Восстановительные свойства водорода. Водород - это что за вещество? Химические и физические свойства водорода

Химические свойства водорода

При обычных условиях молекулярный Водород сравнительно мало активен, непосредственно соединяясь лишь с наиболее активными из неметаллов (с фтором, а на свету и с хлором). Однако при нагревании он вступает в реакции со многими элементами.

Водород вступает в реакции с простыми и сложными веществами:

- Взаимодействие водорода с металлами приводит к образованию сложных веществ - гидридов, в химических формулах которых атом металла всегда стоит на первом месте:


При высокой температуре Водород непосредственно реагирует с некоторыми металлами (щелочными, щелочноземельными и другими), образуя белые кристаллические вещества - гидриды металлов (Li Н, Na Н, КН, СаН 2 и др.):

Н 2 + 2Li = 2LiH

Гидриды металлов легко разлагаются водой с образованием соответствующей щелочи и водорода:

СаH 2 + 2Н 2 О = Са(ОН) 2 + 2Н 2

- При взаимодействии водорода с неметаллами образуются летучие водородные соединения. В химической формуле летучего водородного соединения, атом водорода может стоять как на первом так и на втором месте, в зависимости от местонахождения в ПСХЭ (см. табличку в слайде):

1). С кислородом Водород образует воду:

Видео "Горение водорода"

2Н 2 + О 2 = 2Н 2 О + Q

При обычных температурах реакция протекает крайне медленно, выше 550°С - со взрывом (смесь 2 объемов Н 2 и 1 объема О 2 называется гремучим газом ) .

Видео "Взрыв гремучего газа"

Видео "Приготовление и взрыв гремучей смеси"

2). С галогенами Водород образует галогеноводороды, например:

Н 2 + Cl 2 = 2НСl

При этом с фтором Водород взрывается (даже в темноте и при - 252°С), с хлором и бромом реагирует лишь при освещении или нагревании, а с йодом только при нагревании.

3). С азотом Водород взаимодействует с образованием аммиака:

ЗН 2 + N 2 = 2NН 3

лишь на катализаторе и при повышенных температуpax и давлениях.

4). При нагревании Водород энергично реагирует с серой :

Н 2 + S = H 2 S (сероводород),

значительно труднее с селеном и теллуром.

5). С чистым углеродом Водород может реагировать без катализатора только при высоких температуpax:

2Н 2 + С (аморфный) = СН 4 (метан)


- Водород вступает в реакцию замещения с оксидами металлов , при этом образуются в продуктах вода и восстанавливается металл. Водород - проявляет свойства восстановителя:


Водород используется для восстановления многих металлов , так как отнимает кислород у их оксидов:

Fe 3 O 4 + 4H 2 = 3Fe + 4Н 2 О, и т. д.

Применение водорода

Видео "Применение водорода"

В настоящее время водород получают в огромных количествах. Очень большую часть его используют при синтезе аммиака, гидрогенизации жиров и при гидрировании угля, масел и углеводородов. Кроме того, водород применяют для синтеза соляной кислоты, метилового спирта, синильной кислоты, при сварке и ковке металлов, а также при изготовлении ламп накаливания и драгоценных камней. В продажу водород поступает в баллонах под давлением свыше 150 атм. Они окрашены в тёмно-зелёный цвет и снабжаются красной надписью "Водород".

Водород используется для превращения жидких жиров в твердые (гидрогенизация), производства жидкого топлива гидрогенизацией углей и мазута. В металлургии водород используют как восстановитель оксидов или хлоридов для получения металлов и неметаллов (германия, кремния, галлия, циркония, гафния, молибдена, вольфрама и др.).

Практическое применение водорода многообразно: им обычно заполняют шары-зонды, в химической промышленности он служит сырьём для получения многих весьма важных продуктов (аммиака и др.), в пищевой - для выработки из растительных масел твёрдых жиров и т. д. Высокая температура (до 2600 °С), получающаяся при горении водорода в кислороде, используется для плавления тугоплавких металлов, кварца и т. п. Жидкий водород является одним из наиболее эффективных реактивных топлив. Ежегодное мировое потребление водорода превышает 1 млн. т.

ТРЕНАЖЕРЫ

№2. Водород

ЗАДАНИЯ ДЛЯ ЗАКРЕПЛЕНИЯ

Задание №1
Составьте уравнения реакций взаимодействия водорода со следующими веществами: F 2 , Ca, Al 2 O 3 , оксидом ртути (II), оксидом вольфрама (VI). Назовите продукты реакции, укажите типы реакций.

Задание №2
Осуществите превращения по схеме:
H 2 O -> H 2 -> H 2 S -> SO 2

Задание №3.
Вычислите массу воды, которую можно получить при сжигании 8 г водорода?

Самый распространенный элемент во вселенной - это водород. В веществе звезд он имеет вид ядер - протонов - и является материалом для термоядерных процессов. Почти половина массы Солнца также состоит из молекул H 2 . Содержание его в земной коре достигает 0,15 % , а атомы присутствуют в составе нефти, природного газа, воды. Вместе с кислородом, азотом и углеродом он является органогенным элементом, входящим в состав всех живых организмов на Земле. В нашей статье мы изучим физические и химические свойства водорода, определим основные области его применения в промышленности и значение в природе.

Положение в периодической системе химических элементов Менделеева

Первый элемент, открывающий периодическую систему - это водород. Его атомная масса составляет 1,0079. Имеет два стабильных (протий и дейтерий) и один радиоактивный изотоп (тритий). Физические свойства определяются местом неметалла в таблице химических элементов. В обычных условиях водород (формула его - H 2) представляет газ, который почти в 15 раз легче воздуха. Строение атома элемента уникально: он состоит только из ядра и одного электрона. Молекула вещества двухатомная, частицы в ней соединяются с помощью ковалентной неполярной связи. Ее энергоемкость достаточно велика - 431 кДж. Это объясняет невысокую химическую активность соединения в обычных условиях. Электронная формула водорода такова: H:H.

Вещество имеет еще целый ряд свойств, аналогов которым нет среди других неметаллов. Рассмотрим некоторые из них.

Растворимость и теплопроводность

Лучше всего проводят тепло металлы, но водород по теплопроводности приближается к ним. Объяснение феномена заключается в очень большой скорости теплового движения легких молекул вещества, поэтому в водородной атмосфере нагретый предмет остывает в 6 раз быстрее, чем на воздухе. Соединение может хорошо растворяться в металлах, например, почти 900 объемов водорода могут быть поглощены одним объемом палладия. Металлы могут вступать с H 2 в химические реакции, в которых проявляются окислительные свойства водорода. В этом случае образуются гидриды:

2Na + H 2 =2 NaH.

В этой реакции атомы элемента принимают электроны от частиц металла, превращаясь в анионы с единичным отрицательным зарядом. Простое вещество H 2 в данном случае является окислителем, что для него обычно не характерно.

Водород как восстановитель

Объединяет металлы и водород не только высокая теплопроводность, но и способность их атомов в химических процессах отдавать собственные электроны, то есть окисляться. Например, основные оксиды вступают в реакции с водородом. Окислительно-восстановительная реакция заканчивается выделением чистого металла и образованием молекул воды:

CuO + H 2 = Cu + H 2 O.

Взаимодействие вещества с кислородом при нагревании приводит также к получению молекул воды. Процесс является экзотермическим и сопровождается выделением большого количества тепловой энергии. Если газовая смесь H 2 и O 2 реагирует в соотношении 2:1, то ее называют так как при поджигании она взрывается:

2H 2 + O 2 = 2H 2 O.

Вода является и играет важнейшую роль в формировании гидросферы Земли, климата, погоды. Она обеспечивает круговорот элементов в природе, поддерживает все жизненные процессы организмов - обитателей нашей планеты.

Взаимодействие с неметаллами

Наиболее важные химические свойства водорода - это его реакции с неметаллическими элементами. При нормальных условиях достаточно химически инертны, поэтому вещество может реагировать только с галогенами, например с фтором или хлором, являющимися наиболее активными среди всех неметаллов. Так, смесь фтора и водорода взрывается в темноте или на холоде, а с хлором - при нагревании или на свету. Продуктами реакции будут галогеноводороды, водные растворы которых известны как фторидная и хлоридная кислоты. С взаимодействует при температуре 450-500 градусов, давлении 30-100 мПа и в присутствии катализатора:

N₂ + 3H₂ ⇔ p, t, kat ⇔ 2NH₃.

Рассмотренные химические свойства водорода имеют большое значение для промышленности. Например, можно получить ценный химический продукт - аммиак. Он является основным сырьем для получения нитратной кислоты и азотных удобрений: карбамида, нитрата аммония.

Органические вещества

Между углеродом и водородом приводит к получению простейшего углеводорода - метана:

C + 2H 2 = CH 4.

Вещество является важнейшей составной частью природного и Они применяются в качестве ценного вида топлива и сырья для промышленности органического синтеза.

В химии соединений углерода элемент входит в состав огромного количества веществ: алканов, алкенов, углеводов, спиртов и т. д. Известно много реакций органических соединений с молекулами H 2 . Они носят общее название - гидрирование или гидрогенизация. Так, альдегиды можно восстановить водородом до спиртов, непредельные углеводороды - до алканов. Например, этилен превращается в этан:

C 2 H 4 + H 2 = C 2 H 6 .

Важное практическое значение имеют такие химические свойства водорода, как, например, гидрогенизация жидких масел: подсолнечного, кукурузного, рапсового. Она приводит к получению твердого жира - саломаса, который используют в производстве глицерина, мыла, стеарина, твердых сортов маргарина. Для улучшения внешнего вида и вкусовых качеств пищевого продукта в него добавляют молоко, животные жиры, сахар, витамины.

В нашей статье мы изучили свойства водорода и выяснили его роль в природе и жизни человека.

В уроке 22 «Химические свойства водорода » из курса «Химия для чайников » узнаем с какими веществами реагирует водород; выясним, какими химическими свойствами обладает водород.

Водород вступает в химические реакции с простыми и сложными веществами. Однако при обычных условиях водород малоактивен. Для его взаимодействия с другими веществами необходимо создать условия: повысить температуру, применить катализатор и др.

Реакции водорода с простыми веществами

При нагревании водород вступает в реакции соединения с простыми веществами - кислородом, хлором, азотом, серой.

Если поджечь на воздухе чистый водород, выходящий из газоотводной трубки, он горит ровным, еле заметным пламенем. Теперь поместим трубку с горящим водородом в банку с кислородом (рис. 95).

Горение водорода продолжается, при этом на стенках банки видны капли воды, образующейся в результате реакции:

При горении водорода выделяется много теплоты. Температура кислородно-водородного пламени достигает больше 2000 °С.

Химическая реакция водорода с кислородом относится к реакциям соединения. В результате реакции образуется оксид водорода (вода). Это значит, что произошло окисление водорода кислородом, т. е. эту реакцию мы можем назвать и реакцией окисления.

Если же в пробирку, опрокинутую вверх дном, собрать немного водорода методом вытеснения воздуха, а затем поднести к ее отверстию горящую спичку, то раздастся громкий «лающий» звук небольшого взрыва смеси водорода с воздухом. Такую смесь называют «гремучей».

На заметку: Способность водорода в смеси с воздухом образовывать «гремучий газ» часто являлась причиной катастроф на воздушных шарах, заполненных водородом. Нарушение герметичности оболочки шара приводило к пожару и даже взрыву. В наше время воздушные шары заполняют гелием или постоянно нагнетаемым горячим воздухом.

В атмосфере хлора водород сгорает с образованием сложного вещества - хлороводорода . При этом протекает реакция:

Реакция водорода с азотом происходит при повышенной температуре и давлении в присутствии катализатора. В результате реакции образуется аммиак NH 3:

Если струю водорода направить на расплавленную в пробирке серу, то у ее отверстия ощутится запах тухлых яиц. Так пахнет газ сероводород H 2 S - продукт реакции водорода с серой:

На заметку: Водород способен не только растворяться в некоторых металлах, но и реа гировать с ними. При этом образуются химические соединения, называемые гидридами (NaH - гидрид натрия). Гидриды некоторых металлов используют как горючее в ракетных двигателях на твердом топливе, а также при получении термоядерной энергии.

Реакции водорода со сложными веществами

Водород реагирует при повышенной температуре не только с простыми, но и со сложными веществами. Рассмотрим в качестве примера его реакцию с оксидом меди(II) CuO (рис. 96).

Пропустим водород над нагретым порошком оксида меди(II) CuO. По мере протекания реакции цвет порошка изменяется с черного на коричнево красный. Это цвет простого вещества меди Cu. В ходе реакции на холодных частях пробирки появляются капельки жидкости. Это еще один продукт реакции - вода H 2 O. Отметим, что в отличие от простого вещества меди вода - сложное вещество.

Уравнение реакции оксида меди(II) с водородом:

Водород в реакции с оксидом меди(II) проявляет способность отнимать у оксида металла кислород, тем самым восстанавливать металл из этого оксида. В результате происходит восстановление меди из сложного вещества CuO до металлической меди (Cu).

Реакции восстановления - это реакции, в ходе которых сложные вещества отдают атомы кислорода другим веществам.

Вещество, отнимающее атомы кислорода, называют восстановителем. В реакции с оксидом меди(II) восстановитель - водород. Так же реагирует водород и с оксидами некоторых других металлов, например PbO, HgO, MoO 3 , WO 3 и др. Окисление и восстановление всегда взаимосвязаны между собой. Если одно вещество (Н 2) окисляется, то другое (CuO) - восстанавливается, и наоборот.

Краткие выводы урока:

  1. При нагревании водород реагирует с кислородом, хлором, азотом, серой.
  2. Восстановление - это отдача атомов кислорода сложными веществами другим веществам.
  3. Процессы окисления и восстановления взаимосвязаны между собой.

Надеюсь урок 22 «Химические свойства водорода » был понятным и познавательным. Если у вас возникли вопросы, пишите их в комментарии.

§3. Уравнение реакции и как его составить

Взаимодействие водорода с кислородом , как это установил еще сэр Генри Кавендиш , приводит к образованию воды. Давайте на этом простом примере поучимся составлять уравнения химических реакций .
Что получается из водорода и кислорода , мы уже знаем:

Н 2 + О 2 → Н 2 О

Теперь учтем, что атомы химических элементов в химических реакциях не исчезают и не появляются из ничего, не превращаются друг в друга, а соединяются в новых комбинациях , образуя новые молекулы. Значит, в уравнении химической реакции атомов каждого сорта должно быть одинаковое количество до реакции (слева от знака равенства) и после окончания реакции (справа от знака равенства), вот так:

2Н 2 + О 2 = 2Н 2 О

Это и есть уравнение реакции - условная запись протекающей химической реакции с помощью формул веществ и коэффициентов .

Это значит, что в приведенной реакции два моля водорода должны прореагировать с одним молем кислорода , и в результате получится два моля воды .

Взаимодействие водорода с кислородом - совсем не простой процесс. Он приводит к изменению степеней окисления этих элементов. Чтобы подбирать коэффициенты в таких уравнениях, обычно пользуются методом "электронного баланса ".

Когда из водорода и кислорода образуется вода, то это значит, что водород поменял свою степень окисления от 0 до +I , а кислород - от 0 до −II . При этом от атомов водорода к атомам кислорода перешло несколько (n) электронов:

Водород, отдающий электроны, служит здесь восстановителем , а кислород, принимающий электроны - окислителем .

Окислители и восстановители


Посмотрим теперь, как выглядят процессы отдачи и приема электронов по отдельности. Водород , встретившись с "грабителем"-кислородом, теряет все свое достояние - два электрона, и его степень окисления становится равной +I :

Н 2 0 − 2e − = 2Н +I

Получилось уравнение полуреакции окисления водорода.

А бандит-кислород О 2 , отняв последние электроны у несчастного водорода, очень доволен своей новой степенью окисления -II :

O 2 + 4e − = 2O −II

Это уравнение полуреакции восстановления кислорода.

Остается добавить, что и "бандит", и его "жертва" потеряли свою химическую индивидуальность и из простых веществ - газов с двухатомными молекулами Н 2 и О 2 превратились в составные части нового химического вещества - воды Н 2 О .

Дальше будем рассуждать следующим образом: сколько электронов отдал восстановитель бандиту-окислителю, столько тот и получил. Число электронов, отданных восстановителем, должно быть равно числу электронов, принятых окислителем .

Значит, надо уравнять число электронов в первой и второй полуреакциях. В химии принята такая условная форма записи уравнений полуреакций:

2 Н 2 0 − 2e − = 2Н +I

1 O 2 0 + 4e − = 2O −II

Здесь числа 2 и 1 слева от фигурной скобки - это множители, которые помогут обеспечить равенство числа отданных и принятых электронов. Учтем, что в уравнениях полуреакций отдано 2 электрона, а принято 4. Чтобы уравнять число принятых и отданных электронов, находят наименьшее общее кратное и дополнительные множители. В нашем случае наименьшее общее кратное равно 4. Дополнительные множители будут для водорода равны 2 (4: 2 = 2), а для кислорода - 1 (4: 4 = 1)
Полученные множители и будут служить коэффициентами будущего уравнения реакции:

2H 2 0 + O 2 0 = 2H 2 +I O −II

Водород окисляется не только при встрече с кислородом . Примерно так же на водород действуют и фтор F 2 , галоген и известный "разбойник", и казалось бы, безобидный азот N 2 :

H 2 0 + F 2 0 = 2H +I F −I


3H 2 0 + N 2 0 = 2N −III H 3 +I

При этом получается фтороводород HF или аммиак NH 3 .

В обоих соединениях степень окисления водорода становится равной +I , потому что партнеры по молекуле ему достаются "жадные" до чужого электронного добра, с высокой электроотрицательностью - фтор F и азот N . У азота значение электроотрицательности считают равным трем условным единицам, а у фтора вообще самая высокая электроотрицательность среди всех химических элементов - четыре единицы. Так что немудрено им оставить бедняжку-атом водорода без всякого электронного окружения.

Но водород может и восстанавливаться - принимать электроны. Это происходит, если в реакции с ним будут участвовать щелочные металлы или кальций, у которых электроотрицательность меньше, чем у водорода.

Жидкий

Водород (лат. Hydrogenium ; обозначается символом H ) — первый элемент периодической системы элементов. Широко распространён в природе. Катион (и ядро) самого распространённого изотопа водорода 1 H — протон. Свойства ядра 1 H позволяют широко использовать ЯМР-спектроскопию в анализе органических веществ.

Три изотопа водорода имеют собственные названия: 1 H — протий (Н), 2 H — дейтерий (D) и 3 H — тритий (радиоактивен) (T).

Простое вещество водород — H 2 — лёгкий бесцветный газ. В смеси с воздухом или кислородом горюч и взрывоопасен. Нетоксичен. Растворим в этаноле и рядеметаллов: железе, никеле, палладии, платине.

История

Выделение горючего газа при взаимодействии кислот и металлов наблюдали в XVI и XVII веках на заре становления химии как науки. Прямо указывал на выделение его и Михаил Васильевич Ломоносов, но уже определённо сознавая, что это не флогистон. Английский физик и химик Генри Кавендиш в 1766 году исследовал этот газ и назвал его «горючим воздухом». При сжигании «горючий воздух» давал воду, но приверженность Кавендиша теории флогистона помешала ему сделать правильные выводы. Французский химик Антуан Лавуазье совместно с инженером Ж. Менье, используя специальные газометры, в 1783 г. осуществил синтез воды, а затем и её анализ, разложив водяной пар раскалённым железом. Таким образом он установил, что «горючий воздух» входит в состав воды и может быть из неё получен.

Происхождение названия

Лавуазье дал водороду название hydrogène — «рождающий воду». Русское наименование «водород» предложил химик М. Ф. Соловьев в 1824 году — по аналогии сломоносовским «кислородом».

Распространённость

Водород — самый распространённый элемент во Вселенной. На его долю приходится около 92 % всех атомов (8 % составляют атомы гелия, доля всех остальных вместе взятых элементов — менее 0,1 %). Таким образом, водород — основная составная часть звёзд и межзвёздного газа. В условиях звёздных температур (например, температура поверхности Солнца ~ 6000 °C) водород существует в виде плазмы, в межзвёздном пространстве этот элемент существует в виде отдельных молекул, атомов и ионов и может образовывать молекулярные облака, значительно различающиеся по размерам, плотности и температуре.

Земная кора и живые организмы

Массовая доля водорода в земной коре составляет 1 % — это десятый по распространённости элемент. Однако его роль в природе определяется не массой, а числом атомов, доля которых среди остальных элементов составляет 17 % (второе место после кислорода, доля атомов которого равна ~ 52 %). Поэтому значение водорода в химических процессах, происходящих на Земле, почти так же велико, как и кислорода. В отличие от кислорода, существующего на Земле и в связанном, и в свободном состояниях, практически весь водород на Земле находится в виде соединений; лишь в очень незначительном количестве водород в виде простого вещества содержится в атмосфере (0,00005 % по объёму).

Водород входит в состав практически всех органических веществ и присутствует во всех живых клетках. В живых клетках по числу атомов на водород приходится почти 50 %.

Получение

Промышленные способы получения простых веществ зависят от того, в каком виде соответствующий элемент находится в природе, то есть что может быть сырьём для его получения. Так, кислород, имеющийся в свободном состоянии, получают физическим способом — выделением из жидкого воздуха. Водород же практически весь находится в виде соединений, поэтому для его получения применяют химические методы. В частности, могут быть использованы реакции разложения. Одним из способов получения водорода служит реакция разложения воды электрическим током.

Основной промышленный способ получения водорода — реакция с водой метана, который входит в состав природного газа. Она проводится при высокой температуре (легко убедиться, что при пропускании метана даже через кипящую воду никакой реакции не происходит):

СН 4 + 2Н 2 O = CO 2 + 4Н 2 −165 кДж

В лаборатории для получения простых веществ используют не обязательно природное сырьё, а выбирают те исходные вещества, из которых легче выделить необходимое вещество. Например, в лаборатории кислород не получают из воздуха. Это же относится и к получению водорода. Один из лабораторных способов получения водорода, который иногда применяется и в промышленности, — разложение воды электротоком.

Обычно в лаборатории водород получают взаимодействием цинка с соляной кислотой.

В промышленности

1.Электролиз водных растворов солей:

2NaCl + 2H 2 O → H 2 + 2NaOH + Cl 2

2.Пропускание паров воды над раскаленным коксом при температуре около 1000 °C:

H 2 O + C ? H 2 + CO

3.Из природного газа.

Конверсия с водяным паром:

CH 4 + H 2 O ? CO + 3H 2 (1000 °C)

Каталитическое окисление кислородом:

2CH 4 + O 2 ? 2CO + 4H 2

4. Крекинг и риформинг углеводородов в процессе переработки нефти.

В лаборатории

1.Действие разбавленных кислот на металлы. Для проведения такой реакции чаще всего используют цинк и разбавленную соляную кислоту:

Zn + 2HCl → ZnCl 2 + H 2

2.Взаимодействие кальция с водой:

Ca + 2H 2 O → Ca(OH) 2 + H 2

3.Гидролиз гидридов:

NaH + H 2 O → NaOH + H 2

4.Действие щелочей на цинк или алюминий:

2Al + 2NaOH + 6H 2 O → 2Na + 3H 2

Zn + 2KOH + 2H 2 O → K 2 + H 2

5.С помощью электролиза. При электролизе водных растворов щелочей или кислот на катоде происходит выделение водорода, например:

2H 3 O + + 2e − → H 2 + 2H 2 O

Физические свойства

Водород может существовать в двух формах (модификациях) — в виде орто- и пара- водорода. В молекуле ортоводорода o -H 2 (т. пл. −259,10 °C, т. кип. −252,56 °C) ядерные спины направлены одинаково (параллельны), а у параводорода p -H 2 (т. пл. −259,32 °C, т. кип. −252,89 °C) — противоположно друг другу (антипараллельны). Равновесная смесь o -H 2 и p -H 2 при заданной температуре называется равновесный водород e -H 2 .

Разделить модификации водорода можноадсорбциейна активном угле при температуре жидкого азота. При очень низких температурах равновесие между ортоводородом и параводородом почти нацело сдвинуто в сторону последнего. При 80 К соотношение форм приблизительно 1:1. Десорбированный параводород при нагревании превращается в ортоводород вплоть до образования равновесной при комнатной температуре смеси (орто-пара: 75:25). Без катализатора превращение происходит медленно (в условиях межзвездной среды - с характерными временами вплоть до космологических), что даёт возможность изучить свойства отдельных модификаций.

Водород — самый лёгкийгаз, он легче воздуха в 14,5 раз. Очевидно, что чем меньше масса молекул, тем выше их скорость при одной и той же температуре. Как самые лёгкие, молекулы водорода движутся быстрее молекул любого другого газа и тем самым быстрее могут передавать теплоту от одного тела к другому. Отсюда следует, что водород обладает самой высокой теплопроводностью среди газообразных веществ. Его теплопроводность примерно в семь раз выше теплопроводности воздуха.

Молекула водорода двухатомна — Н 2 . При нормальных условиях — это газ без цвета, запаха и вкуса. Плотность 0,08987 г/л (н.у.), температура кипения −252,76 °C, удельная теплота сгорания 120.9×10 6 Дж/кг, малорастворим в воде — 18,8 мл/л. Водород хорошо растворим во многих металлах (Ni,Pt,Pdи др.), особенно в палладии (850 объёмов на 1 объём Pd). С растворимостью водорода в металлах связана его способность диффундировать через них; диффузия через углеродистый сплав (например, сталь) иногда сопровождается разрушением сплава вследствие взаимодействия водорода с углеродом (так называемая декарбонизация). Практически не растворим всеребре.

Жидкий водород существует в очень узком интервале температур от −252,76 до −259,2 °C. Это бесцветная жидкость, очень лёгкая (плотность при −253 °C 0,0708 г/см 3) и текучая (вязкость при −253 °C 13,8 спуаз). Критические параметры водорода очень низкие: температура −240,2 °C и давление 12,8 атм. Этим объясняются трудности при ожижении водорода. В жидком состоянии равновесный водород состоит из 99,79 % пара-Н 2 , 0,21 % орто-Н 2 .

Твердый водород, температура плавления −259,2 °C, плотность 0,0807 г/см 3 (при −262 °C) — снегоподобная масса, кристаллы гексогональной сингонии,пространственная группа P6/mmc, параметры ячейки a =3,75 c =6,12. При высоком давлении водород переходит в металлическое состояние.

Изотопы

Водород встречается в виде трёх изотопов, которые имеют индивидуальные названия: 1 H — протий (Н), 2 Н — дейтерий (D), 3 Н — тритий (радиоактивный) (T).

Протий и дейтерий являются стабильными изотопами с массовыми числами 1 и 2. Содержание их в природе соответственно составляет 99,9885 ± 0,0070 % и 0,0115 ± 0,0070 %. Это соотношение может незначительно меняться в зависимости от источника и способа получения водорода.

Изотоп водорода 3 Н (тритий) нестабилен. Его период полураспада составляет 12,32 лет. Тритий содержится в природе в очень малых количествах.

В литературе также приводятся данные об изотопах водорода с массовыми числами 4 — 7 и периодами полураспада 10 −22 — 10 −23 с.

Природный водород состоит из молекул H 2 и HD (дейтероводород) в соотношении 3200:1. Содержание чистого дейтерийного водорода D 2 ещё меньше. Отношение концентраций HD и D 2 , примерно, 6400:1.

Из всех изотопов химических элементов физические и химические свойства изотопов водорода отличаются друг от друга наиболее сильно. Это связано с наибольшим относительным изменением масс атомов.

Температура
плавления,
K

Температура
кипения,
K

Тройная
точка,
K / kPa

Критическая
точка,
K / kPa

Плотность
жидкий / газ,
кг/м³

Дейтерий и тритий также имеют орто- и пара- модификации: p -D 2 , o -D 2 , p -T 2 , o -T 2 . Гетероизотопный водород (HD, HT, DT) не имеют орто- и пара- модификаций.

Химические свойства

Доля диссоциировавших молекул водорода

Молекулы водорода Н 2 довольно прочны, и для того, чтобы водород мог вступить в реакцию, должна быть затрачена большая энергия:

Н 2 = 2Н − 432 кДж

Поэтому при обычных температурах водород реагирует только с очень активными металлами, например с кальцием, образуя гидрид кальция:

Ca + Н 2 = СаН 2

и с единственным неметаллом — фтором, образуя фтороводород:

С большинством же металлов и неметаллов водород реагирует при повышенной температуре или при другом воздействии, например при освещении:

О 2 + 2Н 2 = 2Н 2 О

Он может «отнимать» кислород от некоторых оксидов, например:

CuO + Н 2 = Cu + Н 2 O

Записанное уравнение отражает восстановительные свойства водорода.

N 2 + 3H 2 → 2NH 3

С галогенами образует галогеноводороды:

F 2 + H 2 → 2HF, реакция протекает со взрывом в темноте и при любой температуре,

Cl 2 + H 2 → 2HCl, реакция протекает со взрывом, только на свету.

С сажей взаимодействует при сильном нагревании:

C + 2H 2 → CH 4

Взаимодействие со щелочными и щёлочноземельными металлами

При взаимодействии с активными металлами водород образует гидриды:

2Na + H 2 → 2NaH

Ca + H 2 → CaH 2

Mg + H 2 → MgH 2

Гидриды — солеобразные, твёрдые вещества, легко гидролизуются:

CaH 2 + 2H 2 O → Ca(OH) 2 + 2H 2

Взаимодействие с оксидами металлов (как правило, d-элементов)

Оксиды восстанавливаются до металлов:

CuO + H 2 → Cu + H 2 O

Fe 2 O 3 + 3H 2 → 2Fe + 3H 2 O

WO 3 + 3H 2 → W + 3H 2 O

Гидрирование органических соединений

Молекулярный водород широко применяется в органическом синтезе для восстановления органических соединений. Эти процессы называют реакциями гидрирования . Эти реакции проводят в присутствии катализатора при повышенных давлении и температуре. Катализатор может быть как гомогенным (напр.Катализатор Уилкинсона), так и гетерогенным (напр. никель Ренея, палладий на угле).

Так, в частности, при каталитическом гидрировании ненасыщенных соединений, таких как алкены и алкины, образуются насыщенные соединения — алканы.

Геохимия водорода

Свободный водород H 2 относительно редко встречается в земных газах, но в виде воды он принимает исключительно важное участие в геохимических процессах.

В состав минералов водород может входить в виде иона аммония, гидроксил-иона и кристаллической воды.

В атмосфере водород непрерывно образуется в результате разложения воды солнечным излучением. Имея малую массу, молекулы водорода обладают высокой скоростью диффузионного движения (она близка ко второй космической скорости) и, попадая в верхние слои атмосферы, могут улететь в космическое пространство.

Особенности обращения

Водород при смеси с воздухом образует взрывоопасную смесь — так называемый гремучий газ. Наибольшую взрывоопасность этот газ имеет при объёмном отношении водорода и кислорода 2:1, или водорода и воздуха приближённо 2:5, так как в воздухе кислорода содержится примерно 21 %. Также водородпожароопасен. Жидкий водород при попадании на кожу может вызвать сильное обморожение.

Взрывоопасные концентрации водорода с кислородом возникают от 4 % до 96 % объёмных. При смеси с воздухом от 4 % до 75(74) % объёмных.

Экономика

Стоимость водорода при крупнооптовых поставках колеблется в диапазоне 2-5$ за кг.

Применение

Атомарный водород используется для атомно-водородной сварки.

Химическая промышленность

  • При производстве аммиака, метанола, мыла и пластмасс
  • При производстве маргарина из жидких растительных масел
  • Зарегистрирован в качестве пищевой добавки E949 (упаковочный газ)

Пищевая промышленность

Авиационная промышленность

Водород очень лёгок и в воздухе всегда поднимается вверх. Когда-то дирижабли и воздушные шары наполняли водородом. Но в 30-х гг. XX в. произошло несколькокатастроф, в ходе которых дирижабли взрывались и сгорали. В наше время дирижабли наполняют гелием, несмотря на его существенно более высокую стоимость.

Топливо

Водород используют в качестве ракетного топлива.

Ведутся исследования по применению водорода как топлива для легковых и грузовых автомобилей. Водородные двигатели не загрязняют окружающей среды и выделяют только водяной пар.

В водородно-кислородных топливных элементах используется водород для непосредственного преобразования энергии химической реакции в электрическую.

«Жидкий водород» («ЖВ») — жидкое агрегатное состояние водорода, с низкой удельной плотностью 0.07 г/см³ и криогенными свойствами с точкой замерзания 14.01 K (−259.14 °C) и точкой кипения 20.28 K (−252.87 °C). Является бесцветной жидкостью без запаха, которая при смешивании с воздухом относится к взрывоопасным веществам с диапазоном коэффициента воспламенения 4-75 %. Спиновое соотношение изомеров в жидком водороде составляет: 99,79 % —параводород; 0,21 % — ортоводород. Коэффициент расширения водорода при смене агрегатного состояния на газообразное составляет 848:1 при 20°C.

Как и для любого другого газа, сжижение водорода приводит к уменьшению его объема. После сжижения «ЖВ» хранится в термически изолированных контейнерах под давлением. Жидкий водород (англ. Liquid hydrogen , LH2 , LH 2 ) активно используется в промышленности, в качестве формы хранения газа, и в космическойотрасли, в качестве ракетного топлива.

История

Первое документированное использование искусственного охлаждения в 1756 году было осуществлено английским ученым Вильямом Калленом, Гаспар Монж первым получил жидкое состояние оксида серы в 1784 году, Майкл Фарадей первым получил сжиженный аммиак, американский изобретатель Оливер Эванс первым разработал холодильный компрессор в 1805 году, Яков Перкинс первым запатентовал охлаждающую машину в 1834 году и Джон Гори первым в США запатентовалкондиционер в 1851 году. Вернер Сименс предложил концепцию регенеративного охлаждения в 1857 году, Карл Линде запатентовал оборудование для получения жидкого воздуха с использованием каскадного «эффекта расширения Джоуля — Томсона» и регенеративного охлаждения в 1876 году. В 1885 году польскийфизик и химик Зигмунд Вро?блевский опубликовал критическую температуру водорода 33 K, критическое давление 13.3 атм. и точку кипения при 23 K. Впервыеводород был сжижен Джеймсом Дьюаром в 1898 году с использованием регенеративного охлаждения и своего изобретения, cосуда Дьюара. Первый синтез стабильного изомера жидкого водорода — параводорода — был осуществлен Полом Хартеком и Карлом Бонхеффером в 1929 году.

Спиновые изомеры водорода

Водород при комнатной температуре состоит в основном из спинового изомера, ортоводорода. После производства, жидкий водород находится в метастабильном состоянии и должен быть преобразован в параводородную форму, для того чтобы избежать взрывоопасной экзотермической реакции, которая имеет место при его изменении при низких температурах. Преобразование в параводородную фазу обычно производится с использованием таких катализаторов, как оксид железа, оксид хрома, активированный уголь, покрытых платиной асбестов, редкоземельных металлов или путем использования урановых или никелевых добавок.

Использование

Жидкий водород может быть использован в качестве формы хранения топлива для двигателей внутреннего сгорания и топливных элементов. Различные подлодки(проекты «212А» и «214», Германия) и концепты водородного транспорта были созданы с использованием этой агрегатной формы водорода (см. например «DeepC»или «BMW H2R»). Благодаря близости конструкций, создатели техники на «ЖВ» могут использовать или только модифицировать системы, использующие сжиженный природный газ («СПГ»). Однако из-за более низкой объемной плотности энергии для горения требуется больший объем водорода, чем природного газа. Если жидкий водород используется вместо «СПГ» в поршневых двигателях, обычно требуется более громоздкая топливная система. При прямом впрыске увеличившиеся потери во впускном тракте уменьшают наполнение цилиндров.

Жидкий водород используется также для охлаждения нейтронов в экспериментах по нейтронному рассеянию. Массы нейтрона и ядра водорода практически равны, поэтому обмен энергией при упругом столкновении наиболее эффективен.

Преимущества

Преимуществом использования водорода является «нулевая эмиссия» его применения. Продуктом его взаимодействия с воздухом является вода.

Препятствия

Один литр «ЖВ» весит всего 0.07 кг. То есть его удельная плотность составляет 70.99 г/л при 20 K. Жидкий водород требует криогенной технологии хранения, такой как специальные термически изолированные контейнеры и требует особого обращения, что свойственно для всех криогенных материалов. Он близок в этом отношении к жидкому кислороду, но требует большей осторожности из-за пожароопасности. Даже в случае с контейнерами с тепловой изоляцией, его тяжело содержать при той низкой температуре, которая требуется для его сохранения в жидком состоянии (обычно он испаряется со скоростью 1 % в день). При обращении с ним также нужно следовать обычным мерам безопасности при работе с водородом — он достаточно холоден для сжижения воздуха, что взрывоопасно.

Ракетное топливо

Жидкий водород является распространенным компонентом ракетных топлив, которое используется для реактивного ускорения ракет-носителей и космических аппаратов. В большинстве жидкостных ракетных двигателях на водороде, он сначала применяется для регенеративного охлаждения сопла и других частей двигателя, перед его смешиванием с окислителем и сжиганием для получения тяги. Используемые современные двигатели на компонентах H 2 /O 2 потребляют переобогащенную водородом топливную смесь, что приводит к некоторому количеству несгоревшего водорода в выхлопе. Кроме увеличения удельного импульсадвигателя за счет уменьшения молекулярного веса, это еще сокращает эрозию сопла и камеры сгорания.

Такие препятствия использования «ЖВ» в других областях, как криогенная природа и малая плотность, являются также сдерживающим фактором для использования в данном случае. На 2009 год существует только одна ракета-носитель (РН «Дельта-4»), которая целиком является водородной ракетой. В основном «ЖВ» используется либо на верхних ступенях ракет, либо на блоках, которые значительную часть работы по выводу полезной нагрузки в космос выполняют в вакууме. В качестве одной из мер по увеличению плотности этого вида топлива существуют предложения использования шугообразного водорода, то есть полузамерзшей формы «ЖВ».