В какой точке находится центр тяжести треугольника. Способы определения координат центра тяжести

Определение местоположения барицентра интегрированием

Барицентр подмножества X пространства R n {\displaystyle \mathbb {R} ^{n}} можно вычислить с помощью интеграла

G = ∫ x g (x) d x ∫ g (x) d x , {\displaystyle G={\frac {\int xg(x)\;dx}{\int g(x)\;dx}},}

Другая формула для вычисления координат барицентра:

G k = ∫ z S k (z) d z ∫ S k (z) d z , {\displaystyle G_{k}={\frac {\int zS_{k}(z)\;dz}{\int S_{k}(z)\;dz}},}

где G k является k -й координатой G , а S k (z ) - мера пересечения X с гиперплоскостью, определяемой уравнением x k = z . Снова знаменатель - это мера множества X .

Для плоской фигуры координатами барицентра будут

G x = ∫ x S y (x) d x A ; {\displaystyle G_{\mathrm {x} }={\frac {\int xS_{\mathrm {y} }(x)\;dx}{A}};} G y = ∫ y S x (y) d y A , {\displaystyle G_{\mathrm {y} }={\frac {\int yS_{\mathrm {x} }(y)\;dy}{A}},}

где A - площадь фигуры X , S y (x ) - длина пересечения [неизвестный термин ] X с вертикальной прямой с абциссой x , S x (y ) - аналогичная величина при обмене осей.

Определение местоположения барицентра для области, ограниченной графиками непрерывных функций

Координаты барицентра (x ¯ , y ¯) {\displaystyle ({\bar {x}},\;{\bar {y}})} области, ограниченной графиками непрерывных функций f {\displaystyle f} и g {\displaystyle g} , таких что f (x) ≥ g (x) {\displaystyle f(x)\geq g(x)} на интервале [ a , b ] {\displaystyle } , a ≤ x ≤ b {\displaystyle a\leq x\leq b} , задаются выражениями

x ¯ = 1 A ∫ a b x [ f (x) − g (x) ] d x {\displaystyle {\bar {x}}={\frac {1}{A}}\int _{a}^{b}x\left\;dx} . y ¯ = 1 A ∫ a b [ f (x) + g (x) 2 ] [ f (x) − g (x) ] d x , {\displaystyle {\bar {y}}={\frac {1}{A}}\int _{a}^{b}\left[{\frac {f(x)+g(x)}{2}}\right]\left\;dx,}

где A {\displaystyle A} - площадь области (вычисляемая по формуле ∫ a b [ f (x) − g (x) ] d x {\displaystyle \int _{a}^{b}\left\;dx} ) .

Определение местоположения барицентра объекта, имеющего форму буквы L

Метод нахождения барицентра фигуры, имеющей форму буквы L.


Барицентры треугольника и тетраэдра

G = 1 a: 1 b: 1 c = b c: c a: a b = csc ⁡ A: csc ⁡ B: csc ⁡ C {\displaystyle G={\frac {1}{a}}:{\frac {1}{b}}:{\frac {1}{c}}=bc:ca:ab=\csc A:\csc B:\csc C} = cos ⁡ A + cos ⁡ B ⋅ cos ⁡ C: cos ⁡ B + cos ⁡ C ⋅ cos ⁡ A: cos ⁡ C + cos ⁡ A ⋅ cos ⁡ B {\displaystyle =\cos A+\cos B\cdot \cos C:\cos B+\cos C\cdot \cos A:\cos C+\cos A\cdot \cos B} = sec ⁡ A + sec ⁡ B ⋅ sec ⁡ C: sec ⁡ B + sec ⁡ C ⋅ sec ⁡ A: sec ⁡ C + sec ⁡ A ⋅ sec ⁡ B . {\displaystyle =\sec A+\sec B\cdot \sec C:\sec B+\sec C\cdot \sec A:\sec C+\sec A\cdot \sec B.}

Барицентр является также физически центром масс треугольника, сделанного из однородного листового материала, а также, если вся масса сконцентрирована в вершинах и одинаково разделена между ними. Если же масса распределена равномерно вдоль периметра, то центр масс лежит в точке Шпикера (инцентре серединного треугольника), который (в общем случае) не совпадает с центроидом всего треугольника.

Площадь треугольника равна 3/2 длины любой стороны, умноженной на расстояние от центроида до стороны .

Центроид треугольника лежит на прямой Эйлера между его ортоцентром H и центром его описанной окружности O , ровно вдвое ближе ко второму, чем к первому:

G H = 2 G O . {\displaystyle GH=2GO.}

Кроме того, для инцентра I и центра девяти точек N , мы имеем

G H = 4 G N , {\displaystyle GH=4GN,} G O = 2 G N , {\displaystyle GO=2GN,} I G < H G , {\displaystyle IG I H < H G , {\displaystyle IH I G < I O . {\displaystyle IG

Аналогичными свойствами обладает

Медиана треугольника есть диаметр, делящий пополам хорды, параллельные основанию, поэтому на ней лежит центр тяжести (п° 217) площади треугольника. Следовательно, три медианы треугольника, пересекаясь, определяют центр тяжести площади треугольника.

Элементарные соображения показывают, что медианы треугольника пересекаются в точке, отстоящей на две трети длины каждой из них от соответствующей вершины. Поэтому центр тяжести площади треугольника лежит на любой его медиане на расстоянии двух третей ее длины от вершины.

219. Четырехугольник.

Центр тяжести площади четырехугольника определяется пересечением двух прямых, которые мы получаем, применяя распределительное свойство центров тяжести (п° 213).

Сначала делим четырехугольник диагональю на два треугольника. Центр тяжести четырехугольника лежит на прямой, соединяющей центры тяжести этих треугольников. Эта прямая и есть первая из двух искомых прямых.

Вторую прямую получим таким же способом, разбивая четырехугольник на два треугольника (отличных от предыдущих) посредством другой диагонали.

220. Многоугольник.

Мы знаем способы нахождения центров тяжести площади треугольника и четырехугольника. Чтобы определить центр тяжести площади многоугольника с произвольным числом сторон, предположим, что мы умеем находить центр тяжести площади многоугольника с меньшим числом сторон.

Тогда можно поступить так же, как в случае четырехугольника. Площадь данного многоугольника делят на две части двумя разными способами проведением диагоналей. В каждом из двух случаев соединяют прямой центры тяжести отдельных частей. Эти две прямые пересекаются в искомом центре тяжести.

221. Дуга окружности.

Пусть требуется определить центр тяжести дуги окружности АВ длины s. Отнесем окружность к двум взаимно перпендикулярным диаметрам ОХ и OY, из которых первый проходит через середину С дуги АВ. Центр тяжести лежит на оси ОХ, являющейся осью симметрии. Достаточно поэтому определить 5. Для этого имеем формулу:

Пусть будут: а - радиус окружности, с - длина хорды АВ, - угол между осью ОХ и радиусом, проведенным к элементу значения , соответствующие концам дуги АВ. Имеем:

Тогда, принимая В за переменную интегрирования и выполняя интегрирование вдоль дуги АВ, получим:

Следовательно, центр тяжести дуги окружности лежит на радиусе, проведенном через середину дуги, в точке, расстояние которой от центра окружности есть четвертая пропорциональная длины дуги, радиуса и хорды.

222. Круговой сектор.

Сектор, заключенный между дугой окружности и двумя радиусами ОА и ОВ, может быть разложен промежуточными радиусами на бесконечно малые равные между собою секторы. Эти элементарные секторы можно рассматривать как бесконечно узкие треугольники; центр тяжести каждого из них, по предыдущему, лежит на радиусе, проведенном через середину элементарной дуги этого сектора, на расстоянии двух третей длины радиуса от центра окружности. Равные между собою массы всех элементарных треугольников, сосредоточенные в их центрах тяжести, образуют однородную дугу окружности, радиус которой равен двум третям радиуса дуги сектора. Рассматриваемый случая приводится, таким образом, к отысканию центра тяжести этой однородной дуги, т. е. к задаче, решенной в предыдущем п°.

223. Тетраэдр.

Определим центр тяжести объема тетраэдра. Плоскость, проходящая через одно из ребер и через середину противоположного ребра, есть диаметральная плоскость, которая делит пополам хорды, параллельные этому последнему ребру: она содержит поэтому центр тяжести объема тетраэдра. Следовательно, шесть плоскостей, тетраэдра, из которых каждая проходит через одно из ребер и через середину противоположного ребра, пересекаются в одной точке, представляющей собой центр тяжести объема тетраэдра.

Рассмотрим тетраэдр ABCD (фиг. 37); соединим вершину А с центром тяжести I основания BCD; прямая AI есть пересечение диаметральных плоскостей, проходящих

через ребра АВ и поэтому она содержит искомый центр тяжести. Точка находится на расстоянии двух третей медианы ВН от вершины В. Точно так же возьмем на медиане АН точку К на расстоянии двух третей ее длины от вершины . Прямая В К пересечет прямую А в центре тяжести тетраэдра. Проведем из подобия треугольников АВН и ЮН видно, что IK есть третья часть АВ) далее, из подобия треугольников и ВГА заключаем, что есть третья часть .

Следовательно, центр тяжести объема тетраэдра лежит на отрезке, соединяющем любую вершину тетраэдра с центром тяжести противоположной грани, на расстоянии трех четвертей длины этого отрезка от вершины.

Заметим еще, что прямая, соединяющая середины Я и L двух противоположных ребер (фиг. 38) есть пересечение диаметральных плоскостей, проходящих через эти ребра, она также проходит через центр тяжести тетраэдра. Таким образом, три прямые, соединяющие середины противоположных ребер тетраэдра, пересекаются в его центре тяжести.

Пусть Н и - середины одной пары противоположных ребер (фиг. 38) и М, N - середины двух других противоположных ребер. Фигура HNLM есть параллелограм, стороны которого соответственно параллельны остальным

двум ребрам. Прямые HL и MN, соединяющие середины двух противоположных ребер, суть диагонали этого параллелограма, а значит, они в точке пересечения делятся пополам. Таким образом, центр тяжести тетраэдра лежит в середине отрезка, соединяющего середины двух противоположных ребер тетраэдра.

224. Пирамида с многоугольным основанием.

Центр тяжести пирамиды лежит на отрезке, соединяющем вершину пирамиды с центром тяжести основания на расстоянии трех четвертей длины этого отрезка от вершины.

Чтобы доказать эту теорему, разложим пирамиду на тетраэдры плоскостями, проведенными через вершину пирамиды и через диагонали основания ABCD (например BD на фиг. 39).

Проведем плоскость пересекающую ребра на расстоянии трех четвертей их длины от вершины. Эта плоскость содержит центры тяжести тетраэдров, а следовательно, и пирамиды. Массы тетраэдров, которые мы предполагаем сосредоточенными в их центрах тяжести, пропорциональны их объемам, следовательно и площадям из оснований (фиг. 39) или также площадям треугольников bad, bed,..., подобных предыдущим и расположенным в секущей плоскости abcd... Таким образом, искомый центр тяжести совпадает с центром тяжести многоугольника abcd. Последний же лежит на прямой, соединяющей вершину S пирамиды с центром тяжести (подобно расположенным) многоугольника основания.

225. Призма. Цилиндр. Конус.

На основании симметрии, центры тяжести призмы и цилиндра лежат на середине отрезка, соединяющего центры тяжести оснований.

Рассматривая конус, как предел вписанной в него пирамиды с той же вершиной, убеждаемся, что центр тяжести конуса лежит на отрезке, соединяющем вершину конуса с центром тяжести основания, на расстоянии трех четвертей длины этого отрезка от вершины. Можно также сказать, что центр тяжести конуса совпадает с центром тяжести сечения конуса плоскостью, параллельной основанию и проведенной на расстоянии одной четверти высоты конуса от основания.

Инструкция

Начертите сам треугольник. Для этого возьмите линейку и проведите карандашом отрезок. Потом начертите ещё один отрезок, начиная от одного из концов предыдущего. Замкните фигуру, соединив две оставшиеся свободные точки отрезков. Получился треугольник. Именно его центр тяжести предстоит искать.

Возьмите линейку и измерьте длину одной из сторон. Найдите середину этой стороны и отметьте её карандашом. Проведите отрезок из противоположной к намеченной точке. Получившийся отрезок медианой.

Приступите ко второй стороне. Измерьте её длину, поделите на две равные части и проведите медиану из лежащей напротив вершины.

То же самое проделайте с третьей стороной. Обратите внимание на то, что, если вы все сделали , то медианы пересекутся в одной точке. Это и будет центр тяжести или, как его ещё называют, центр масс .

Если перед вами стоит задача, найти центр тяжести треугольника , то проведите высоту из каждой вершины фигуры. Для этого возьмите линейку с прямым углом и одной из сторон, прислоните к основанию треугольника , а вторую направьте к противолежащей вершине. То же самое проделайте с остальными сторонами. Точка пересечения будет являться центр ом тяжести . Особенность равносторонних заключается в том, что одни и те же отрезки и медианами, и высотами, и биссектрисами.

Если отрезок соединяет центр окружности, описанной около произвольного треугольника, с любой из вершин этой фигуры, то его длину можно рассчитать, найдя радиус описанной окружности (R). Если известны, например, длина одной из сторон (A) в таком треугольнике и угол (α), лежащий напротив нее, то для вычисления длины нужного вам отрезка разделите длину стороны на удвоенный синус угла: R=A/(2*sin(α)).

Видео по теме

Медиана треугольника - это отрезок, который соединяет вершину треугольника с серединой противоположной стороны. В равностороннем треугольнике медиана является биссектрисой и высотой одновременно. Таким образом, нужный отрезок можно построить несколькими способами.

Вам понадобится

  • - карандаш;
  • - линейка;
  • - транспортир;
  • - циркуль.

Инструкция

Постройте биссектрисы равностороннего треугольника. Любой угол равностороннего треугольника равен 60º. Приложите транспортир к одной из сторон треугольника так, чтобы точка отсчета совпадала с треугольника. Одна из его сторон должна идти точно по линии измерительного прибора, другая сторона пересекать полуокружность в точке с отметкой 60º.

Если вписан , проведите прямую, соединяющую его вершину с центром окружности. Отметьте точку пересечения этой прямой со стороной треугольника. Отрезок, соединяющий вершину треугольника и его сторону, будет медианой равностороннего треугольника.

Видео по теме

Исходя из полученных выше общих формул, можно указать конкретные способы определения координат центров тяжести тел.

1. Симметрия. Если однородное тело имеет плоскость, ось или центр симметрии (рис.7), то его центр тяжести лежит соответственно в плоскости симметрии, оси симметрии или в центре симметрии.

Рис.7

2. Разбиение. Тело разбивается на конечное число частей (рис.8), для каждой из которых положение центра тяжести и площадь известны.

Рис.8

3.Метод отрицательных площадей. Частный случай способа разбиения (рис.9). Он применяется к телам, имеющим вырезы, если центры тяжести тела без выреза и вырезанной части известны. Тело в виде пластинки с вырезом представляют комбинацией сплошной пластинки (без выреза) с площадью S 1 и площади вырезанной части S 2 .

Рис.9

4.Метод группировки. Является хорошим дополнением двух последних методов. После разбиения фигуры на составные элементы часть их бывает удобно объединить вновь, чтобы затем упростить решение путем учета симметрии этой группы.

Центры тяжести некоторых одно­родных тел.

1) Центр тяжести дуги окруж­ности. Рассмотрим дугу АВ радиуса R с центральным углом . В силу сим­метрии центр тяжести этой дуги лежит на оси Ox (рис. 10).

Рис.10

Найдем координату по формуле . Для этого выделим на дуге АВ элемент ММ’ длиною , положение которого определяется углом . Координата х элемента ММ’ будет . Подставляя эти значения х и dl и имея в виду, что интеграл должен быть распространен на всю длину дуги, получим:

где L - длина дуги АВ , равная .

Отсюда окончательно нахо­дим, что центр тяжести дуги окружности лежит на ее оси симметрии на расстоянии от центра О , равном

где угол измеряется в радианах.

2) Центр тяжести площади тре­угольника. Рассмотрим треугольник, лежащий в плоскости Oxy , координаты вершин которого известны: A i (x i ,y i ), (i = 1,2,3). Разбивая треугольник на узкие полоски, параллельные стороне А 1 А 2 , придем к выводу, что центр тяжести треугольника должен принадлежать медиане А 3 М 3 (рис.11) .

Рис.11

Разбивая треугольник на полоски, параллельные стороне А 2 А 3 , можно убедиться, что он должен лежать на медиане А 1 М 1 . Таким образом, центр тяжести треугольника лежит в точке пересечения его медиан , которая, как известно, отделяет от каждой медианы третью часть, считая от соответствующей стороны.

В частности, для медианы А 1 М 1 получим, учитывая, что координаты точки М 1 - это среднее арифметическое координат вершин А 2 и А 3:

x c = x 1 + (2/3)∙(x М 1 - x 1) = x 1 + (2/3)∙[(x 2 + x 3)/2-x 1 ] = (x 1 + x 2 +x 3)/3.


Таким образом, координаты центра тяжести треугольника представляют собой среднее арифметическое из координат его вершин:

x c =(1/3)Σx i ; y c =(1/3)Σy i .

3) Центр тяжести площади кругового сектора. Рассмотрим сектор круга радиуса R с центральным углом 2α, расположенный симметрично относительно оси Ox (рис.12) .

Очевидно, что y c = 0, а расстояние от центра круга, из которого вырезан этот сектор, до его центра тяжести можно определить по формуле:

Рис.12

Проще всего этот интеграл вычислить, разбивая область интегрирования на элементарные секторы с углом d φ. С точностью до бесконечно малых первого порядка такой сектор можно заменить треугольником с основанием, равным R ×d φ и высотой R . Площадь такого треугольника dF =(1/2)R 2 ∙d φ, а его центр тяжести находится на расстоянии 2/3R от вершины, поэтому в (5) положим x = (2/3)R ∙cosφ. Подставляя в (5) F = αR 2 , получим:

С помощью последней формулы вычислим, в частности, расстояние до центра тяжести полукруга .

Подставляя в (2) α = π/2, получим: x c = (4R )/(3π) ≅ 0,4R .

Пример 1. Определим центр тяжести однородного тела, изображён­ного на рис. 13.

Рис.13

Тело однородное, состоящее из двух частей, имеющих симметричную форму. Координаты центров тяжести их:

Объёмы их:

Поэтому координаты центра тяжести тела

Пример 2. Найдем центр тяжести пластины, согнутой под прямым углом. Размеры – на чертеже (рис.14).

Рис.14

Координаты центров тяжести:

Площади:

Рис. 6.5.
Пример 3. У квадратного листа см вырезано квадратное отверстие см (рис.15). Найдем центр тяжести листа.

Рис.15

В этой задаче удобнее разделить тело на две части: большой квадрат и квадратное отверстие. Только площадь отверстия надо считать отрицательной. Тогда координаты центра тяжести листа с отверстием:

координата так как тело имеет ось симметрии (диагональ).

Пример 4. Проволочная скобка (рис.16) состоит из трёх участков оди­наковой длины l .

Рис.16

Координаты центров тяжести участ­ков:

Поэтому координаты центра тяжести всей скобки:

Пример 5. Определить положение центра тяжести фермы, все стержни которой имеют одинаковую погонную плотность (рис.17).

Напомним, что в физике плотность тела ρ и его удельный вес g связаны соотношением: γ= ρg , где g - ускорение свободного падения. Чтобы найти массу такого однородного тела, нужно плотность умножить на его объем.

Рис.17

Термин «линейная» или «погонная» плотность означает, что для определения массы стержня фермы нужно погонную плотность умножить на длину этого стержня.

Для решения задачи можно воспользоваться методом разбиения. Представив заданную ферму в виде суммы 6 отдельных стержней, получим:

где L i длина i -го стержня фермы, а x i , y i - координаты его центра тяжести.

Решение этой задачи можно упростить, если сгруппировать 5 последних стержней фермы. Нетрудно видеть, что они образуют фигуру, имеющую центр симметрии, расположенный посредине четвертого стержня, где и находится центр тяжести этой группы стержней.

Таким образом, заданную ферму можно представить комбинацией всего двух групп стержней.

Первая группа состоит из первого стержня, для нее L 1 = 4 м, x 1 = 0 м, y 1 = 2 м. Вторая группа стержней состоит из пяти стержней, для нее L 2 = 20 м, x 2 = 3 м, y 2 = 2 м.

Координаты центра тяжести фермы находим по формуле:

x c = (L 1 ∙x 1 + L 2 ∙x 2)/(L 1 + L 2) = (4∙0 + 20∙3)/24 = 5/2 м;

y c = (L 1 ∙y 1 + L 2 ∙y 2)/(L 1 + L 2) = (4∙2 + 20∙2)/24 = 2 м.

Отметим, что центр С лежит на прямой, соединяющей С 1 и С 2 и делит отрезок С 1 С 2 в отношении: С 1 С /СС 2 = (x c - x 1)/(x 2 - x c ) = L 2 / L 1 = 2,5/0,5.

Вопросы для самопроверки

Что называется центром параллельных сил?

Как определяются координаты центра параллельных сил?

Как определить центр параллельных сил, равнодействующая которых равна нулю?

Каким свойством обладает центр параллельных сил?

По каким формулам вычисляются координаты центра параллельных сил?

Что называется центром тяжести тела?

Почему силы притяжения Земле, действующие на точку тела, можно принять за систему параллельных сил?

Запишите формулу для определения положения центра тяжести неоднородных и однородных тел, формулу для определения положения центра тяжести плоских сечений?

Запишите формулу для определения положения центра тяжести простых геометрических фигур: прямоугольника, треугольника, трапеции и половины круга?

Что называют статическим моментом площади?

Приведите пример тела, центр тяжести которого расположен вне тела.

Как используются свойства симметрии при определении центров тяжести тел?

В чем состоит сущность способа отрицательных весов?

Где расположен центр тяжести дуги окружности?

Каким графическим построением можно найти центр тяжести треугольника?

Запишите формулу, определяющую центр тяжести кругового сектора.

Используя формулы, определяющие центры тяжести треугольника и кругового сектора, выведите аналогичную формулу для кругового сегмента.

По каким формулам вычисляются координаты центров тяжести однородных тел, плоских фигур и линий?

Что называется статическим моментом площади плоской фигуры относительно оси, как он вычисляется и какую размерность имеет?

Как определить положение центра тяжести площади, если известно положение центров тяжести отдельных ее частей?

Какими вспомогательными теоремами пользуются при определении положения центра тяжести?