В чем заключается основное прикладное значение цпт. Имитационная модель, использующая мультипроцессорный сервис

План:

1. Понятие центральной предельной теоремы (теорема Ляпунова)

2. Закон больших чисел, вероятность и частота (теоремы Чебышева и Бернулли)

1. Понятие центральной предельной теоремы.

Нормальное распределение вероятностей имеет в теории вероят­ностей большое значение. Нормальному закону подчиняется вероят­ность при стрельбе по цели, в измерениях и т. п. В частности, оказывается, что закон распределения суммы достаточно большого чис­ла независимых случайных величин с произвольными законами распределения близок к нормальному распределению. Этот факт, называемый центральной предельной теоремой или теоремой Ляпунова.

Известно, что нормально распределенные случай­ные величины широко распространены на практике. Чем это объясняется? Ответ на этот вопрос был дан

Централь­ная предельная теорема. Если случайная величина X пред­ставляет, собой сумму очень большого числа взаимно неза­висимых случайных величин, влияние каждой из которых на всю сумму ничтожно мало, то X имеет распределение, близкое к нормальному распределению.

Пример. Пусть производится измерение некоторой физической величины. Любое измерение дает лишь приближенное значение изме­ряемой величины, так как на результат измерения влияют очень многие независимые случайные факторы (температура, колебания прибора, влажность и др.). Каждый из этих факторов порождает ничтожную "частную ошибку". Однако, поскольку число этих факторов очень велико, их совокупное действие порождает уже заметную «суммар­ную ошибку».

Рассматривая суммарную ошибку как сумму очень большого числа взаимно независимых частных ошибок, мы вправе заключить, что суммарная ошибка имеет распределение, близкое к нормальному распределению. Опыт подтверждает справедливость такого заключения.

Рассмотрим условия, при которых выполняется "централь­ная предельная теорема"

Х1, Х2, ...,Х n – последовательность независимых случайных величин,

M (Х1), M (Х2), ..., M n ) - конечные математические ожидания этих величин, соответственно равные М(Xk )= ak

D(Х1), D (Х2), ..., D n ) - конечные дисперсии их, соответственно равные D (X k )= bk 2

Введем обозначения: S= Х1+Х2 + ...+Хn;

A k= Х1+Х2 + ...+Хn=; B2= D(Х1)+ D (Х2)+ ...+ D n ) =

Запишем функцию распределения нормированной суммы:

Говорят, что к последовательности Х1, Х2, ...,Х n применима централь­ная предельная теорема, если при любом x функция распределения нормированной суммы при n ® ¥ стремится к нормальной функции распределения:

Right " style="border-collapse:collapse;border:none;margin-left:6.75pt;margin-right: 6.75pt">

Рассмотрим дискретную случайную величину X , задан­ную таблицей распределения:

Поставим перед собой задачу оценить вероятность того, что отклонение случайной величины от ее математического ожидания не превышает по абсолютной величине поло­жительного числа ε

Если ε достаточно мало, то мы оце­ним, таким образом, вероятность того, что X примет значения, достаточно близкие к своему математическому ожиданию. доказал неравенство, позволяю­щее дать интересующую нас оценку.

Лемма Чебышева. Дана случайная величина X, принимающая только неотрицательные значения с математическим ожиданием M(X). Для любого числа α>0 имеет место выражение:

Неравенство Чебышева. Вероятность того, что отклонение случайной величины X от ее математического ожидания по абсолютной величине меньше положитель­ного числа ε , не меньше, чем 1 – D(X) / ε 2:

Р (| X-M (X) | < ε ) ³ 1 - D (Х) / ε 2.

Замечание. Неравенство Чебышева имеет для практики огра­ниченное значение, поскольку часто дает грубую, а иногда и три­виальную (не представляющую интереса) оценку.

Теоретическое же значение неравенства Чебышева весьма велико. Ниже мы воспользуемся этим неравенством для вывода теоремы Чебышева.

2.2. Теорема Чебышева

Если Х1, Х2, ...,Хn..- попарно независимые случайные величины, причем диспер­сии их равномерно ограничены (не превышают постоян­ного числа С), то, как бы мало ни было положительное число ε , вероятность неравенства

÷ (Х1+Х2 + ...+Хn) / n - (M(Х1)+M(Х2)+ ...+M(Хn))/n | < ε

будет как угодно близка к единице, если число случайных величин достаточно велико.

P (÷ (Х1+Х2 + ...+Хn) / n - (M(Х1)+M(Х2)+ ...+M(Хn))/n | < ε )=1.

Теорема Чебышева утверждает:

1. Рассматривается достаточно большое число незави­симых случайных величин, имеющих ограниченные ди­сперсии,

Формулируя теорему Чебышева, мы предпола­гали, что случайные величины имеют различные матема­тические ожидания. На практике часто бывает, что слу­чайные величины имеют одно и то же математическое ожидание. Очевидно, что если вновь допустить, что диспер­сии этих величин ограничены, то к ним будет применима теорема Чебышева.

Обозначим математическое ожидание каждой из слу­чайных величин через а;

В рассматриваемом случае среднее арифметическое математических ожиданий, как легко видеть, также равно а.

Можно сформулировать тео­рему Чебышева для рассматриваемого частного случая.

"Если Х1, Х2, ...,Хn..- попарно независимые случай­ные величины, имеющие одно и то же математическое ожидание а, и если дисперсии этих величин равномерно ограничены, то, как бы мало ни было число ε > О, ве­роятность неравенства

÷ (Х1+Х2 + ...+Хn) / n - a | < ε

будет как угодно близка к единице, если число случай­ных величин достаточно велико".

Другими словами, в условиях теоремы

P (÷ (Х1+Х2 + ...+Хn) / n - a | < ε ) = 1.

2.3. Сущность теоремы Чебышева

Хотя от­дельные независимые случайные величины могут прини­мать значения, далекие от своих математических ожиданий, среднее арифметическое достаточно большого числа случай­ных величин с большой вероятностью принимает значе­ния, близкие к определенному постоянному числу, а именно к числу

(М (Xj ) + М (Х2) +... + М (Х„))/п или к числу а в частном случае.

Иными словами, отдельные случайные величины могут иметь значительный разброс, а их среднее арифметическое рассеянно мало.

Таким образом, нельзя уверенно предсказать, какое возможное значение примет каждая из случайных вели­чин, но можно предвидеть, какое значение примет их среднее арифметическое.

Итак, среднее арифметическое достаточно большого числа независимых случайных величин (дисперсии которых равномерно ограничены) утрачивает характер случайной, величины.

Объясняется это тем, что отклонения каждой из величин от своих математических ожиданий могут быть как положительными, так и отрицательными, а в среднем арифметическом они взаимно погашаются.

Теорема Чебышева справедлива не только для дискрет­ных, но и для непрерывных случайных величин; она является примером, подтверждающим справедли­вость учения о связи между случайностью и необходимостью.

2.4. Значение теоремы Чебышева для практики

Приведем примеры применения теоремы Чебышева к решению практических задач.

Обычно для измерения некоторой физической величины производят несколько измерений и их среднее арифме­тическое принимают в качестве искомого размера. При каких условиях этот способ измерения можно считать правильным? Ответ на этот вопрос дает теорема Чебы­шева (ее частный случай).

Действительно, рассмотрим результаты каждого из­мерения как случайные величины

Х1, Х2, ...,Хn

К. этим величинам можно применить теорему Чебышева, если:

1) Они попарно независимы.

2) имеют одно и то же ма­тематическое ожидание,

3) дисперсии их равномерно огра­ничены.

Первое требование выполняется, если результат каж­дого измерения не зависит от результатов остальных.

Второе требование выполняется, если измерения произ­ведены без систематических (одного знака) ошибок. В этом случае математические ожидания всех случайных величин одинаковы и равны истинному размеру а.

Третье требо­вание выполняется, если прибор обеспечивает определен­ную точность измерений. Хотя при этом результаты отдельных измерений различны, но рассеяние их огра­ничено.

Если все указанные требования выполнены, мы вправе применить к результатам измерений теорему Чебышева: при достаточно большом п вероятность неравенства

| (Х1 + Хя+...+Х„)/п - а |< ε как угодно близка к единице.

Другими словами, при достаточно большом числе измерений почти достоверно, что их среднее арифметическое как угодно мало отли­чается от истинного значения измеряемой величины.

Теорема Чебышева указывает условия, при ко­торых описанный способ измерения может быть приме­нен. Однако ошибочно думать, что, увеличивая число измерений, можно достичь сколь угодно большой точ­ности. Дело в том, что сам прибор дает показания лишь с точностью ± α , поэтому каждый из результатов изме­рений, а следовательно, и их среднее арифметическое будут получены лишь с точностью, не превышающей точности прибора.

На теореме Чебышева основан широко применяемый в статистике выборочный метод, суть которого состоит в том, что по сравнительно небольшой случайной выборке судят о всей совокупности (генеральной совокупности) исследуемых объектов.

Например, о качестве кипы хлопка заключают по небольшому пучку, состоящему из волокон, наудачу отобранных из разных мест кипы. Хотя число волокон в пучке значительно меньше, чем в кипе, сам пучок содержит достаточно большое количество волокон, исчисляемое сотнями.

В качестве другого примера можно указать на опре­деление качества зерна по небольшой его пробе. И в этом случае число наудачу отобранных зерен мало сравни­тельно со всей массой зерна, но само по себе оно доста­точно велико.

Уже из приведенных примеров можно заключить, что для практики теорема Чебышева имеет неоценимое значение.

2.5. Теорема Бернулли

Производится п независимых испытаний (не событий, а испытаний). В каждом из них вероятность появления события A равна р.

Возникает вопрос, какова примерно будет относительная частота появлений события? На этот вопрос отвечает теорема, доказанная Бернулли которая полу­чила название "закона больших чисел" и положила начало теории вероятностей как науке.

Теорема Бернулли. Если в каждом из п независимых испытаний вероятность р появления события А постоянна, то как угодно близка к единице вероятность того, что отклонение относительной частоты от вероятности р по абсолютной величине будет сколь угодно малым, если число испытаний достаточно велико.

Другими словами, если ε >0 сколь угодно малое число, то при соблюдении условий теоремы имеет место равенство

Р(| m / п - р| < ε)= 1

Замечание. Было бы неправильным на основании теоремы Бернулли сделать вывод, что с ростом числа испытаний относитель­ная частота неуклонно стремится к вероятности р; другими словами, из теоремы Бернулли не вытекает равенство (т/п) = р,

В теореме речь идет лишь о вероятности того, что при достаточно большом числе испытаний относительная частота будет, как угодно мало отличаться от постоянной вероятности появления события в каж­дом испытании.

Задание 7-1.

1. Оценить вероятность того, что при 3600 бросаниях кости число появления 6 очков будет не меньше 900.

Решение. Пусть x – число появления 6 очков при 3600 бросаниях монеты. Вероятность появления 6 очков при одном бросании равна p=1/6, тогда M(x)=3600·1/6=600. Воспользуемся неравенством (леммой) Чебышева при заданном α = 900

= P (x ³ 900) £ 600 / 900 =2 / 3

Ответ 2 / 3.

2. Проведено 1000 независимых испытаний, p=0,8. Найти вероятность числа наступлений события A в этих испытаниях отклонится от своего математического ожидания по модулю меньше, чем 50.

Решение. x –число наступлений события A в n – 1000 испытаниях.

М(Х)= 1000·0,8=800. D(x)=100·0,8·0,2=160

Воспользуемся неравенством Чебышева при заданном ε = 50

Р (| х-M (X) | < ε) ³ 1 - D (х) / ε 2

Р (| х-800 | < 50) ³ / 50 2 = 1-160 / 2500 = 0,936.

Ответ. 0,936

3. Используя неравенство Чебышева, оценить вероятность того, что |Х - М(Х)| < 0,1, если D (X) = 0,001. Ответ Р³0,9.

4. Дано: Р(|Х-М(Х)\ < ε) ³ 0,9; D (X )= 0,004. Используя неравенство Чебышева, найти ε. Ответ. 0,2.

Контрольные вопросы и задания

1. Назначение центральной предельной теоремы

2. Условия применимости теоремы Ляпунова.

3. Отличие леммы и теоремы Чебышева.

4. Условия применимости теоремы Чебышева.

5. Условия применимости теоремы Бернулли (закона больших чисел)

Требования к знаниям умениям и навыкам

Студент должен знать обще смысловую формулировку центральной предельной теоремы. Уметь формулировать частные теоремы для не зависимых одинаково распределенных случайных величин. Понимать неравенство Чебышева и закон больших чисел в форме Чебышева. Иметь представление о частоте события, взаимоотношениях между понятиями "вероятность" и "частота". Иметь представление о законе больших чисел в форме Бернулли.

(1857-1918), вы­дающийся русский математик

Так как многие случайные величины в приложениях формируются под влиянием нескольких слабо зависимых случайных факторов, их распределение считают нормальным. При этом должно соблюдаться условие, что ни один из факторов не является доминирующим. Центральные предельные теоремы в этих случаях обосновывают применение нормального распределения.

Энциклопедичный YouTube

  • 1 / 5

    Пусть есть бесконечная последовательность независимых одинаково распределённых случайных величин, имеющих конечное математическое ожидание и дисперсию . Обозначим последние μ {\displaystyle \mu } и σ 2 {\displaystyle \sigma ^{2}} , соответственно. Пусть также

    . S n − μ n σ n → N (0 , 1) {\displaystyle {\frac {S_{n}-\mu n}{\sigma {\sqrt {n}}}}\to N(0,1)} по распределению при ,

    где N (0 , 1) {\displaystyle N(0,1)} - нормальное распределение с нулевым математическим ожиданием и стандартным отклонением , равным единице. Обозначив символом выборочное среднее первых n {\displaystyle n} величин, то есть X ¯ n = 1 n ∑ i = 1 n X i {\displaystyle {\bar {X}}_{n}={\frac {1}{n}}\sum \limits _{i=1}^{n}X_{i}} , мы можем переписать результат центральной предельной теоремы в следующем виде:

    n X ¯ n − μ σ → N (0 , 1) {\displaystyle {\sqrt {n}}{\frac {{\bar {X}}_{n}-\mu }{\sigma }}\to N(0,1)} по распределению при n → ∞ {\displaystyle n\to \infty } .

    Скорость сходимости можно оценить с помощью неравенства Берри - Эссеена .

    Замечания

    • Неформально говоря, классическая центральная предельная теорема утверждает, что сумма n {\displaystyle n} независимых одинаково распределённых случайных величин имеет распределение, близкое к N (n μ , n σ 2) {\displaystyle N(n\mu ,n\sigma ^{2})} . Эквивалентно, X ¯ n {\displaystyle {\bar {X}}_{n}} имеет распределение близкое к N (μ , σ 2 / n) {\displaystyle N(\mu ,\sigma ^{2}/n)} .
    • Так как функция распределения стандартного нормального распределения непрерывна , сходимость к этому распределению эквивалентна поточечной сходимости функций распределения к функции распределения стандартного нормального распределения. Положив Z n = S n − μ n σ n {\displaystyle Z_{n}={\frac {S_{n}-\mu n}{\sigma {\sqrt {n}}}}} , получаем F Z n (x) → Φ (x) , ∀ x ∈ R {\displaystyle F_{Z_{n}}(x)\to \Phi (x),\;\forall x\in \mathbb {R} } , где Φ (x) {\displaystyle \Phi (x)} - функция распределения стандартного нормального распределения.
    • Центральная предельная теорема в классической формулировке доказывается методом характеристических функций (теорема Леви о непрерывности).
    • Вообще говоря, из сходимости функций распределения не вытекает сходимость плотностей . Тем не менее в данном классическом случае это имеет место.

    Локальная Ц. П. Т.

    В предположениях классической формулировки, допустим в дополнение, что распределение случайных величин { X i } i = 1 ∞ {\displaystyle \{X_{i}\}_{i=1}^{\infty }} абсолютно непрерывно, то есть оно имеет плотность. Тогда распределение также абсолютно непрерывно, и более того,

    f Z n (x) → 1 2 π e − x 2 2 {\displaystyle f_{Z_{n}}(x)\to {\frac {1}{\sqrt {2\pi }}}\,e^{-{\frac {x^{2}}{2}}}} при n → ∞ {\displaystyle n\to \infty } ,

    где f Z n (x) {\displaystyle f_{Z_{n}}(x)} - плотность случайной величины Z n {\displaystyle Z_{n}} , а в правой части стоит плотность стандартного нормального распределения.

    Обобщения

    Результат классической центральной предельной теоремы справедлив для ситуаций гораздо более общих, чем полная независимость и одинаковая распределённость.

    Ц. П. Т. Линдеберга

    Пусть независимые случайные величины X 1 , … , X n , … {\displaystyle X_{1},\ldots ,X_{n},\ldots } определены на одном и том же вероятностном пространстве и имеют конечные математические ожидания и дисперсии : E [ X i ] = μ i , D [ X i ] = σ i 2 {\displaystyle \mathbb {E} =\mu _{i},\;\mathrm {D} =\sigma _{i}^{2}} .

    Пусть S n = ∑ i = 1 n X i {\displaystyle S_{n}=\sum \limits _{i=1}^{n}X_{i}} .

    Тогда E [ S n ] = m n = ∑ i = 1 n μ i , D [ S n ] = s n 2 = ∑ i = 1 n σ i 2 {\displaystyle \mathbb {E} =m_{n}=\sum \limits _{i=1}^{n}\mu _{i},\;\mathrm {D} =s_{n}^{2}=\sum \limits _{i=1}^{n}\sigma _{i}^{2}} .

    И пусть выполняется условие Линдеберга :

    ∀ ε > 0 , lim n → ∞ ∑ i = 1 n E [ (X i − μ i) 2 s n 2 1 { | X i − μ i | > ε s n } ] = 0 , {\displaystyle \forall \varepsilon >0,\;\lim \limits _{n\to \infty }\sum \limits _{i=1}^{n}\mathbb {E} \left[{\frac {(X_{i}-\mu _{i})^{2}}{s_{n}^{2}}}\,\mathbf {1} _{\{|X_{i}-\mu _{i}|>\varepsilon s_{n}\}}\right]=0,}

    где 1 { | X i − μ i | > ε s n } {\displaystyle \mathbf {1} _{\{|X_{i}-\mu _{i}|>\varepsilon s_{n}\}}} функция - индикатор.

    по распределению при n → ∞ {\displaystyle n\to \infty } .

    Ц. П. Т. Ляпунова

    Пусть выполнены базовые предположения Ц. П. Т. Линдеберга. Пусть случайные величины { X i } {\displaystyle \{X_{i}\}} имеют конечный третий момент . Тогда определена последовательность

    r n 3 = ∑ i = 1 n E [ | X i − μ i | 3 ] {\displaystyle r_{n}^{3}=\sum _{i=1}^{n}\mathbb {E} \left[|X_{i}-\mu _{i}|^{3}\right]} .

    Если предел

    lim n → ∞ r n s n = 0 {\displaystyle \lim \limits _{n\to \infty }{\frac {r_{n}}{s_{n}}}=0} (условие Ляпунова ), S n − m n s n → N (0 , 1) {\displaystyle {\frac {S_{n}-m_{n}}{s_{n}}}\to N(0,1)} по распределению при n → ∞ {\displaystyle n\to \infty } .

    Ц. П. Т. для мартингалов

    Пусть процесс (X n) n ∈ N {\displaystyle (X_{n})_{n\in \mathbb {N} }} является мартингалом с ограниченными приращениями. В частности, допустим, что

    E [ X n + 1 − X n ∣ X 1 , … , X n ] = 0 , n ∈ N , X 0 ≡ 0 , {\displaystyle \mathbb {E} \left=0,\;n\in \mathbb {N} ,\;X_{0}\equiv 0,}

    и приращения равномерно ограничены, то есть

    ∃ C > 0 ∀ n ∈ N | X n + 1 − X n | ≤ C {\displaystyle \exists C>0\,\forall n\in \mathbb {N} \;|X_{n+1}-X_{n}|\leq C} τ n = min { k | ∑ i = 1 k σ i 2 ≥ n } {\displaystyle \tau _{n}=\min \left\{k\left\vert \;\sum _{i=1}^{k}\sigma _{i}^{2}\geq n\right.\right\}} . X τ n n → N (0 , 1) {\displaystyle {\frac {X_{\tau _{n}}}{\sqrt {n}}}\to N(0,1)} по распределению при n → ∞ {\displaystyle n\to \infty } .

    Одно из важнейших положений теории вероятностей - так называемая центральная предельная теорема. Как и закон больших чисел, она имеет ряд форм. Во всех формах закона больших чисел устанавливается факт сходимости по вероятности каких-то случайных величин к постоянным, неслучайным при увеличении числа опытов п или числа наблюдаемых случайных величин.

    В данном пункте мы рассмотрим другую группу предельных теорем, а именно теорем, определяющих условия возникновения нормального распределения (закона Гаусса). Такие условия часто встречаются на практике, что и объясняет широкую распространенность нормального закона в случайных явлениях природы.

    Кое-что об этих условиях (на чисто описательном уровне) мы уже говорили раньше (глава 6), там, где впервые встретились с нормальным распределением. А именно, нормальное распределение возникает тогда, когда суммируется много независимых (или слабо зависимых) случайных величин, сравнимых по порядку своего влияния на рассеивание суммы.

    В практической деятельности инженера такая обстановка встречается нередко.

    Пусть, например, рассматривается отклонение Y n выходного параметра большой интегральной схемы (БИС) от номинала. Это отклонение (при известных допущениях) может быть представлено как сумма п элементарных отклонений, связанных с отдельными причинами:

    где, например,

    Х х - отклонение, вызванное влиянием температуры;

    Х 2 - отклонение, вызванное влиянием влажности воздуха;

    Хз - отклонение, вызванное ошибкой ввода какого-либо параметра; Х 4 - отклонение, вызванное недостаточной чистотой материала изделия;

    Число п этих элементарных отклонений весьма велико, как и число п причин, вызывающих суммарное отклонение Г„; обычно слагаемые Х х, Х 2 , ..., Х п сравнимы по порядку своего влияния на рассеивание суммы. Действительно, если бы какая-то из случайных величин Х х, Х 2 , ..., ^„оказывала существенно большее влияние на рассеивание суммы, чем все остальные, было бы естественно принять специальные меры для того, чтобы устранить главную причину рассеивания; поскольку такие меры не предпринимаются, можно предположить, что оставшиеся случайные слагаемые сравнимы по порядку своего (равномерно малого) влияния на рассеивание суммы.

    Нормальный закон широко распространен в технике; в большинстве случаев ошибки измерения параметров, ошибки выполнения команд, ошибки ввода различных величин в техническое устройство распределены по нормальному (или близкому к нормальному) закону; такая ошибка обычно может быть представлена в виде суммы многих «элементарных ошибок» Х ь каждая из которых связана с отдельной, практически независимой от других, причиной.

    Именно в применении к теории ошибок был впервые обоснован Лапласом и Гауссом нормальный закон.

    Нормальный закон широко распространен в биологии: масса, размер и другие параметры представителей растительного и животного мира во многих случаях имеют нормальное распределение, так как их разброс вызван суммарным воздействием многих факторов, среди которых нет доминирующих по своему влиянию.

    Центральная предельная теорема в различных ее формах устанавливает условия, при которых возникает нормальное распределение и нарушение которых ведет к распределению, отличному от нормального.

    Различные формы центральной предельной теоремы различаются между собой условиями, накладываемыми на распределения образующих сумму случайных слагаемых Х х, Х 2 , ...,Х п. Чем жестче эти условия, тем легче доказывается теорема; чем они шире, тем труднее доказательство. Здесь мы докажем одну из самых простых форм этой теоремы, а именно центральную предельную теорему для одинаково распределенных слагаемых.

    Теорема. Если Х х, Х 2 , Х п,... - независимые случайные величины , имеющие одно и то же распределение с математическим ожиданием т и дисперсией а 2 , то при увеличении п закон распределения суммы

    Доказательство. Проведем доказательство для случая непрерывных случайных величин (для дискретных оно будет аналогичным). Применим для этого аппарат характеристических функций . Согласно свойствам, доказанным в подразделе 8.9, характеристическая функция суммы (10.2.2) равна произведению характеристических функций слагаемых. Случайные величины X v Х 2 , ..., X п имеют одну и туже плотность f (х), а значит, и ту же характеристическую функцию 0* (t ). Не нарушая общности, можно перенести начало отсчета всех случайных величин X v Х 2 , ...,Х п в их общее математическое ожидание т это равносильно их центрированию и, значит, тому, что м. о. каждой из них будет равно нулю.

    Напомним, что характеристическая функция каждой из с. в. Х к (к= 1,2,..., п) по определению равна (см. (8.9.4))

    где / =4=~ - мнимая единица. Характеристическая функция случайной величины Y n равна произведению п характеристических функций слагаемых (см. 8.9.9):

    Разложим функцию (t ) в окрестности точки t = 0 в ряд Маклоре- на с тремя членами:

    где производные берутся по t a (t) -> 0 при t -» 0.

    Найдем значения &Д0); 9^(0); $"(0).

    Полагая в формуле (10.2.3) /= 0, имеем:

    по свойству плотности распределения/(х).

    Продифференцируем (10.2.3) по t.

    Полагая в (10.2.6) /= 0, получим:

    где М [Х - математическое ожидание с. в. Хс плотностью/(х). В нашем случае все случайные величины Х х, Х 2 , ..., X п имеют плотность /(х), а их общее м. о. равно нулю, поэтому

    Продифференцируем (10.2.6) еще раз:

    Полагая / = 0, получим:

    а это есть не что иное, как дисперсия центрированной с. в. Хс плотностью /(х) (со знаком «минус»).

    Следовательно,

    Подставляя в (10.2.5) Э х (0) = 1; 0" х (0) = 0и в”(0) = -сг 2 , получим

    Обратимся к случайной величине Y n . Мы хотим доказать, что при увеличении п ее закон распределения приближается к нормальному. Для этого перейдем от нее к линейно связанной с Y n «нормированной» случайной величине

    Эта величина удобна тем, что ее дисперсия не зависит от п и равна единице при любом п. В этом нетрудно убедиться, рассматривая Z n как линейную функцию независимых случайных величин Х х, Х 2 , ..., X п, каждая из которых имеет дисперсию а 2 .

    Если мы докажем, что с. в. Z n имеет нормальное распределение, это будет означать, что и с. в. У„, линейно связанная с Z„, распределена нормально.

    Вместо того чтобы доказывать, что закон распределения с. в. Z„ при увеличении п приближается к нормальному, докажем, что ее характеристическая функция, однозначно определяющая плотность, приближается к характеристической функции нормального закона с теми же, что у Z„, параметрами: m z = 0; o z =1 (8.9.16).

    Найдем характеристическую функцию с. в. Z. Из свойства (8.9.7) характеристической функции (подраздел 8.9) имеем:

    где - характеристическая функция с. в. Y n . Из (10.2.4) и (10.2.8) имеем:

    Или, пользуясь формулой (*),

    Прологарифмируем это выражение:

    Введем обозначение


    Будем неограниченно увеличивать п при этом величина к согласно (10.2.10) будет стремиться к нулю. Разложим In (1 - к) в ряд по степеням к и ограничимся одним членом разложения (остальные при я -> оо станут пренебрежимо малыми):


    Но функция а(0 стремится к нулю при t -> 0; следовательно, lima (t/(oJn)) = 0и liming (t) = -t 2 / 2, откуда liming (t) = e~‘‘ 2 ,

    tl -Л->0c n n-> OO "

    а это есть не что иное, как характеристическая функция случайной величины, распределенной по нормальному закону с параметрами т = О, ст= 1 (см. (8.9.16)).

    Таким образом, мы доказали центральную предельную теорему для частного случая одинаково распределенных слагаемых. Другие, более общие (и более сложные) формы центральной предельной теоремы мы приведем без доказательства.

    Теорема Ляпунова. Пусть Х х, Х 2 , ..., Х п - независимые случайные величины с математическими ожиданиями m Xi , т Х2 ,..., т Хп и дисперсиями Z) , D r ,..., Z> , причем при п -» оо.

    х х 2 х п

    где Х к =Х к -т к.

    А. М. Ляпунов доказал, что при п -> оо закон распределения случайной величины

    неограниченно приближается к нормальному.

    Смысл условий (10.2.12) состоит в том, чтобы в сумме (10.2.13) не было слагаемых, влияние которых на рассеивание суммы подавляюще велико по сравнению с влиянием всех остальных, а также не должно быть большого числа случайных слагаемых, влияние которых на рассеивание суммы исчезающе мало по сравнению с суммарным влиянием остальных.

    Наиболее общим (необходимым и достаточным) условием справедливости центральной предельной теоремы является условие Линдебер- га: для любого т > 0

    где f (х) - плотность распределения с. в. X h т-, = М [Х‘] (/" = 1, 2,п).

    Однако пользование условием Линдеберга на практике затруднительно, так как нам редко бывают в точности известны законы распределения случайных величин X t (/ = 1, 2,п).

    Исторически первой доказанной формой центральной предельной теоремы явилась теорема Лапласа , состоящая в следующем. Если производится п независимых опытов, в каждом из которых событие А появляется с вероятностью р, то при больших п справедливо приближенное равенство:

    где Y n - число появлений события А в п опытах; q = 1 - р Ф (х) - функция Лапласа.

    Выведем формулу (10.2.15) как следствие центральной предельной теоремы для одинаково распределенных слагаемых. «Нормированная» случайная величина

    связанная с Нелинейной зависимостью, строго говоря, дискретна, также дискретна с. в. Y n , распределенная по биномиальному закону, но при большом п ее значения расположены на оси абсцисс так тесно, что можно ее рассматривать как непрерывную, с плотностью распределения /(г). Случайная величина Y n имеет биномиальное распределение с параметрами п, р ее математическое ожидание М [ Y n ] = пр ее дисперсия равна D [ Y n ] = npq. Найдем числовые характеристики случайной величины (10.2.16): м. о. и дисперсию линейной функции от с. в. Y n . Имеем:


    Таким образом, случайная величина Z n (10.2.16) имеет не зависящие от п числовые характеристики т = 0, а = 1 (потому мы и перешли к с. в. Z n от Y n).

    Учитывая, что Т„ = ^где Х (- индикатор события А в /-м опы- 1=1

    те, убеждаемся, что с. в. Z n (10.2.16) есть сумма п независимых одинаково распределенных случайных величин. Применяя центральную предельную теорему для одинаково распределенных слагаемых, убеждаемся, что при большом числе опытов п с. в. Z n имеет распределение, близкое к нормальному, с параметрами т = 0; а = 1, откуда и следует справедливость формулы (10.2.15).

    Теорема Лапласа дает возможность приближенно находить вероятности значений случайных величин, распределенных по биномиальному закону при больших значениях параметра п при этом вероятность р не должна быть ни слишком большой, ни слишком малой.

    Практически можно судить о возможности замены биномиального распределения нормальным по тому, выполнены ли при данных п и р условия:

    Если эти условия соблюдены, то можно вычислять вероятности Р к = Р {Y n = к) как приращение нормальной функции распределения на участке от к до к + 1:

    где F(x) - функция распределения нормального закона:

    Подставляя в (10.2.19) т - при а = yfnpq, получим:

    Вычисляя приращение этой функции на участке от к до к + 1, получим:

    Теорему Лапласа (10.2.15) можно записать в несколько ином виде, если перейти обратно от нормированной с. в. Z n (10.2.16) к с. в. Y n -

    числу появлений события в п опытах - связанной с Z n линейной зависимостью:

    Функция распределения случайной величины Y n при большом п будет сколь угодно близка к нормальной функции распределения с параметрами т у - пр; о „ = Jnpq:

    а вероятность попадания случайной величины Y n на любой участок от а до р приближенно равна

    откуда - другая форма записи теоремы Лапласа:

    Рассмотрим ряд примеров, в каждом из которых для решения задачи следует применить ту или другую форму центральной предельной теоремы.

    Пример 1. Имеется п идентичных технических устройств (ТУ), время безотказной работы каждого /-го из которых - случайная величина 7), распределенная по показательному закону с параметром X, одинаковым для всех ТУ. Число п собранных в такую систему ТУ достаточно велико. Случайные величины 7j, Т 2 , ..., T t , ..., ^независимы между собой. В случае отказа /-го ТУ происходит мгновенное и безотказное переключение на следующие по порядку (/ + )-е ТУ (/" + 1 п). Общее время Гбезотказной работы системы ТУ равно сумме времен Т;.

    Найти приближенно вероятность того, что система ТУ проработает безотказно время, не меньшее лялянного т:

    (поскольку с. в. Т непрерывна, знак равенства можно оторосить;.

    Решение. Согласно центральной предельной теореме для одинаково распределенных слагаемых с. в. Т (10.2.23) будет распределяться приближенно по нормальному закону с параметрами:

    Находим приближенно вероятность (10.2.24): где F(т) - функция нормального распределения с параметрами:

    Для нормального закона функция распределения равна:

    где Ф (х) - функция Лапласа.

    Пример 2. Станок с числовым программным управлением выдает за смену п = 1000 изделий, из которых в среднем 2% дефектных. Найти приближенно вероятность того, что за смену будет изготовлено не менее 970 доброкачественных (недефектных) изделий, если изделия оказываются доброкачественными независимо друг от друга.

    Решение. Вероятность р изготовления доброкачественного изделия: р = 0,98, Y- число доброкачественных изделий; число независимых опытов п = 1000. Проверяем, выполнены ли условия (10.2.17); находим:

    Следовательно, пользоваться нормальным законом можно; применяя теорему Лапласа в форме (10.2.22), находим:

    Итак, искомая вероятность достаточно велика (равна 0,988), но все же с вероятностью 0,012 можно ожидать, что число доброкачественных изделий за смену будет меньше, чем 970. ?

    Пример 3. Для условий предыдущего примера определить, на сколько доброкачественных изделий у должен быть рассчитан заготовленный для них бункер, такой, чтобы вероятность его переполнения за смену не превысила 0,01.

    Решение. Найдем у из условия

    Ищем такое значение у = у, при котором функция распределения случайной величины Y n

    т. е.

    По таблице функции Лапласа (см. приложение 2) находим аргумент, при котором функция Лапласа равна 0,49; он приближенно равен 2,33, отсюда

    Пример 4. Железнодорожный состав состоит из п вагонов; масса каждого вагона в тоннах - случайная величина Хс м. о. т х и с. к. о. о х. Число вагонов п - большое (несколько десятков). Локомотив может везти массу не больше q (т); если масса состава больше q (т), приходится прицеплять второй локомотив. Найти вероятность того, что одного локомотива не хватит для перевозки состава.

    Решение. Обозначим Q = ^ J X j массу состава. На основании

    центральной предельной теоремы при достаточно большом п с. в. Q распределена приближенно по нормальному закону с параметрами

    m q - пт х, o q =^ = y = яД; D = n/X 2 . Следовательно, с. в. Хс нужным нам нормальным распределением определяется через Т {п) формулой

    а величина X определится из условия откуда

    Пример 9. Провести аппроксимацию нормального закона с параметрами ш х и D x с помощью суммы я независимых с. в. Х и ..., Х п, распределенных равномерно в интервале (0, 1).

    Решение. На основании центральной предельной теоремы при большом п случайная величина

    распределена приближенно по нормальному закону с параметрами:

    Нужную нам случайную величину X представим как линейную функцию случайной величины Y n:


    Откуда находим коэффициенты а и b в формуле (10.2.29)

    Итак, чтобы получить случайную величину X, распределенную приближенно по нормальному закону, надо сложить достаточно большое число п независимых случайных величин, распределенных равномерно в интервале (0, 1) и подвергнуть их сумму линейному преобразованию (10.2.29).

    В практике работы с ЭВМ при моделировании случайных явлений получают нормально распределенные случайные величины именно таким способом. Опыт показывает, что вполне удовлетворительную точность можно получить уже при п = 6; числа п = Юн- 12 вполне достаточно. ?

    Пример 10. В кассе учреждения имеется сумма d = 3500 (руб.). В очереди стоит п = 20 лиц. Сумма X, которую надо выплатить отдельному лицу - случайная величина с математическим ожиданием т х = 150 (руб.) и средним квадратическим отклонением о* = 60 (руб.). Найти вероятность того, что суммы due хватит для выплаты денег всем людям, стоящим в очереди.

    Решение. На основании центральной предельной теоремы для одинаково распределенных слагаемых при большом п п = 20 практически можно считать «большим») случайная величина или

    где Xj - сумма, которую надо выплатить /-му лицу, имеет приближенно нормальное распределение с параметрами:


    Итак, с вероятностью около 3% имеющейся в кассе суммы не хватит для выплаты всем, стоящим в очереди.

    Пример 11. В условиях предыдущего примера: какую сумму а нужно иметь в кассе, чтобы вероятность того, что ее не хватит для выплаты всем стоящим, стала равна 0,005?

    Решение. Имеем условие Р {Y n > а} = 0,5 - Ф ((а - 3000)/268) = = 0,005, т. е. Ф ((а - 3000)/268) = 0,495. По таблице Ф (х) приложения находим аргумент функции Лапласа, при котором она равна 0,495:

    откуда а - 3691.

    Итак, сравнительно небольшого увеличения суммы а (от 3500 до 3691) достаточно для того, чтобы гарантировать выплату всем с очень высокой вероятностью 0,995. ?

    Пример 12. Монета подбрасывается п = 1000 раз. Рассматривается с. в. X- число выпавших гербов. Определить интервал возможных значений с. в. X, симметричный относительно м. о. этой с. в., в который она попадает с вероятностью 9 > = 0,997.

    Решение. X = ^Х { , где Х { - число выпавших гербов при /-м бросании: »"=i



    На основании центральной предельной теоремы с. в. Храспределе- на нормально, следовательно,

    По таблицам Ф (х) - функции Лапласа находим:

    Искомый интервал будет:

    Итак, с очень большой вероятностью $Р= 0,997 можно утверждать, что число выпавших гербов будет заключено в пределах от 453 до 577 (об этом уже говорилось в подразделе 1Л). ?

    • Заметим, что этот аппарат был создан А.М. Ляпуновым специально для доказательствацентральной предельной теоремы.

    Кроме теорем, относящихся к закону больших чисел, существует еще одна группа теорем, которые образуют так называемую центральную предельную теорему. Эта группа теорем определяет условия, при которых возникает нормальный закон распределения. Такие условия достаточно часто встречаются на практике, что, по сути, и является объяснением того, что нормальный закон наиболее часто используется в случайных явлениях на практике. Различие форм центральной предельной теоремы состоит в формулировке разных условий, накладываемых на сумму рассматриваемых случайных величин. Важнейшее место среди всех этих форм принадлежит теореме Ляпунова.

    Теорема Ляпунова. Если Х 1 , Х 2 , … , Х n – независимые случайные величины, имеющие конечные математические ожидания и дисперсии, при этом ни одна из величин по своему значению резко не отличается от всех остальных, т.е. оказывает на сумму этих величин ничтожно малое влияние, то при неограниченном увеличении числа случайных величин n , закон распределения их суммы неограниченно приближается к нормальному.

    Следствие. Если все случайные величины Х 1 , Х 2 , … , Х n одинаково распределены, то закон распределения их суммы неограниченно приближается к нормальному при неограниченном увеличении числа слагаемых.

    Теорема Ляпунова имеет большое практическое значение. Опытным путем было установлено, что приближение к нормальному закону идет достаточно быстро. При выполнении условий теоремы Ляпунова закон распределения суммы даже десяти слагаемых уже можно считать нормальным.

    Существует более сложная и более общая форма теоремы Ляпунова.

    Общая теорема Ляпунова. Если Х 1 , Х 2 , … , Х n – независимые случайные величины, имеющие математические ожидания а i , дисперсии σ 2 i , центральные моменты третьего порядка т i и

    то закон распределения суммы Х 1 + Х 2 + … + Х n при n неограниченно приближается к нормальному с математическим ожиданием и дисперсией .

    Смысл условия (2.1) состоит в том, чтобы в сумме случайных величин не было бы ни одного слагаемого, влияние которого на рассеивание суммы величин было бы подавляюще велико по сравнению с влиянием всех остальных случайных величин. Кроме этого, не должно быть большого числа слагаемых, влияние которых на рассеивание суммы очень мало по сравнению с суммарным влиянием остальных.

    Одной из самых первых форм центральной предельной теоремы была доказана теорема Лапласа.

    Теорема Лапласа. Пусть производится n независимых опытов, в каждом из которых событие А появляется с вероятностью р , тогда при больших n справедливо приближенное равенство

    (2.2)

    где Y n – число появлений события А в n опытах; q =1-p ; Ф(х ) – функция Лапласа.

    Теорема Лапласа позволяет находить приближенно вероятности значений биномиально распределенных случайных величин при больших значениях величины n . Однако при этом, вероятность р не должна быть ни достаточно маленькой, ни достаточно большой.

    Для практических задач часто используется другая форма записи формулы (2.2), а именно

    (2.3)

    Пример 2.1. Станок выдает за смену n =1000 изделий, из которых в среднем 3% дефектных. Найти приближенно вероятность того, что за смену будет изготовлено не менее 950 хороших (без дефекта) изделий, если изделия оказываются хорошими независимо друг от друга.

    Решение . Пусть Y – число хороших изделий. По условию задачи р = 1-0,03=0,97; число независимых опытов n =1000. Применим формулу (2.3):

    Пример 2.2, В условиях предыдущего примера выяснить сколько хороших изделий k должен вмещать ящик, чтобы вероятность его переполнения за одну смену не превысила 0,02.

    Решение . Из условия ясно, что . Найдем из этого условия число k . Имеем
    , т.е. .

    По таблице функции Лапласа по значению 0,48 находим аргумент, равный 2,07. Получаем
    . ■

    Пример 2.3. В банке в определенную кассу за получением некоторых денежных сумм стоят 16 человек. В настоящее время в этой кассе имеется 4000 ден. ед. Суммы Х i , которые необходимо выплатить каждому из 20 человек – это случайные величины с математическим ожиданием т = 160 ден.ед. и средним квадратическим отклонением σ = 70 ден.ед. Найти вероятность того, что денег, имеющихся в кассе, не хватит для выплаты всем стоящим в очереди.

    Решение . Применим теорему Ляпунова для одинаково распределенных случайных величин. Величину n = 20 можно считать достаточно большой, следовательно, общую сумму выплат Y = Х 1 + Х 2 + … + Х 16 можно считать случайной величиной распределенной по нормальному закону с математическим ожиданием т у = = 20 160= 3200 и среднеквадратическим отклонением .

    Предельные теоремы теории вероятностей

    Неравенство Чебышева

    Рассмотрим ряд утверждений и теорем из большой группы так называемых предельных теорем теории вероятностей, устанавливающих связь между теоретическими и экспериментальными характеристиками случайных величин при большом числе испытаний над ними. Они составляют основу математической статистики. Предельные теоремы условно делят на две группы. Первая группа теорем, называемая законом больших чисел , устанавливает устойчивость средних значений, т.е. при большом числе испытаний их средний результат перестает быть случайным и может быть предсказан с достаточной точностью. Вторая группа теорем, называемая центральной предельной , устанавливает условия, при которых закон распределения суммы большого числа случайных величин неограниченно приближается к нормальному.

    В начале рассмотрим неравенство Чебышева, которое можно использовать для: а) грубой оценки вероятностей событий, связанных со случайными величинами, распределение которых неизвестно; б) доказательства ряда теорем закона больших чисел.

    Теорема 7.1 . Если случайная величина X имеет математическое ожидание и дисперсию DX , то для любого справедливо неравенство Чебышева

    . (7.1)

    Отметим, что неравенство Чебышева можно записать в другой форме:

    для частости или события в n независимых испытаниях, в каждом из которых оно может произойти с вероятностью , дисперсия которых , неравенство Чебышева имеет вид

    Неравенство (7.5) можно переписать в виде

    . (7.6)

    Пример 7.1. Оценить с помощью неравенства Чебышева вероятность того, что отклонение случайной величины Х от своего математического ожидания будет меньше трех средне квадратических отклонений, т.е. меньше .

    Решение :

    Полагая в формуле (7.2), получаем

    Эта оценка называется правилом трех сигм .

    Теорема Чебышева

    Основное утверждение закона больших чисел содержится в теореме Чебышева. В ней и других теоремах закона больших чисел используется понятие «сходимости случайных величин по вероятности».

    Случайные величины сходятся по вероятности к величине А (случайной или неслучайной), если для любого вероятность события при стремится к единице, т.е.

    (или ). Сходимость по вероятности символически записывают так:

    Следует отметить, что сходимость по вероятности требует, чтобы неравенство выполнялось для подавляющего числа членов последовательности (в математическом анализе - для всех n > N , где N - некоторое число), а при практически все члены последовательности должны попасть в ε- окрестность А .

    Теорема 7.3 (Закон больших чисел в форме П.Л. Чебышева) . Если случайные величины независимы и существует такое число С> 0, что , то для любого

    , (7.7)

    т.е. среднее арифметическое этих случайных величин сходится по вероятности к среднему арифметическому их математических ожиданий:

    .

    Доказательство . Так как , то

    .

    Тогда, применяя к случайной величине неравенство Чебышева (7.2) имеем

    т.е. среднее арифметическое случайных величин сходится по вероятности к математическому ожиданию а :

    Доказательство . Так как

    а дисперсии случайных величин , т.е ограничены, то применив теорему Чебышева (7.7), получим утверждение (7.9).

    Следствие теоремы Чебышева обосновывает принцип «среднего арифметического» случайных величин Х i , постоянно используемый на практике. Так, пусть произведено n независимых измерений некоторой величины, истинное значение которой а (оно неизвестно). Результат каждого измерения есть случайная величина Х i . Согласно следствию, в качестве приближенного значения величины а можно взять среднее арифметическое результатов измерений:

    .

    Равенство тем точнее, чем больше n .

    На теореме Чебышева основан также широко применяемый в статистике выборочный метод , суть которого в том, что о качестве большого количества однородного материала можно судить по небольшой его пробе.

    Теорема Чебышева подтверждает связь между случайностью и необходимостью: среднее значение случайной величины практически не отличается от неслучайной величины .

    Теорема Бернулли

    Теорема Бернулли исторически является первой и наиболее простой формой закона больших чисел. Она теоретически обосновывает свойство устойчивости относительной частоты.

    Теорема 7.4 (Закон больших чисел в форме Я. Бернулли) . Если вероятность появления события А в одном испытании равна р , число наступления этого события при n независимых испытаниях равно , то для любого числа имеет место равенство

    , (7.10)

    т.е относительная частота события А сходится по вероятности к вероятности р события А : .

    Доказательство . Введем случайные величины следующим образом: , если в i -м испытании появилось событие А , а если не появилось, то . Тогда число А (число успехов) можно представить в виде

    Математическое ожидание и дисперсия случайных величин равны: , . Закон распределения случайных величин X i имеет вид

    Х i
    Р р

    при любом i . Таким образом, случайные величины X i независимы, их дисперсии ограничены одним и тем же числом , так как

    .

    Поэтому к этим случайным величинам можно применить теорему Чебышева

    .

    ,

    Следовательно, .

    Теорема Бернулли теоретически обосновывает возможность приближенного вычисления вероятности события с помощью его относительной частоты. Так, например, за вероятность рождения девочки можно взять относительную частоту этого события, которая, согласно статистическим данным, приближенно равна 0,485.

    Неравенство Чебышева (7.2) для случайных величин

    принимает вид

    где p i - вероятность события А в i- м испытании.

    Пример 7.2. Вероятность наличия опечатки на одной странице рукописи равна 0,2. Оценить вероятность того, что в рукописи, содержащей 400 страниц, частость появления опечатки отличается от соответствующей вероятности по модулю меньше, чем 0,05.

    Решение :

    Воспользуемся формулой (7.11). В данном случае , , , . Имеем , т.е. .

    Центральная предельная теорема

    Центральная предельная теорема представляет собой вторую группу предельных теорем, которые устанавливают связь между законом распределения суммы случайной величины и его предельной формой - нормальным законом распределения.

    Сформулируем центральную предельную теорему для случая, когда члены суммы имеют одинаковое распределение. Эта теорема чаще других используется на практике. В математической статистике выборочные случайные величины имеют одинаковые распределения, так как получены из одной и той же генеральной совокупности.

    Теорема 7.5 . Пусть случайные величины независимы, одинаково распределены, имеют конечные математическое ожидание и дисперсию , . Тогда функция распределения центрированной и нормированной суммы этих случайных величин стремится при к функции распределения стандартной нормальной случайной величины.