой буквой ψ («пси»), является решением следующего дифференциального уравнения (ничего страшного, если оно вам не понятно; главное - примите на веру, что это уравнение свидетельствует о том, что вероятность ведёт себя как волна):

где x - координата, h - постоянная Планка, а m, E и U - соответственно масса, полная энергия и потенциальная энергия частицы.

Картина квантовых событий, которую дает нам уравнение Шрёдингера, заключается в том, что электроны и другие элементарные частицы ведут себя подобно волнам на поверхности океана. С течением времени пик волны (соответствующий месту, в котором скорее всего будет находиться электрон) смещается в пространстве в соответствии с описывающим эту волну уравнением. То есть то, что мы традиционно считали частицей, в квантовом мире ведёт себя во многом подобно волне.