Влияние радиоактивных лучей на космос. Можно ли рассматривать космос как место для захоронения радиоактивных отходов? Тогда эта серия статей для Вас… Мы расскажем о природных источниках ионизирующего облучения, использовании радиации в медицине и других и

Космическая радиация представляет большую проблему для конструкторов космических аппаратов. Они стремятся защитить от нее космонавтов, которым предстоит находиться на поверхности Луны или отправиться в длительные путешествия в глубины Вселенной. Если необходимая защита не будет обеспечена, то эти частицы, летящие с огромной скоростью, проникнут в тело космонавта, повредят его ДНК, что может повысить риск раковых заболеваний. К сожалению, до сих пор все известные способы защиты либо неэффективны, либо неосуществимы.
Материалы, традиционно применяемые для строительства космических аппаратов, например алюминий, задерживают некоторые космические частицы, но для многолетних полетов в космосе нужна более крепкая защита.
Аэрокосмическое агентство США (NASA) охотно берётся за самые сумасбродные, на первый взгляд, идеи. Ведь никто наверняка не может предсказать - какая из них однажды обернётся серьёзным прорывом в космических исследованиях. В агентстве работает специальный институт перспективных концепций (NASA Institute for Advanced Concepts - NIAC), призванный аккумулировать именно такие разработки - на очень дальнюю перспективу. Через этот институт NASA распределяет гранты в различные университеты и институты - на разработку "гениальных безумств".
Сейчас изучаются следующие варианты:

Защита определенными материалами. Некоторые материалы, например вода или полипропилен, обладают хорошими защитными свойствами. Но для того, чтобы защитить ими космический корабль, их понадобится очень много, вес корабля станет недопустимо велик.
В настоящее время, сотрудники NASA разработали новый сверхпрочный материал, родственный полиэтилену, который собираются использовать при сборке космических кораблей будущего. "Космическая пластмасса" сможет защитить астронавтов от космической радиации лучше, чем металлические экраны, но намного легче известных металлов. Специалисты убеждены, что когда материалу придадут достаточную термостойкость, из него можно будет делать даже обшивку космических аппаратов.
Раньше считалось, что только цельнометаллическая оболочка позволит пилотируемому кораблю пройти сквозь радиационные пояса Земли - потоки заряженных частиц, удерживаемые магнитным полем вблизи планеты. Во время полетов к МКС с этим не сталкивались, поскольку орбита станции проходит заметно ниже опасного участка. Кроме того, астронавтам угрожают вспышки на Солнце - источник гамма- и рентгеновских лучей, а детали самого корабля способны ко вторичному излучению - из-за распада радиоизотопов, образовавшихся при "первой встрече" с радиацией.
Теперь ученые полагают, что новый пластик RXF1 лучше справляется с перечисленными проблемами, причем небольшая плотность - не последний аргумент в его пользу: грузоподъемность ракет все еще недостаточно велика. Известны результаты лабораторных тестов, в которых его сравнивали с алюминием: RXF1 выдерживает втрое большие нагрузки при втрое меньшей плотности и улавливает больше высокоэнергетических частиц. Полимер пока не запатентован, поэтому о способе его изготовления не сообщается. Об этом сообщает Lenta.ru со ссылкой на science.nasa.gov.

Надувные конструкции. Надувной модуль, изготовленный из особо прочного пластика RXF1, окажется не только компактнее при запуске, но и легче цельной стальной конструкции. Конечно, его разработчикам потребуется предусмотреть и достаточно надежную защиту от микрометеоритов вкупе с «космическим мусором», но ничего принципиально невозможного в этом нет.
Кое-что уже есть - это частный надувной беспилотный корабль Genesis II уже находится на орбите. Запущен в 2007 году российской ракетой "Днепр". Причем масса у него довольно внушительная для устройства, созданного частной компанией, – свыше 1300 кг.


CSS (Commercial Space Station) Skywalker - коммерческий проект надувной орбитальной станции. На поддержку проекта NASA выделяет деньги около 4 млрд. долларов на 20110-2013 гг.. Речь идёт о разработке новых технологий надувных модулей для освоения космоса и небесных тел Солнечной системы.

Сколько будет стоить надувная конструкция, не сообщается. Зато уже озвучены суммарные затраты на разработку новых технологий. В 2011 году на эти цели выделят $652 млн, в 2012-м (если бюджет снова не пересмотрят) – $1262 млн, в 2013-м – $1808 млн. Затраты на исследования планируется неуклонно повышать, но, с учетом печального опыта выбившегося из сроков и смет «Созвездия» , без фокусировки на одной масштабной программе.
Надувные модули, автоматические устройства для стыковки аппаратов, системы хранения топлива на орбите, автономные модули жизнеобеспечения и комплексы, обеспечивающие посадку на другие небесные тела. Это лишь малая часть тех задач, которые ставятся теперь перед NASA для решения задачи высадки человека на Луну.

Магнитная и электростатическая защита. Для отражения летящих частиц можно применять мощные магниты, но магниты очень тяжелы, и пока неизвестно, насколько опасным для космонавтов окажется магнитное поле, достаточно мощное, чтобы отражать космическую радиацию.


Космический корабль или станция на поверхности Луны с магнитной защитой. Тороидальный сверхпроводящий магнит с напряжённостью поля не позволит большей части космических лучей проникнуть в кабину пилотов, расположенную внутри магнита, и, тем самым, снизит суммарные дозы радиации от космического излучения в десятки и более раз.


Перспективные проекты NASA - электростатический радиационный щит для лунной базы и лунный телескоп с жидким зеркалом (иллюстрации с сайта spaceflightnow.com).


Биомедицинские решения. Тело человека способно исправлять нарушения в ДНК, вызванные незначительными дозами радиации. Если усилить эту способность, космонавты смогут переносить длительное облучение космической радиацией. Подробнее

Защита из жидкого водорода. НАСА рассматривает возможность использовать в качестве защиты от космической радиации топливные баки космических аппаратов, содержащие жидкий водород, которые можно расположить вокруг отсека с экипажем. В основе этой идеи лежит тот факт, что космическое излучение теряет энергию, сталкиваясь с протонами других атомов. Поскольку атом водорода имеет только один протон в ядре, протон каждого его ядра "тормозит" радиацию. В элементах с более тяжелыми ядрами одни протоны загораживают другие, поэтому космические лучи их не достигают. Защиту водородом обеспечить можно, но недостаточную для того, чтобы предотвратить риски онкологических заболеваний.


Биоскафандр. Данный проект биоскафандра (Bio-Suit), разрабатываемый группой профессоров и студентов Массачусетского технологического института (MIT). "Био" - в данном случае означает не биотехнологии, а лёгкость, необыкновенное для скафандров удобство и где-то даже неощутимость оболочки, являющейся как бы продолжением тела.
Вместо того, чтобы сшивать и склеивать скафандр из отдельных кусочков различных тканей, его будут напылять прямо на кожу человека в виде быстро затвердевающего спрея. Правда, шлем, перчатки и ботинки останутся всё же традиционными.
Технология такого напыления (в качестве материала используется специальный полимер) уже обкатывается американскими военными. Этот процесс называется Electrospinlacing, его прорабатывают специалисты исследовательского центра армии США - Soldier systems center, Natick.
Упрощённо можно сказать, что мельчайшие капельки или короткие волоконца полимера приобретают электрический заряд и под действием электростатического поля устремляются к своей цели - объекту, который нужно закрыть плёнкой - где они образуют слитную поверхность. Учёные из MIT намерены создать нечто подобное, но способное создавать влаго- и воздухонепроницаемую плёнку на теле живого человека. После затвердевания плёнка приобретает высокую прочность, сохраняя упругость, достаточную для движения рук и ног.
Нужно добавить, что проект предусматривает вариант, когда подобным образом на тело будут напылены несколько различных слоёв, чередующихся с разнообразной встроенной электроникой.


Линия развития скафандров в представлении учёных MIT (иллюстрация с сайта mvl.mit.edu).


А ещё изобретатели биоскафандра говорят о перспективном самозатягивании полимерных плёнок при небольших повреждениях.
Когда такое станет возможным, не берётся предсказать даже сама госпожа профессор Дава Ньюман. Может, через десять лет, может - через пятьдесят.

Но ведь если не начать идти к этому результату сейчас - "фантастическое будущее" не наступит.

Даже если бы межпланетные полеты были реальностью, ученые все чаще говорят о том, что человеческий организм с чисто биологической точки зрения поджидают все больше опасностей. Одной из главных опасностей специалисты называют жесткое космическое радиационное излучение. На других планетах, например на том же Марсе, это излучение будет таким, что оно в разы ускорит наступление болезни Альцгеймера.

"Космическое излучение представляет собой очень значительную угрозу для будущих космонавтов. Возможность того, что космическое радиационное облучение может привести к возникновению проблем со здоровьем, таких как рак, уже давно признана", - говорит Керри О"Банион, доктор неврологии из Медицинского центра при Университете Рочестера. "Наши опыты также достоверно установили, что жесткое излучение также провоцирует ускорение изменений в головном мозге, связанных с болезнью Альцгеймера".

По словам ученых, все космическое пространство буквально пронизано радиационным излучением, тогда как толстая земная атмосфера защищает нашу планету от него. Влияние радиации на себе могут ощутить уже и участники кратковременных полетов на МКС, хотя формально они находятся на низкой орбите, где защитный купол земной гравитации еще работает. Особенно активно радиационное излучение работает в те моменты, когда на Солнце происходят вспышки с последующими выбросами радиационных частиц.

Ученые говорят, что уже сейчас в НАСА вплотную работает над различными подходами, связанными с защитой человека от космической радиации. Впервые космическое ведомство начало финансирование "радиационных исследований" еще 25 лет назад. Сейчас значительная часть инициатив в этой области связана с исследованиями на предмет того, как уберечь будущих марсонавтов от жесткой радиации на Красной планете, где нет такого же атмосферного купола, как на Земле.

Уже сейчас специалисты говорят с очень большой вероятностью о том, что марсианская радиация провоцирует онкологические заболевания. Еще большие объемы излучения есть вблизи астероидов. Напомним, что миссию на астероид с участием человека НАСА планирует на 2021 год, а на Марс - не позже 2035 года. Полет на Марс и обратно с некоторым пребыванием там может занять около трех лет.

Как рассказали в НАСА, сейчас доказано, что космическая радиация провоцирует, помимо рака, также заболевания сердечно-сосудистой системы, костно-мышечной и эндокринной. Сейчас же специалисты из Рочестера выявили и еще один вектор опасности: в рамках исследований было установлено, что высокие дозы космической радиации провоцируют заболевания связанные с нейродегенерацией, в частности активируют процессы, которые способствуют развитию болезни Альцгеймера. Также специалисты изучили то, как космическая радиация влияет на центральную нервную систему человека.

Специалисты на основании опытов установили, что радиоактивные частицы в космосе имеют в своей структуре ядра атомов железа, которые имеют феноменальную проникающую способность. Именно поэтому защититься от них удивительно трудно.

На Земле исследователи проводили симуляцию космической радиации в американской Брукхевенской национальной лаборатории на Лонг-Айленде, где находится специальный ускоритель элементарных частиц. В процессе экспериментов исследователи определили, сроки, в течение которых болезнь возникает и прогрессирует. Впрочем, пока исследователи проводили эксперименты на лабораторных мышах, подвергая их дозам радиации, сопоставимых с теми, что получили бы люди во время полета на Марс. После опытов практически все мыши получили нарушения в работе когнитивной системы головного мозга. Также были отмечены нарушения в работе сердечно-сосудистой системы. В головном мозге выявлены очаги накопления бета-амилоида - белка, который является верным признаком надвигающейся болезни Альцгеймера.

Ученые говорят, что они пока не знают, как побороть космическую радиацию, но они уверены, что радиация - это тот фактор, который заслуживает самого серьезного внимания при планировании будущих космических полетов.

Одним из основных негативных биологических факторов космического пространства, наряду с невесомостью, является радиация. Но если ситуация с невесомостью на различных телах Солнечной системы (например, на Луне или Марсе) будет лучше, чем на МКС, то с радиацией дела обстоят сложнее.

По своему происхождению космическое излучение бывает двух типов. Оно состоит из галактических космических лучей (ГКЛ) и тяжелых положительно заряженных протонов, исходящих от Солнца. Эти два типа излучения взаимодействуют друг с другом. В период солнечной активности интенсивность галактических лучей уменьшается, и наоборот. Наша планета защищена от солнечного ветра магнитным полем. Несмотря на это, часть заряженных частиц достигает атмосферы. В результате возникает явление, известное как полярное сияние. Высокоэнергетические ГКЛ почти не задерживаются магнитосферой, однако они не достигают поверхности Земли в опасном количестве благодаря ее плотной атмосфере. Орбита МКС находится выше плотных слоев атмосферы, однако внутри радиационных поясов Земли. Из-за этого уровень космического облучения на станции намного выше, чем на Земле, но существенно ниже, чем в открытом космосе. По своим защитным свойствам атмосфера Земли приблизительно эквивалентна 80-сантиметровому слою свинца.

Единственным достоверным источником данных о дозе излучения, которую можно получить во время длительного космического перелета и на поверхности Марса, является прибор RAD на исследовательской станции Mars Science Laboratory, более известной как Curiosity. Чтобы понять, насколько точны собранные им данные, давайте для начала рассмотрим МКС.

В сентябре 2013 года в журнале Science была опубликована статья, посвященная результатам работы инструмента RAD. На сравнительном графике, построенном Лабораторией реактивного движения НАСА (организация не связана с экспериментами, проводимыми на МКС, но работает с инструментом RAD марсохода Curiosity), указано, что за полгода пребывания на околоземной космической станции человек получает дозу излучения, примерно равную 80 мЗв (миллизиверт). А вот в издании Оксфордского университета от 2006 года (ISBN 978-0-19-513725-5) говорится, что в сутки космонавт на МКС получает в среднем 1 мЗв, т. е. полугодовая доза должна составить 180 мЗв. В результате мы видим огромный разброс в оценке уровня облучения на давно изученной низкой орбите Земли.

Основные солнечные циклы имеют период 11 лет, и, поскольку ГКЛ и солнечный ветер взаимосвязаны, для статистически надежных наблюдений нужно изучить данные о радиации на разных участках солнечного цикла. К сожалению, как говорилось выше, все имеющиеся у нас данные о радиации в открытом космосе были собраны за первые восемь месяцев 2012 года аппаратом MSL на его пути к Марсу. Информация о радиации на поверхности планеты накоплена им же за последующие годы. Это не значит, что данные неверны. Просто нужно понимать, что они могут отражать лишь характеристики ограниченного периода времени.

Последние данные инструмента RAD были опубликованы в 2014 году. Как сообщают ученые из Лаборатории реактивного движения НАСА, за полгода пребывания на поверхности Марса человек получит среднюю дозу излучения около 120 мЗв. Эта цифра находится посередине между нижней и верхней оценками дозы облучения на МКС. За время перелета к Марсу, если он также займет полгода, доза облучения составит 350 мЗв, т. е. в 2-4,5 раза больше, чем на МКС. За время полета MSL пережил пять вспышек на Солнце умеренной мощности. Мы не знаем наверняка, какую дозу облучения получат космонавты на Луне, поскольку во времена программы «Аполлон» не проводились эксперименты, изучавшие отдельно космическую радиацию. Ее эффекты изучались лишь совместно с эффектами других негативных явлений, таких как влияние лунной пыли. Тем не менее, можно предположить, что доза будет выше, чем на Марсе, поскольку Луна не защищена даже слабой атмосферой, но ниже, чем в открытом космосе, т. к. человек на Луне будет облучаться только «сверху» и «с боков», но не из-под ног./

В заключение можно отметить, что радиация – это та проблема, которая обязательно потребует решения в случае колонизации Солнечной системы. Однако широко распространенное мнение, что радиационная обстановка за пределами магнитосферы Земли не позволяет совершать длительные космические полеты, просто не соответствует действительности. Для полета к Марсу придется установить защитное покрытие либо на весь жилой модуль космического перелетного комплекса, либо на отдельный особо защищенный «штормовой» отсек, в котором космонавты смогут пережидать протонные ливни. Это не значит, что разработчикам придется использовать сложные антирадиационные системы. Для существенного снижения уровня облучения достаточно теплоизоляционного покрытия, которое применяют на спускаемых аппаратах космических кораблей для защиты от перегрева при торможении в атмосфере Земли.

Космическая лента

Вблизи Земли продолжает защищать ее магнитное поле - пусть даже ослабленное и без помощи многокилометровой атмосферы. Пролетая в районе полюсов, где поле мало, космонавты сидят в особо защищенном помещении. А для радиационной защиты при полете на Марс пока нет удовлетворительного технического решения.

Решил дополнить исходный ответ по двум причинам:

  1. в одном месте он содержит неверное утверждение и не содержит верное
  2. просто для полноты картины (цитаты)

1. В комментариях Сузанна покритиковала ответ - во многом справедливо.

Над магнитными полюсами Земли поле слабеет , как я и утверждал. Да, Сузанна права, что У ПОЛЮСОВ оно особо велико (представьте себе силовые линии: они собираются именно у полюсов). Но на большой высоте НАД ПОЛЮСАМИ оно слабее чем в других местах- по той же самой причине (представьте те же силовые линии: они ушли вниз - к полюсам, а вверху их почти не осталось). Поле как бы проседает.

Но Сузанна права в том, что космонавты МЧС не укрываются в спецпомещении из-за приполярных областей : меня подвела память.

Но все же есть место, над которым спецмеры принимаются (его я и спутал с приполярными областями). Это - над магнитной аномалией в Южной Атлантике . Там магнитное поле настолько "проседает", что радиационный пояс и принимать спецмеры приходится без всяких вспышек на Солнце . Цитату о не связанных с солнечной активностью спецмерах быстро найти не смог, но я о них где-то читал.

Ну и, конечно, стоит упомянуть и сами вспышки : от них тоже укрываются в наиболее защищенном помещении, а не разгуливают в это время по всей станции.

Все солнечные вспышки тщательно отслеживаются и информация о них отправляется в центр управления. В такие периоды космонавты прекращают работу и укрываются в наиболее защищённых отсеках станции. Такими защищёнными сегментами являются отсеки МКС рядом с ёмкостями с водой. Вода задерживает вторичные частицы - нейтроны, и доза радиации поглощается эффективнее.

2. Просто цитаты и допинформация

В некоторых цитатах ниже упоминается доза в Зивертах (Зв). Для ориентировки некоторые цифры и вероятные эффекты из таблицы в

0-0.25 Зв. Нет эффекта, за исключением умеренных изменений в крови

0.25-1 Зв. Радиационные заболевания из 5-10% облучённых людей

7 Зв ~100% летальных исходов

Суточная доза на МКС - около 1 мЗв (см. ниже). Значит, можно без особого риска летать около 200 суток . Важно также, за какой срок набрана одна и та же доза: набранная за короткое время намного опаснее, чем за набранная за длительный срок. Организм - не пассивный объект просто "набирающий" радиационные дефекты: есть у него и "ремонтные" механизмы и с постепенно набираемыми малыми дозами они обычно справляются.

В отсутствие массивного атмосферного слоя, который окружает людей на Земле, космонавты на МКС подвергаются более интенсивному облучению постоянными потоками космических лучей. В день члены экипажа получают дозу радиации в размере около 1 миллизиверта, что примерно равнозначно облучению человека на Земле за год. Это приводит к повышенному риску развития злокачественных опухолей у космонавтов, а также ослаблению иммунной системы.

Как показывают данные, собранные NASA и специалистами из России и Австрии, астронавты на МКС ежедневно получают дозу в 1 миллизиверт. На Земле такую дозу облучения не везде можно получить и за целый год.

Этот уровень, впрочем, ещё относительно терпим. Однако необходимо иметь в виду, что околоземные космические станции находятся под защитой магнитного поля Земли.

За его пределами радиация возрастёт во много раз, следовательно, экспедиции в глубокий космос окажутся невозможными.

Радиация в жилых корпусах и лабораториях МКС и «Мира» возникала вследствие бомбёжки космическими лучами алюминиевой обшивки станции. Быстрые и тяжёлые ионы выбивали из обшивки изрядное количество нейтронов.

В настоящее время на космических кораблях невозможно обеспечить стопроцентную защиту от радиации. Точнее, возможно, но за счёт более чем значительного увеличения массы, а вот это-то как раз и недопустимо

Кроме атмосферы нашей, защитой от радиации является магнитное поле Земли. Первый радиационный пояс Земли находится на высоте порядка 600-700 км. Станция сейчас летает на высоте порядка 400км, что существенно ниже... Защитой от радиации в космосе является (также – ред.) корпус корабля или станции. Чем толще стенки корпуса, тем больше защита. Конечно, стенки не могут быть бесконечно толстыми, потому что существуют весовые ограничения.

Ионизирующий уровень, фоновый уровень радиации на международной космической станции выше, чем на Земле (примерно в 200 раз – ред.), что делает космонавта более подверженным ионизирующему излучению, чем представителей традиционно радиационно-опасных отраслей, таких как атомная энергетика и рентгенодиагностика.

Кроме индивидуальных дозиметров космонавтов на станции есть еще система радиационного контроля. ... По одному датчику расположено в каютах экипажа и по одному датчику в рабочем отсеке малом и большом диаметре. Система работает автономно 24 часа в сутки. ... Таким образом Земля располагает информацией о текущей радиационной обстановке на станции. Система радиационного контроля способна выдавать предупреждающий сигнал «Проверь радиацию!». Если бы это случилось, то на пульте сигнализации систем мы увидели бы загорание транспаранта с сопровождающим звуковым сигналом. За все время существование космической международной станции таких случаев не было.

В... районе Южной Атлантики... радиационные пояса “провисают” над Землей из-за существования глубоко под Землей магнитной аномалии. Космические корабли, летающие над Землей, как бы “чиркают” пояса радиации в течение очень непродолжительного времени... на витках, проходящих район аномалии. На других витках потоки радиации отсутствуют и не создают хлопот участникам космических экспедиций.

Магнитная аномалия в районе Южной Атлантики – не единственная радиационная “напасть” для космонавтов. Солнечные вспышки, генерирующие подчас весьма энергичные частицы... , могут создать большие сложности для полётов космонавтов. Какая доза радиации может быть получена космонавтом в случае прихода солнечных частиц к Земле – во многом воля случая. Эта величина определяется, в основном, двумя факторами: степенью искажения дипольного магнитного поля Земли во время магнитных бурь и параметрами орбиты космического аппарата в течение солнечного события. ... Экипажу может повезти, если орбиты в момент вторжения СКЛ не проходят опасных высокоширотных участков.

Одно из наиболее мощных протонных извержений – радиационная буря солнечных извержений, вызвавшая радиационную бурю вблизи Земли, произошло совсем недавно – 20 января 2005 г. Аналогичное по мощности солнечное извержение было 16 лет назад, в октябре 1989 г. Множество протонов с энергиями, превышающими сотни МэВ, достигли магнитосферы Земли. Кстати, такие протоны способны преодолеть защиту толщиной, эквивалентной примерно 11 сантиметрам воды. Скафандр космонавта – тоньше. Биологи считают, что если в это время космонавты оказались бы вне Международной космической станции, то, безусловно, воздействие радиации сказалось бы на здоровье космонавтов. Но они находились внутри неё. Защита МКС достаточно велика, чтобы обезопасить экипаж от неблагоприятного воздействия радиации во многих случаях. Так было и во время данного события. Как показали измерения с помощью радиационных дозиметров, “схваченная” космонавтами доза радиации не превышала той дозы, которую человек получает при обычном рентгеновском обследовании. Космонавты МКС получили 0.01 Гр или ~ 0.01 Зиверт... Правда, столь малые дозы связаны и с тем, что, как об этом написано ранее, станция находилась на “магнитно-защищённых” витках, что может случаться не всегда.

Нил Армстронг (первый астронавт, вступивший на Луну) сообщил на Землю о своих необычных ощущениях во время полёта: порой он наблюдал яркие вспышки в глазах. Иногда их частота достигала около сотни в день... Учёные... пришли к выводу, что ответственны за это … галактические космические лучи. Именно эти частицы высокой энергии, проникая в глазное яблоко, вызывают черенковское свечение при взаимодействии с веществом, из которого состоит глаз. В результате астронавт и видит яркую вспышку. Наиболее эффективно с веществом взаимодействуют не протоны, которых в составе космических лучей больше всех остальных частиц, а тяжёлые частицы – углерод, кислород, железо. Эти частицы, обладая большой массой, теряют значительно больше своей энергии на единицу пройденного пути, чем их более лёгкие собратья. Именно они и ответственны за генерацию черенковского свечения и возбуждение ретины – чувствительной оболочки глаза.

При дальних космических полётах возрастает роль галактических и солнечных космических лучей как радиационно-опасных факторов. Подсчитано, что при полёте на Марс именно ГКЛ становятся основной радиационной опасностью. Полёт на Марс длится порядка 6 месяцев, и интегральная – суммарная - доза радиации от ГКЛ и СКЛ за этот период в несколько раз выше дозы радиации на МКС за то же время. Поэтому риск радиационных последствий, связанных с выполнением дальних космических миссий значительно возрастает. Так, за год полёта на Марс, поглощённая доза, связанная с ГКЛ, составит 0.2-0.3 Зв (без защиты). Её можно сравнить с дозой от одной из самых мощных вспышек прошлого столетия – августа 1972 г. Во время этого события она была в несколько раз меньше: ~0.05 Зв.

Радиационную опасность, создаваемую ГКЛ, можно оценить и предсказать. Сейчас накоплен богатый материал по временным вариациям ГКЛ, связанным с солнечным циклом. Это позволило создать модель, на основе которой удаётся предсказать поток ГКЛ на любой заданный вперёд период времени.

Гораздо сложнее обстоят дела с СКЛ. Солнечные вспышки возникают случайным образом и даже не очевидно, что мощные солнечные события возникают в годы, обязательно близкие к максимуму активности. По крайней мере, опыт последних лет показывает, что они происходят и во времена затихшего светила.

Протоны солнечных вспышек несут реальную угрозу космическим экипажам дальних миссий. Взяв вновь в качестве примера вспышку августа 1972 г., можно показать, пересчитав потоки солнечных протонов в дозу радиации, что через 10 часов после начала события, она превысила летальное значение для экипажа космического корабля, если бы он оказался вне корабля на Марсе или, скажем, на Луне.

Здесь уместно вспомнить полёты американскго “Apollo” к Луне в конце 60-х – начале 70-х. В 1972 г., в августе, была такая же по мощности вспышка на Солнце, как и в октябре 1989 г. “Apollo-16” приземлился после своего лунного путешествия в апреле 1972 г., а следующий – “Apollo-17” стартовал в декабре. Повезло экипажу “Apollo-16”? Безусловно, да. Расчёты показывают, будь астронавты “Apollo” в августе 1972 г. на Луне, они бы подверглись облучению с дозой радиации в ~4 Зв. Это – очень много, чтобы спастись. Если… если быстро не возвратиться на Землю для экстренного лечения. Другой вариант – перейти в кабину лунного модуля “Apollo”. Здесь доза радиации уменьшилась бы в 10 раз. Для сравнения скажем, что защита МКС в 3 раза толще, чем лунного модуля “Apollo”.

На высотах орбитальных станций (~400 км) дозы радиации превышают величины, наблюдающиеся на поверхности Земли, в ~200 раз! В основном за счёт частиц радиационных поясов.

Известно, что некоторые трассы межконтинентальных самолётов проходят вблизи северной полярной области. Эта область наименее защищена от вторжения энергичных частиц и поэтому во время солнечных вспышек опасность радиационного облучения экипажа и пассажиров возрастает. Солнечные вспышки увеличивают дозы радиации на высотах полётов самолётов в 20-30 раз.

В последнее время экипажи некоторых авиалиний информируются о начале наступления вторжения солнечных частиц. Одно из недавних мощных солнечных извержений, случившеееся в ноябре 2003 г., заставило экипаж “Дельты” рейса Чикаго - Гонг-Конг свернуть с пути: лететь к пункту назначения более низкоширотным маршрутом.

Землю от космического излучения защищают атмосфера и магнитное поле. На орбите радиационный фон в сотни раз больше, чем на поверхности Земли. Каждые сутки космонавт получает дозу облучения 0,3-0,8 миллизиверта - примерно в пять раз больше, чем при рентгене грудной клетки. При работе в открытом космосе воздействие радиации оказывается еще на порядок выше. А в моменты мощных солнечных вспышек можно за один день на станции схватить 50-суточную норму. Не дай бог в такое время работать за бортом - за один выход можно выбрать допустимую за всю карьеру дозу, составляющую 1000 миллизивертов. В обычных условиях ее хватило бы года на четыре - столько еще никто не налетал. Причем ущерб здоровью от такого однократного облучения будет значительно выше, чем от растянутого на годы.

И все же низкие околоземные орбиты еще относительно безопасны. Магнитное поле Земли захватывает заряженные частицы солнечного ветра, образуя радиационные пояса. Они имеют форму широкого бублика, окружающего Землю по экватору на высоте от 1000 до 50 000 километров. Максимальная плотность частиц достигается на высотах около 4000 и 16 000 километров. Сколько-нибудь длительная задержка корабля в радиационных поясах представляет серьезную угрозу жизни экипажа. Пересекая их на пути к Луне, американские астронавты за несколько часов рисковали получить дозу 10-20 миллизивертов - как за месяц работы на орбите.

В межпланетных полетах вопрос радиационной защиты экипажа стоит еще острее. Земля экранирует половину жестких космических лучей, а ее магнитосфера почти полностью задерживает поток солнечного ветра. В открытом космосе без дополнительных мер защиты облучение вырастет на порядок. Иногда обсуждается идея отклонять космические частицы сильными магнитными полями, однако на практике ничего, кроме экранирования, пока не отработано. Частицы космического излучения неплохо поглощаются ракетным топливом, что наводит на мысль использовать полные баки как защиту от опасной радиации.

Магнитное поле на полюсах не мало, а наоборот, большое. Просто направлено оно там практически радиально к Земле, что приводит к тому, что захваченные магнитными полями в радиационных поясах частицы солнечного ветра, при определенных условиях двигаются (высыпаются) в направлении Земли у полюсов, вызывая полярные сияния. Это не представляет опасности космонавтам так как траектория МКС проходит ближе к экваториальной зоне. Опасность представляют сильные солнечные вспышки класса М и Х с коронарными выбросами вещества (в основном протоны), направленные к Земле. Именно в этом случае, космонавты применяют дополнительные меры радиационной защиты.

Ответить

ЦИТАТА: "... Наиболее эффективно с веществом взаимодействуют не протоны, которых в составе космических лучей больше всех остальных частиц, а тяжёлые частицы – углерод, кислород, железо...."

Объясните неучу пожалуйста - откуда в солнечном ветре (космических лучах, как у вас написано) взялись частицы углерода, кислорода, железа и каким образом они могут попасть в вещество, из которого состоит глаз - через скафандр?

Ответить

Ещё 2 комментария

Объясняю... Солнечный свет - это фотоны (включая гамма-кванты и рентгеновское излучение, являющиеся проникающей радиацией).

Есть еще солнечный ветер. Частицы . Например, электроны, ионы, ядра атомов, летящие от Солнца и из Солнца. Сколь-нибудь тяжелых ядер (тяжелее гелия) там мало, ибо их мало в самом Солнце. Но альфа-частиц (ядер гелия) - много. И, в принципе, может прилететь любое ядро, легче железного (вопрос лишь в количестве прилетающего). Дальше железа синтез на Солнце (тем более вне его) не идет. Поэтому от Солнца может прилететь только железо и что-то полегче (тот же углерод, например).

Космические лучи в узком смысле - это особо высокоскоростные заряженные частицы (и не заряженные, впрочем, тоже), прилетевшие из-за пределов Солнечной системы (в основном). А также - проникающая радиация оттуда же (иногда ее рассматривпют отдельно, не причисляя к "лучам").

Среди прочих частиц космические лучи содержат и ядра каких угодно атомов (в разном количестве, конечно). Сколь-нибудь тяжелые ядра, попав в вещество, ионизируют все на своем пути (а также - в стороне: там вторичная ионизация - уже тем, что вышиблено по дороге). А если у них высокая скорость (и кинетическая энергия), то заниматься этим делом (полетом через вещество и его ионизацей) ядра будут долго и остановятся не скоро. Соответственно, пролетят через что угодно и с пути не свернут - пока не потратят почти всю кинетическую энергию. Даже наткнувшись прямо на другое ядро (а это бывает редко) могут просто отшвырнуть его в сторону, почти не изменив направление своего движения. Или не в сторону, а полетят дальше более-менее в одном направлении.

Представьте автомобиль, который на полном ходу врезался в другой. Разве он остановится? А еще представьте, что скорость у него - многие тысячи километров в час (еще лучше - в секунду!), а прочность позволяет выдержать любой удар. Вот это и есть ядро из космоса.

Космические лучи в широком смысле - это космические лучи в узком, плюс солнечный ветер и проникаюшая радиация от Солнца. (Ну, или без проникающей радиации, если ее рассматривают отдельно).

Со́лнечный ве́тер - поток ионизированных частиц (в основном гелиево-водородной плазмы), истекающий из солнечной короны со скоростью 300-1200 км/с в окружающее космическое пространство. Является одним из основных компонентов межпланетной среды.

Множество природных явлений связано с солнечным ветром, в том числе такие явления космической погоды, как магнитные бури и полярные сияния.

Не следует путать понятия «солнечный ветер» (поток ионизированных частиц, долетающий от Солнца до Земли за 2-3 суток) и «солнечный свет» (поток фотонов, долетающий от Солнца до Земли в среднем за 8 минут 17 секунд).

Из-за солнечного ветра Солнце теряет ежесекундно около одного миллиона тонн вещества. Солнечный ветер состоит в основном из электронов, протонов и ядер гелия (альфа-частиц); ядра других элементов и неионизированных частиц (электрически нейтральных) содержатся в очень незначительном количестве.

Хотя солнечный ветер исходит из внешнего слоя Солнца, он не отражает состава элементов в этом слое, так как в результате процессов дифференциации содержание некоторых элементов увеличивается, а некоторых - уменьшается (FIP-эффект).

Косми́ческие лучи́ - элементарные частицы и ядра атомов, движущиеся с высокими энергиями в космическом пространстве[

Классификация по происхождению космических лучей:

  • вне нашей Галактики
  • в Галактике
  • на Солнце
  • в межпланетном пространстве

Первичными принято называть внегалактические и галактические лучи. Вторичными принято называть потоки частиц, проходящие и трансформирующиеся в атмосфере Земли.

Космические лучи являются составляющей естественной радиации (фоновой радиации) на поверхности Земли и в атмосфере.

Энергетический спектр космических лучей на 43 % состоит из энергии протонов, ещё на 23 % - из энергии гелия (альфа-частиц) и 34 % энергии, переносимой остальными частицами.

По количеству частиц космические лучи на 92 % состоят из протонов, на 6 % - из ядер гелия, около 1 % составляют более тяжелые элементы, и около 1 % приходится на электроны.

Традиционно частицы, наблюдаемые в КЛ, делят на следующие группы... соответственно, протоны, альфа-частицы, легкие, средние, тяжелые и сверхтяжелые... Особенностью химического состава первичного космического излучения является аномально высокое (в несколько тысяч раз) содержание ядер группы L (литий, бериллий, бор) по сравнению с составом звёзд и межзвёздного газа. Данное явление объясняется тем, что механизм генерации космических частиц в первую очередь ускоряет тяжелые ядра, которые при взаимодействии с протонами межзвёздной среды распадаются на более лёгкие ядра.

Ответить

Прокомментировать

Текст, представленный ниже, нужно расценивать как личное мнение автора. Никакой секретной информацией (или доступом к ней) он не обладает. Всё, что изложено - это факты из открытых источников плюс немного здравого смысла («диванной аналитики», если угодно).

Научная фантастика - все эти бластеры и «пиу-пиу» в открытом космосе на крошечных одноместных истребителях - приучила человечество серьезно переоценивать доброжелательность Вселенной по отношению к теплым белковым организмам. Особенно сильно это проявляется, когда фантасты описывают путешествия к другим планетам. Увы, освоение «настоящего космоса» вместо привычных нам нескольких сотен «камэ» под защитой магнитного поля Земли будет более трудным предприятием, чем представлялось обывателю всего десятилетие назад.

Итак, вот мой главный тезис. Психологический климат и конфликты внутри экипажа далеко не главные проблемы, с которыми столкнется человек при организации пилотируемых полетов на Марс.

Главная проблема человека, путешествующего за пределы магнитосферы Земли - проблема с большой буквы «Р».

Что такое космическая радиация и почему мы не гибнем от нее на Земле

Ионизирующее излучение в космосе (за пределами нескольких сотен километров околоземельного пространства, которые человек действительно освоил) состоит из двух частей.

Излучение Солнца. Это, прежде всего, «солнечный ветер» - поток частиц, который постоянно «дует» во все стороны от светила и который чрезвычайно хорош для будущих космических парусников, потому что позволит им как следует разогнаться для путешествий за пределы Солнечной системы. Вот только для живых существ основная часть этого ветра не особо полезна. Замечательно, что нас от жесткой радиации защищают толстый слой атмосферы, ионосфера (та, где озоновые дыры), а еще мощное магнитное поле Земли.

Помимо ветра, который разлетается более-менее равномерно, наше светило еще периодически постреливает так называемыми солнечными вспышками. Последние представляют собой выбросы коронарного вещества Солнца. Они настолько серьезны, что время от времени приводят к проблемам у людей и техники даже на Земле, где самое веселье, повторюсь, недурственно экранируется.

Итак, у нас есть атмосфера и магнитное поле планеты. В уже довольно близком космосе, на расстоянии десятка-другого тысяч километров от Земли, солнечная вспышка (даже слабая, всего-то пара Хиросим), попав в корабль, гарантированно выведет его живую начинку из строя без малейших шансов на выживание. Помешать этому сегодня - при текущем уровне развития технологий и материалов - нам абсолютно нечем. По этой и только по этой причине многомесячное путешествие к Марсу человечеству придется отложить до времени, когда мы не решим эту проблему хотя бы частично. Также его придётся планировать в периоды наиболее спокойного солнца и много молиться всем техническим богам.

Космические лучи. Эти вездесущие злодейские штуки несут огромное количество энергии (больше, чем способен закачать в частицу БАК). Они приходят из других частей нашей галактики. Попадая в щит земной атмосферы, такой луч взаимодействует с ее атомами и расшибается на десятки менее энергичных частиц, которые каскадно порождают потоки еще менее энергичных (но тоже опасных) и в итоге все это великолепие проливается радиационным дождём на поверхность планеты. Примерно 15% от фонового излучения на Земле приходится на гостей из космоса. Чем выше ты живешь над уровнем моря, тем выше ловимая в течении жизни доза. И происходит это круглосуточно.

В качестве школьного упражнения попробуйте представить, что произойдёт с космическим кораблём и его «живой начинкой» в случае прямого попадании в них такого луча где-нибудь в открытом космосе. Лететь к Марсу, напомню, предстоит несколько месяцев, кораблик для этого предстоит строить здоровенный и вероятность описанного выше «контакта» (а то и не одного) достаточно велика. Просто пренебречь ею при длительных полетах с живым экипажем, увы, никак не получится.

Что ещё?

Помимо той радиации, что долетает до Земли от Солнца, есть ещё та солнечная радиация, которую магнитосфера планеты отталкивает, не пропускает внутрь и самое главное - накапливает*. Знакомьтесь, читатели. Это радиационный пояс Земли (РПЗ). Он же пояс Ван Аллена, как его называют за рубежом. Преодолеть его космонавтам предстоит что называется «на полных парах», чтобы не получить летальную дозу радиации всего за несколько часов. Повторный контакт с этим поясом - если мы вопреки здравому смыслу решим вернуть астронавтов с Марса на Землю - запросто может их добить.

*Значительная доля частиц пояса Ван Аллена приобретает опасную скорость уже в самом поясе. То есть он не только защищает нас от радиации извне, но еще и усиливает эту накопленную радиацию.

До сих пор речь шла об открытом космосе. Но не нужно забывать о том, что у Марса (в отличие от Земли) почти нет магнитного поля**, а атмосфера разрежённая и дохленькая, так что подвергаться воздействию этих негативных факторов люди будут не только в полёте.

**Ладно, немножко есть - в районе южного полюса.

Отсюда вывод. Жить будущим колонистам вероятнее всего предстоит не на поверхности планеты (как нам показывали в эпичном кино «Миссия на Марс»), а глубоко под ней.

Как быть?

Прежде всего, видимо, не питать иллюзий на скорое (в течение десятка-другого-третьего лет) разрешение всех этих проблем. Чтобы избежать гибели экипажа от лучевой болезни, нам придётся или вообще его туда не посылать и осваивать космос с помощью умных машин (кстати, не самое глупое решение), либо очень здорово поднапрячься, потому что, если я прав, то отправка людей на Марс с созданием там постоянной колонии - задача для одной страны (хоть США, хоть России, хоть Китая) в ближайшие полстолетия, а то и дольше совершенно неподъёмная. Один корабль для такой миссии обойдется в сумму, эквивалентную постройке и полному обслуживанию пары-тройки МКС (см. ниже).

И да, забыл сказать: пионеры Марса будут заведомо «смертниками», поскольку ни обратной дороги, ни долгой и комфортной жизни на Марсе обеспечить им в ближайшие полвека у нас, скорее всего, получится.

Как теоретически могла бы выглядеть миссия на Марс, имей мы для этого все ресурсы и технологии старушки-Земли? Сравните описанное ниже с тем, что вы видели в культовом фильме «Марсианин».

Миссия на Марс. Условно реалистичная версия

Во-первых, человечеству предстоит сильно напрячься и построить циклопических размеров космический корабль с мощной антирадиационной защитой, который сможет частично компенсировать адскую лучевую нагрузку на экипаж за пределами магнитного поля Земли и обеспечить доставку более-менее живых колонистов на Марс - в один конец.

Как может выглядеть такой корабль?

Это здоровенная махина в десятки (а лучше сотни) метров в поперечнике, обеспеченная собственным магнитным полем (сверхпроводящие электромагниты) и источниками энергии для его поддержания (атомные реакторы). Огромные размеры конструкции позволяют набить её изнутри поглощающими радиацию материалами (например, это может быть вспененный освинцованный пластик или герметичные контейнеры с простой либо «тяжелой» водой), которые десятилетиями (!) предстоит возить на орбиту и монтировать вокруг сравнительно крошечной капсулы жизнеобеспечения, куда потом мы поместим астронавтов.

Помимо размеров и дороговизны, марсианский корабль должен быть чертовски надежным и, главное, полностью автономным в плане управления. Чтобы доставить экипаж живым безопаснее всего будет погрузить его в искусственную кому и немного охладить (всего на пару-тройку градусов), чтобы замедлить метаболические процессы. В таком состоянии люди а) будут менее чувствительны к радиации, б) занимают меньше места и их дешевле экранировать от все той же радиации.

Очевидно, помимо корабля, нужен искусственный интеллект, способный уверенно доставить корабль на орбиту Марса, выгрузить колонистов на его поверхность, не повредив в процессе ни себя, ни груз, а потом ещё без участия людей вернуть астронавтов в сознание (уже на Марсе). Пока таких технологий у нас нет, но есть некоторая надежда, что подобный ИИ, а главное политические и экономические ресурсы для постройки описанного корабля, появятся у нас, допустим, ближе к середине столетия.

Хорошей новостью является то, что марсианский «паром» для колонистов вполне может быть многоразовым. Ему предстоит как челноку курсировать между Землёй и конечным пунктом, доставляя в колонию партии «живого груза» на замену выбывших «от естественных причин» людей. Для доставки «неживого» груза (еды, воды, воздуха и техники) противолучевая защита особо не нужна, так что марсианским грузовиком суперкорабль делать не обязательно. Он нужен исключительно для доставки колонистов и, возможно, семян растений / молоди сельскохозяйственных животных.

Во-вторых, нужно заранее забросить на Марс технику и запасы воды-еды-кислорода на экипаж из 6-12 человек на 12-15 лет (с учётом всех форс-мажоров). Это само по себе нетривиальная задачка, но допустим, что в ресурсах для ее решения мы не ограничены. Предположим, что войны и политические пертурбации Земли утихли, а на марсианскую миссию работает в едином порыве вся планета.

Забрасываемая на Марс техника, как вы уже должны догадаться, представляет собой полностью автономных роботов с искусственным интеллектом и питанием от компактных ядерных реакторов. Им предстоит методично в течение десятка-полутора лет отрыть сначала глубокий тоннель под поверхность красной планеты. Затем - ещё за несколько лет - небольшую сеть тоннелей, в которую предстоит втащить блоки жизнеобеспечения и запасы для будущей экспедиции, а потом все это герметично смонтировать в автономный подмарсианский поселок.

Метроподобное обиталище кажется оптимальным решением по двум причинам. Во-первых, оно экранирует космонавтов от космических лучей уже на самом Марсе. Во-вторых, из-за остаточной «марсотермальной» активности недр под поверхностью планеты на градус-другой теплее, чем снаружи. Это пригодится колонистам как для экономии энергии, так и для выращивания картошки на собственных фекалиях.

Уточним важный момент: строить колонию придётся в южном полушарии, где на планете ещё сохранилось остаточное магнитное поле.

Выходить на поверхность астронавтам в идеале не придётся вообще (Марс «вживую» они или не увидят совсем, или увидят один раз - при посадке). Всю работу на поверхности предстоит делать роботам, действиями которых колонистам предстоит руководить из своего бункера всю их недолгую жизнь (лет двадцать при удачном стечении обстоятельств).

В-третьих, надо поговорить о самом экипаже и методах его подбора.

Идеальной схемой последнего станет поиск по всей Земле… генетически идентичных (монозиготных) близнецов, один из которых только что превратился в донора органов (например, «удачно» попав в автокатастрофу). Звучит до крайности цинично, но пусть это не помешает вам дочитать текст до конца.

Что нам дает близнец-донор?

Погибший близнец даёт возможность своему брату (или сестре) стать идеальным колонистом на Марсе. Дело в том, что красный костный мозг первого, будучи доставлен на красную планету в дополнительно защищённом от радиации контейнере, можно будет перелить близнецу-астронавту. Тем самым повышаются шансы на выживание оного при лучевой болезни, остром лейкозе и других неприятностях, которые с колонистом весьма вероятно приключатся за годы миссии.

Итак, как выглядит процедура отсева будущих колонистов?

Отбираем несколько миллионов близнецов. Ждём, пока что-то происходит с одним из них, и делаем предложение оставшемуся. Набирается пул из, скажем, ста тысяч потенциальных кандидатов. Теперь внутри этого пула проводим итоговый отбор на психологическую совместимость и профпригодность.

Естественно, для расширения выборки отбирать астронавтов придётся по всей Земле, а не в одной или двух странах.

Ещё бы, конечно, здорово помогла некая технология выявления особо устойчивых к облучению кандидатов. Известно, что некоторая часть людей гораздо более устойчива к радиации, чем другая. Наверняка её можно выявить с помощью неких генетических маркеров. Если дополнить этим методом идею с близнецами, вместе они должны существенно повысить выживаемость марсианских колонистов.

Помимо этого, полезно было бы научиться переливать людям костный мозг в невесомости. Это не единственная штука, которую предстоит изобрести специально под этот проект, но, по счастью, время у нас ещё есть, а МКС пока что болтается на орбите Земли будто специально для отработки подобных технологий.

PS. Я должен специально оговориться, что принципиальным противником космических путешествий я не являюсь и верю, что рано или поздно «космос будет наш». Вопрос только в цене этого успеха, а также во времени, которое человечество затратит на отработку необходимых технологий. Мне кажется, под влиянием научной фантастики и массовой культуры многие из нас довольно беспечны в смысле понимания трудностей, которые на этом пути предстоит преодолеть. Чтобы несколько отрезвить эту часть «космооптимистов » и написан этот текст.

Во и частях я расскажу какие еще варианты у нас имеются в вопросе освоения космоса человеками в долгосрочной перспективе.