Вписанные и описанные многогранники в сферу цилиндр. Математика

«Объём шара» - Объем параболического сегмента. Найдите объем шара, вписанного в правильный тетраэдр с ребром 1. В конус, радиус основания которого равен 1, а образующая равна 2, вписан шар. Сечение шара плоскостью, отстоящей от центра шара на расстоянии 8 см, имеет радиус 6 см. Объем шарового сегмента высоты h, отсекаемого от шара радиуса R, выражается формулой.

«Окружность круг сфера шар» - Колесо. Ребята, вы все сейчас становитесь членами вычислительного центра. По аналогии с окружностью объясните, что такое: а)радиус; б)хорда; в)диаметр сферы. Найдите площадь поверхности шара радиусом 3м. Диаметр. Центр шара (сферы). Шар и сфера. Шар. Вспомните, как определяется окружность. Попробуйте дать определение сферы, используя понятия расстояния между точками.

«Правильные многогранники» - Сумма плоских углов икосаэдра при каждой вершине равна 300?. Правильные многогранники – самые «выгодные» фигуры. Сумма плоских углов куба при каждой вершине равна 270?. Правильный октаэдр. Икосаэдро-додекаэдровая структура Земли. Куб – самая устойчивая из фигур. Правильный додекаэдр. Правильные выпуклые многогранники.

«Шар» - Исследовательская деятельность во внеурочное время. Задача №1. Конус. Повторение теоретических положений. В правильную четырехугольную пирамиду вписан шар. Поверхность шара называется сферой. Пирамида. В своей работе мы: Исследова-тельская практика, процесс работы над темой. Работа в кружках, на факульта-тивах.

«Вписанная и описанная окружность» - АРХИМЕД (287-212 ДО Н.Э.) – древнегреческий математик и механик. Описанная и вписанная окружности. Мы можем ответить на проблемные вопросы. Круг. При увеличении числа сторон правильного многоугольника угол многоугольника увеличивается. Древние математики не владели понятиями математического анализа.

«Сфера и шар» - Сечение, проходящее через центр шара, - большой круг. (диаметральное сечение). Астрономические наблюдения над небесным сводом неизменно вызывали образ сферы. Сфера всегда широко применялось в различных областях науки и техники. Касательная плоскость к сфере. Общие понятия. На поверхности шара даны три точки.

Определение. Сфера называется вписанной в многогранник , если плоскости всех граней многогранника касаются сферы в тачках, расположенных внутри этих граней. При этом многогранник называется описанным около сферы.

Теорема 1. В произвольный тетраэдр можно вписать сферу (шар).

Множество точек, равноудаленных от боковых граней тетраэдра есть прямая пересечения двух биссекторных плоскостей двугранных углов при двух боковых ребрах. Эту прямую пересечет биссекторная плоскость двугранного угла при основании. Полученная точка равноудалена от всех граней тетраэдра.

В тетраэдре ABCD плоскости CDN и ADM являются биссекторными плоскостями двугранных углов при боковых ребрах CD и AD. Они пересекаются по прямой OD. Плоскость AKC является бисссекторной плоскостью двугранного угла при основании (ребро AC). Эта плоскость пересечет прямую OD в точке S (P – точка пересечения прямых DM и KC, принадлежащая плоскостям AKC и ADM одновременно, следовательно точка S – точка пересечения AP и OD), которая будет являться точкой, равноудаленной от всех граней тетраэдра и, следовательно, будет являться центром сферы, вписанной в тетраэдр ABCD.

Пример 1 . Найти радиус сферы, вписанной в правильный тетраэдр.

Рассмотрим подобные треугольники DPS и DOK (по двум углам: угол D – общий, углы DPS и DOK – прямые).

Тогда PS:KO=DS:DK,

если учесть, что PS=r=SO и DS=DO-SO=DO-r,

, , то .

Ответ: радиус сферы, вписанной в правильный тетраэдр равен

Теорема 2. В правильную пирамиду можно вписать сферу.

Теорема 3. В правильную усеченную пирамиду можно вписать сферу тогда и только тогда, когда ее апофема равна сумме радиусов окружностей, вписанных в ее основания.

Теорема 4. В любую призму можно вписать сферу, если в ее перпендикулярное сечение можно вписать окружность, радиус которой равен половине высоты призмы.

Теорема 5. В правильную призму можно вписать сферу тогда и только тогда, когда высота призмы равна диаметру окружности, вписанной в ее основание.

Сферы, описанные около цилиндра, конуса и



Усеченного конуса.

Определение. Сфера называется описанной около цилиндра или усеченного конуса , если все точки окружностей оснований принадлежат сфере; Сфера называется описанной около конуса , если все точки окружности основания, а также вершина конуса принадлежат сфере.

В этих случаях говорят, что цилиндр, усеченный конус или конус вписан в сферу.

Теорема 1. Около произвольного цилиндра можно описать сферу.

О 1 и О 2 – центры нижнего и верхнего основания соответственно. Прямая О 1 О 2 перпендикулярна плоскостям основания. Проведем плоскость, проходящую через середину образующей цилиндра, перпендикулярно этой образующей. Эта плоскость будет параллельна плоскостям основания и пересекать прямую О 1 О 2 в точке О, которая и будет являться центром сферы, описанной около цилиндра. Расстояние от точки О до всех точек основания будет равным, так как О 1 О 2 является ГМТ, равноудаленных от окружности (прямая, проходящая через центр окружности и перпендикулярна плоскости окружности). Значит точка О является центром сферы с радиусом ОА, описанной около цилиндра.

Теорема 2. Около усеченного конуса можно описать сферу.

О 1 и О 2 – центры нижнего и верхнего основания соответственно. Прямая О 1 О 2 перпендикулярна плоскостям основания. Рассмотрим образующую усеченного конуса АВ. Найдем ГМТ, равноудаленных от тачек А и В. Им будет являть плоскость, проходящая через точку Р – середину АВ и перпендикулярная этой прямой. Эта плоскость пересечет О 1 О 2 в точке О, которая будет равноудалена от точек А и В. Также очевидно, что точка О будет равноудалена от все точек оснований усеченного конуса. Следовательно эта точка О будет являться центром сферы с радиусом ОА, описанной около усеченного конуса.

Теорема 3. Около конуса можно описать сферу.

Аналогично прошлой теореме ОА – высота конуса, которая является ГМТ, равноудаленных от окружности. Рассмотрим образующую АВ и найдем ГМТ, равноудаленных от А и В. Полученная плоскость (по предыдущей задаче) пересечет ОА в точке О 1 , которая будет равноудалена от точек А и В, как и от любых точек основания конуса. Таким образом мы получили, что точка О 1 является центром сферы с радиусом О 1 А, описанной около конуса.

ГЕОМЕТРИЯ

Раздел ІІ. СТЕРЕОМЕТРИЯ

§23. КОМБИНАЦИИ ГЕОМЕТРИЧЕСКИХ ТЕЛ.

5. Многогранник, вписанный в шар.

Многогранник называют вписанным в шар, если все его вершины лежат на поверхности шара.

При этом шар называют описанной вокруг многогранника.

Основные свойства призмы, вписанной в шар, такие (рис. 511):

1) Шар можно описать вокруг прямой призмы, если ее основанием является многоугольник, вокруг которого можно описать окружность.

2) Центр шара является серединой высоты призмы, соединяющей центры окружностей, описанных вокруг многоугольников оснований призмы.

3) Основания призмы вписаны в уровне параллельные сечения шара.

Пример 1. Вокруг правильной треугольной призмы, сторона основания которой равна 5 см, описан шар. Радиус шара равен 13 см. Найти высоту призмы.

Решения. 1) Пусть вокруг правильной треугольной призмы АВСА И В 1 С 1 описан шар (рис. 511).

2) QB = R ABC - радиус круга, описанного вокруг ∆ АВС. где а = 5 см - сторона основания правильного треугольника АВС.

Тогда

3) В ∆ OQB: ОВ = R = 13 см - радиус шара, OQB = 90°.

Имеем

4) Поскольку точка О - середина высоты призмы QQ 1 то QQ 1 = 2 ∙ 12 = 24 (см).

Основные свойства пирамиды, вписана в шар, следующие (рис. 512).

1) Шар можно описать вокруг пирамиды, если ее основанием является многоугольник, вокруг которого можно описать окружность. Центр шара, описанного вокруг пирамиды, лежит на перпендикуляре к плоскости основы, проведенном через центр круга, описанного вокруг основания.

2) Центр шара, описанного вокруг правильной пирамиды, лежит на прямой, содержащей высоту пирамиды.

3) Центр шара, описанного вокруг правильной пирамиды, совпадает с центром круга, описанного вокруг равнобедренного треугольника, боковой стороной которого является боковое ребро пирамиды, а высотой - высота пирамиды. Радиус шара равен радиусу этого круга.

Отметим, что центр описанного шара может принадлежать высоте пирамиды, или лежать на ее продолжении (то есть находится или внутри пирамиды, или за ее пределами). Решая задачи способом, предложенным ниже, нет необходимости рассматривать два случая. При выбранном способе развязывания место расположения центра шара (внутри или вне пирамидой) не учитывается.

Пример 2. Докажите, что радиус шара R , описанной вокруг правильной пирамиды можно найти по формуле где Н - высота пирамиды, r - радиус круга, описанного вокруг основы пирамиды.

Решения. 1) Пусть точка О - центр шара, описанного вокруг правильно: пирамиды с высотой Q К (рис. 512). По условию Q К = Я, КА = r - радиус круга описанного вокруг основы.

2) Продолжим Q к до второго пересечения с пулей в точке Q 1 . Тогда QQ 1 = 2 R - диаметр круга, а потому Q А Q 1 = 90° и QQ 1 - гипотенуза прямоугольного треугольника Q А Q 1 .

4) По свойству катета прямоугольного треугольника в ∆ Q А Q 1 получим А Q 2 = QQ 1 ∙ Q К, т.е. А Q 2 = 2 R ∙ Н .

5) Итак, А Q 2 = Н 2 + г 2 и А Q 2 = 2 R Н. Отсюда Н 2 + r 2 = 2 R Н; R = (r 2 + H 2 )/2 H , что и требовалось доказать.


Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

муниципальное автономное общеобразовательное учреждение средняя общеобразовательная школа № 45 Методическое пособие для учащихся 11 классов Составил учитель математики высшей категории Гавинская Елена Вячеславовна. г.Калининград 2016-2017 учебный год

2 слайд

Описание слайда:

Многогранники, вписанные в сферу. Тема, аналогична теме курса планиметрии, где говорилось, что окружности можно описать вокруг треугольников и правильных n-угольников. Аналогом окружности в пространстве является сфера, многоугольника – многогранник. При этом аналогом треугольника является треугольная призма, а аналогом правильных многоугольников – правильные многогранники. Определение. Многогранник называется вписанным в сферу, если все его вершины принадлежат этой сфере. Сама сфера называется описанной около многогранника.

3 слайд

Описание слайда:

«Около прямой призмы можно описать сферу тогда и только тогда, когда около основания этой призмы можно описать окружность». Доказательство Если около прямой призмы описана сфера, то все вершины основания призмы принадлежат сфере и, следовательно, окружности, являющейся линией пересечения сферы и плоскости основания. Обратно, пусть около основания прямой призмы описана окружность с центром в точке О1 и радиуса r. Тогда и около второго основания призмы можно описать окружность с центром в точке О2 и тем же радиусом. Пусть О1О2=d, О – середина O1O2. Тогда сфера с центром О и радиуса R= будет искомой описанной сферой. Теорема 1.

4 слайд

Описание слайда:

«Около любой треугольной пирамиды можно описать сферу, причём только одну». Доказательство. Обратимся к доказательству, аналогичному из курса планиметрии. Прежде всего надо найти геометрическое место точек, равноудалённых от двух вершин треугольника. Например, А и В. Таким геометрическим местом является серединный перпендикуляр, проведённый к отрезку АВ. Затем находим геометрическое место точек, равноудалённых от А и С. Это серединный перпендикуляр к отрезку АС. Точка пересечения этих серединных перпендикуляров и будет искомым центром О описанной около треугольника АВС окружности. Теорема 2.

5 слайд

Описание слайда:

Теперь рассмотрим пространственную ситуацию и сделаем аналогичные построения. Пусть дана треугольная пирамида DABC, причём точки А, В и С определяют плоскость α. Геометрическим местом точек, равноудаленных от точек А, В и С является прямая а, перпендикулярная плоскости α и проходящая через центр О1 описанной около треугольника АВС окружности. Геометрическим местом точек, равноудалённых от точек А и D, является плоскость β, перпендикулярная отрезку АD и проходящая через его вершину – точку Е. Плоскость β и прямая а пересекаются в точке О, которая и будет искомым центром описанной около треугольной пирамиды DABC сферы. Действительно, в силу построения точка О одинаково удалена от всех вершин пирамиды DABC. Причём такая точка будет единственной, так как пересекающиеся прямая и плоскость имеют единственную общую точку.

6 слайд

Описание слайда:

Шар, описанный около правильной пирамиды. Шар можно описать около любой правильной пирамиды. Центр шара лежит на прямой, проходящей через высоту пирамиды, и совпадает с центром окружности, описанной около равнобедренного треугольника, боковой стороной которого является боковое ребро пирамиды, а высотой – высота пирамиды. Радиус шара равен радиусу этой окружности. Радиус шара R, высота пирамиды H и радиус окружности r, описанной около основания пирамиды, связаны соотношением: R2=(H-R)2+r2 Это соотношение справедливо и в том случае, когда H < R.

7 слайд

Описание слайда:

Задача про шар, описанный около правильной пирамиды. «Около правильной пирамиды РABC описан шар с центром в точке О и радиусом 9√3м. Прямая РО, содержащая в себе высоту пирамиды, пересекает основание пирамиды в точке Н так, что РН:ОН=2:1. Найти объём пирамиды, если каждое её боковое ребро образует с плоскостью основания угол в 45 градусов».

8 слайд

Описание слайда:

Дано: РABC – правильная пирамида; шар(O;R=9√3 м) описан около пирамиды; РО∩(АВС)=Н; РН:ОН=2:1; ∟РАН=∟ РВН=∟ РСН=45о. Найти: Vпир. Решение: Так как РН:ОН=2:1 (по условию), то РН:ОР=2:3 РН:9√3 =2:3 РН=6√3 (м) 2. РН _ (АВС) (как высота пирамиды) => => РН _ АН (по определению) => РАН – прямоугольный. 3. В РАН:

9 слайд

Описание слайда:

4. Так как по условию РАВС – правильная пирамида и РН – её высота, то по определению АВС – правильный; Н – центр описанной около АВС окружности, значит, 5. Ответ: 486 м3.

10 слайд

Описание слайда:

Шар, описанный около призмы. Шар можно описать около призмы, если она прямая, и ее основания являются многоугольниками, вписанными в окружность. Центр шара лежит на середине высоты призмы, соединяющей центры окружностей, описанных около оснований призмы. Радиус шара R, высота призмы H и радиус окружности r, описанных около основания призмы, связаны соотношением:

11 слайд

Описание слайда:

Задача про шар, описанный около призмы. «Правильная призма АВСDA1B1C1D1 с высотой равной 6 см вписана в шар (т.О;R=5см). Найти площадь сечения призмы плоскостью, параллельной плоскостям основания и проходящей через точку О – центр шара».

12 слайд

Описание слайда:

Дано: ABCDA1B1C1D1 – правильная призма; шар(O;R=5 см) описан около призмы; высота призмы h равна 6 см; α║(АВС); О с α. Найти: Sсеч α, Решение: Так как по условию призма вписана в шар, то (r-радиус окружности, описанной около основания призмы) Но по условию дана правильная призма, значит,

13 слайд

Описание слайда:

а) (АВВ1) ║(СС1D1) (по свойству прямой призмы) α ∩ (АВВ1)=КМ α ∩ (СС1D1)=РН => KM ║ HP (по свойству параллельных плоскостей) Ho (BCC1) ║(ADD1) (по свойству прямой призмы) => КМ=НР (по свойству параллельных плоскостей). Значит, КМНР – параллелограмм (по признаку)=> МН=КР и МН ║ КР б) α ║ (АВС) (по построению) α ∩ (АВВ1)=КМ (АВС) ∩ (АВВ1)=АВ => KM ║ АВ (по свойству параллельных плоскостей) 2. 3. Так как по условию АВСDA1B1C1D1 – правильная призма, и сечение плоскостью α параллельно основаниям, то образованная сечением фигура – квадрат. Докажем это: => => =>

14 слайд

Описание слайда:

KMH= ABC=90o (как углы с соответственно сонаправленными сторонами) Значит, ромб КМНР – квадрат (по определению), что и требовалось доказать. Причём, квадраты КМНР и АВСD равны. Следовательно, по свойству их площади равны, а, значит, Sсеч α.=SABCD=32 (см2) Ответ: 32 см2. в) KM ║ АВ (доказали) (BCC1) ║(ADD1) (по свойству прямой призмы) => КМ=АВ=4√2 см (по свойству параллельных плоскостей). г) Аналогично доказывается, что МН ║ ВС и МН=ВС=4√2 см. Значит, МН=КМ => параллелограмм МНРК – ромб (по определению). д) МН ║ ВС (доказали) КМ ║ АВ (доказали) => =>

15 слайд

Описание слайда:

Цилиндр, описанный около призмы. Цилиндр можно описать около прямой призмы, если ее основание – многоугольник, вписанный в окружность. Радиус цилиндра R равен радиусу этой окружности. Ось цилиндра лежит на одной прямой с высотой H призмы, соединяющей центры окружностей, описанных около оснований призмы. В случае с четырёхугольной призмой (если в основании прямоугольник), ось цилиндра проходит через точку пересечения диагоналей оснований призмы.

16 слайд

Описание слайда:

Задача про цилиндр, описанный около призмы. Прямая призма АВСDA1B1C1D1 , основание которой – прямоугольник, вписана в цилиндр, образующая которого равна 7 см, а радиус – 3 см. Найти площадь боковой поверхности призмы, если угол между диагоналями АВСD равен 60 градусов. ОО1 – ось цилиндра.

17 слайд

Описание слайда:

Дано: ABCDA1B1C1D1 – прямая призма; цилиндр описан около призмы; образующая цилиндра АА1=7 см; радиус основания цилиндра равен 3 см; угол между диагоналями АВCD равен 60о; ОО1 – ось цилиндра. Найти: Sбок.призм. Решение: Так как по условию четырёхугольная призма, в основании которой прямоугольник, вписана в шар, то по свойству АС∩ВD=О. Значит, АОВ=60о и АО=ОВ=3см. 2. В АОВ по теореме косинусов.

Многогранники, вписанные в шар. Основные определения и теоремы. Определение. Сфера называется описанной около многогранника (или многогранник, вписанным в сферу), если все вершины многогранника лежат на этой сфере.

Слайд 8 из презентации ««Задачи по геометрии» 11 класс» . Размер архива с презентацией 1032 КБ.

Геометрия 11 класс

краткое содержание других презентаций

«Объёмы геометрических тел» - Объемы многогранников. Понятие объема. Объем пирамиды. Конус выноса. Объем прямой призмы. Ответ. Науки стремятся к математике. Успеха в изучении материала. Объем прямоугольного параллелепипеда. Рисунки и чертежи. Объем правильной четырехугольной пирамиды. Свойства площадей. Площадь. Ребро куба. Понятие объема тел. Квадрат. Объем цилиндра. Конус. Многоугольник. Геометрические фигуры. Три латунных куба.

«Векторы в пространстве» - Координаты вектора. Разности. Векторы в пространстве. Разность двух векторов. Умножение двух векторов. Действия с векторами. Единственный вектор. Умение выполнять действия. Правило многоугольника. Соноправленные векторы. Определение вектора. Действие с векторами. Векторы являются некомпланарными. Решение.

«Геометрические задачи в ЕГЭ» - Площадь поверхности многогранника. Найдите тангенс внешнего угла. В создании презентации принимали участие. Варианты задач. Площадь треугольника. Площадь трапеции. Найдите площадь треугольника. Площадь части круга. Основной справочный материал. Планиметрия. Типичные ошибки. Основы геометрии. Устные упражнения. Возможные задания. Уметь выполнять действия с геометрическими фигурами. Найдите объем многогранника.

«Вычислить объём тела вращения» - Конус. Найдите объём. Шар. Цилиндр и конус. Цилиндр. Объём конуса. Сфера. Виды тел вращения. Фигура. Объём V конуса. Определение конуса. Цилиндрический сосуд. Определение цилиндра. Цилиндры вокруг нас. Объёмы тел вращения. Куб. Радиусы.

«Координаты вектора в пространстве» - Учебник. Решение. Абсолютная величина. Сумма векторов. Разность векторов. Общее начало. Координата. Рисунок. Величина и направление вектора. Произведение вектора. Длина отрезка. Действия над векторами в пространстве. Плоскости. Доказательство. Скалярное произведение векторов. Векторы в пространстве.

««Движение» 11 класс» - Симметрия в архитектуре. Осевая симметрия. Параллельный перенос. Движение. Симметрия в растениях. Скользящая симметрия. Симметрия в животном мире. Введение. Поворот. Центральная симметрия. Движение. Зеркальная симметрия.