Время прохождения солнечного ветра до земли. Что из себя представляет Солнечный ветер

Понятие солнечный ветер было введено в астрономию в конце 40-х годов 20–го ст., когда американский астроном С. Форбуш, измеряя интенсивность космических лучей, заметил, что она значительно снижается при возрастании солнечной активности и совсем резко падает во время .

Это представлялось довольно странным. Скорее, можно было ожидать обратного. Ведь Солнце само является поставщиком космических лучей. Поэтому, казалось бы, чем выше, активность нашего дневного светила, тем больше частиц оно должно выбрасывать в окружающее пространство.

Оставалось предположить, что возрастание солнечной активности влияет на таким образом, что оно начинает отклонять частицы космических лучей – отбрасывать их.

Тогда-то и возникло предположение, что виновниками загадочного эффекта являются потоки заряженных частиц, вырывающиеся с поверхности Солнца и пронизывающие пространство солнечной системы. Этот своеобразный солнечный ветер и очищает межпланетную среду, "выметая" из нее частицы космических лучей.

В пользу подобной гипотезы говорили также явления, наблюдающиеся в . Как известно, кометные хвосты всегда направлены от Солнца. Вначале это обстоятельство связывали со световым давлением солнечных лучей. Однако было установлено, что лишь световое давление не может вызывать всех явлений, происходящих в кометах. Расчеты показали, что для образования и наблюдаемого отклонения кометных хвостов необходимо воздействие не только фотонов, но и частиц вещества.

Собственно говоря, о том, что Солнце выбрасывает потоки заряженных частиц – корпускул, было известно и до этого. Однако предполагалось, что такие потоки носят эпизодический характер. Но кометные хвосты направлены в противоположную от Солнца сторону всегда, а не только в периоды усиления . Значит, и корпускулярная радиация, заполняющая пространство солнечной системы, должна существовать постоянно. Она усиливается с возрастанием солнечной активности, но существует всегда.

Таким образом, солнечный ветер непрерывно обдувает околосолнечное пространство. Из чего же состоит этот солнечный ветер, и при каких условиях он возникает?

Самый внешний слой солнечной атмосферы – "корона". Эта часть, атмосферы нашего дневного светила необычайно разрежена. Но так называемая "кинетическая температура" короны, определяемая по скорости движения частиц, весьма велика. Она достигает миллиона градусов. Поэтому корональвый газ полностью ионизован и представляет собой смесь протонов, ионов различных элементов и свободных электронов.

Недавно появилось сообщение о том, что солнечный ветер имеет в своем составе ионы гелия. Это обстоятельство проливает свет на тот механизм, с помощью которого происходит выброс заряженных частиц с поверхности Солнца. Если бы солнечный ветер состоял только из электронов и протонов, то еще можно было бы предполагать, что он образуется за счет чисто тепловых процессов и представляет собой нечто вроде пара, образующегося над поверхностью кипящей воды. Однако ядра атомов гелия в четыре раза тяжелее протонов и поэтому маловероятно, чтобы они могли выбрасываться вследствие испарения. Скорее всего, образование солнечного ветра связано с действием магнитных сил. Улетая от Солнца, облака плазмы как бы уносят с собой и магнитные поля. Именно эти поля и служат тем своеобразным "цементом", который "скрепляет" воедино частицы с различными массами и зарядами.

Наблюдения и вычисления, проведенные астрономами, показали, что по мере удаления от Солнца плотность короны постепенно уменьшается. Но, оказывается, в районе орбиты Земли она еще заметно отличается от нуля. Другими словами, наша планета находится внутри солнечной атмосферы.

Если вблизи Солнца корона более или менее стабильна, то по мере увеличения расстояния она стремится расшириться в пространство. И чем дальше от Солнца, тем выше скорость этого расширения. Согласно расчетам американского астронома Э. Паркера, уже на расстоянии 10 млн. км корональные частицы движутся со скоростями, превосходящими скорость .

Таким образом, напрашивается вывод о том, что солнечная корона – это и есть солнечный ветер, обдувающий пространство нашей планетной системы.

Эти теоретические выводы были полностью подтверждены измерениями на космических ракетах и искусственных спутниках Земли. Оказалось, что солнечный ветер существует всегда и вблизи Земли – "дует" со скоростью около 400 км/сек.

Как далеко дует солнечный ветер? При теоретических соображениях в одном случае получается, что солнечный ветер затихает уже в районе орбиты , в другом, – что он существует еще на очень большом расстоянии за орбитой последней планеты Плутона. Но это лишь теоретически крайние пределы возможного распространения солнечного ветра. Указать точную границу могут лишь наблюдения.

Солнечный ветер и магнитосфера Земли.

Солнечный ветер (Solar wind ) - поток мегаионизированных частиц (в основном гелиево-водородной плазмы), истекающий из солнечной короны со скоростью 300-1200 км/с в окружающее космическое пространство. Является одним из основных компонентов межпланетной среды.

Множество природных явлений связано с солнечным ветром, в том числе такие явления космической погоды, как магнитные бури и полярные сияния.

Не следует путать понятия «солнечный ветер» (поток ионизированных частиц, долетающий от Солнца до за 2-3 суток) и «солнечный свет» (поток фотонов, долетающий от Солнца до Земли в среднем за 8 минут 17 секунд). В частности, именно эффект давления солнечного света (а не ветра) используется в проектах так называемых солнечных парусов. Форма двигателя для , использующая в качестве источника тяги импульс ионов солнечного ветра - электрический парус.

История

Предположение о существовании постоянного потока частиц, летящих от Солнца, впервые было высказано британским астрономом Ричардом Кэррингтоном. В 1859 году Кэррингтон и Ричард Ходжсон независимо наблюдали то, что впоследствии было названо солнечной вспышкой. На следующий день произошла геомагнитная буря, и Кэррингтон предположил связь между этими явлениями. Позже Джордж Фитцджеральд высказал предположение, что материя периодически ускоряется Солнцем и за несколько дней достигает Земли.

В 1916 году норвежский исследователь Кристиан Биркеланд написал: «С физической точки зрения наиболее вероятно, что солнечные лучи не являются ни положительными ни отрицательными, но и теми и другими вместе». Другими словами, солнечный ветер состоит из отрицательных электронов и положительных ионов.

Три года спустя, в 1919 Фридерик Линдеманн также предположил, что частицы обоих зарядов, протоны и электроны, приходят от Солнца.

В 1930-х годах ученые определили, что температура солнечной короны должна достигать миллиона градусов, поскольку корона остается достаточно яркой при большом удалении от Солнца, что хорошо видно во время солнечных затмений. Позднее спектроскопические наблюдения подтвердили этот вывод. В середине 50-х британский математик и астроном Сидни Чепмен определил свойства газов при таких температурах. Оказалось, что газ становится великолепным проводником тепла и должен рассеивать его в пространство за пределы орбиты Земли. В то же время немецкий ученый Людвиг Бирманн заинтересовался тем фактом, что хвосты комет всегда направлены прочь от Солнца. Бирманн постулировал, что Солнце испускает постоянный поток частиц, которые создают давление на газ, окружающий комету, образуя длинный хвост.

В 1955 году советские астрофизики С. К. Всехсвятский, Г. М. Никольский, Е. А. Пономарев и В. И. Чередниченко показали, что протяженная корона теряет энергию на излучение и может находиться в состоянии гидродинамического равновесия только при специальном распределении мощных внутренних источников энергии. Во всех других случаях должен существовать поток вещества и энергии. Этот процесс служит физическим основанием для важного явления - «динамической короны». Величина потока вещества была оценена из следующих соображений: если бы корона находилась в гидростатическом равновесии, то высоты однородной атмосферы для водорода и железа относились бы как 56/1, то есть ионов железа в дальней короне наблюдаться не должно. Но это не так. Железо светится во всей короне, причем FeXIV наблюдается в более высоких слоях, чем FeX, хотя кинетическая температура там ниже. Силой, поддерживающей ионы во «взвешенном» состоянии, может быть импульс, передаваемый при столкновениях восходящим потоком протонов ионам железа. Из условия баланса этих сил легко найти поток протонов. Он оказался таким же, какой следовал из гидродинамической теории, подтвержденной впоследствии прямыми измерениями. Для 1955 г. это было значительным достижением, но в «динамическую корону» никто тогда не поверил.

Тремя годами позже Юджин Паркер сделал вывод, что горячее течение от Солнца в чепменовской модели и поток частиц, сдувающий кометные хвосты в гипотезе Бирманна - это два проявления одного и того же явления, которое он назвал «солнечным ветром» . Паркер показал, что даже несмотря на то, что солнечная корона сильно притягивается Солнцем, она столь хорошо проводит тепло, что остается горячей на большом расстоянии. Так как с расстоянием от Солнца его притяжение ослабевает, из верхней короны начинается сверхзвуковое истечение вещества в межпланетное пространство. Более того, Паркер был первым, кто указал, что эффект ослабления гравитации имеет то же влияние на гидродинамическое течение, что и сопло Лаваля: оно производит переход течения из дозвуковой в сверхзвуковую фазу.

Теория Паркера была подвергнута жесткой критике. Статья, посланная в 1958 году в Astrophysical Journal, была забракована двумя рецензентами и только благодаря редактору, Субраманьяну Чандрасекару, попала на страницы журнала.

Однако в январе 1959 года первые прямые измерения характеристик солнечного ветра (Константин Грингауз, ИКИ РАН) были проведены советской “Луна-1”, посредством установленных на ней сцинтилляционного счетчика и газового ионизационного детектора. Три года спустя такие же измерения были проведены и американкой Марсией Нейгебауэр по данным станции “Маринер-2”.

Всё же ускорение ветра до высоких скоростей ещё не было понято и не могло быть объяснено из теории Паркера. Первые численные модели солнечного ветра в короне с использованием уравнений магнитной гидродинамики были созданы Пневманом и Кноппом в 1971 г.

В конце 1990-х с помощью Ультрафиолетового коронального спектрометра (Ultraviolet Coronal Spectrometer (UVCS) ) на борту были проведены наблюдения областей возникновения быстрого солнечного ветра на солнечных полюсах. Оказалось, что ускорение ветра много больше, чем предполагалось, исходя из чисто термодинамического расширения. Модель Паркера предсказывала, что скорость ветра становится сверхзвуковой на высоте 4 радиусов Солнца от фотосферы, а наблюдения показали, что этот переход происходит существенно ниже, примерно на высоте 1 радиуса Солнца, подтверждая, что существует дополнительный механизм ускорения солнечного ветра.

Характеристики

Гелиосферный токовый слой - результат влияния вращающегося магнитного поля Солнца на плазму в солнечном ветре.

Из-за солнечного ветра Солнце теряет ежесекундно около одного миллиона тонн вещества. Солнечный ветер состоит в основном из электронов, протонов и ядер гелия (альфа-частиц); ядра других элементов и неионизированных частиц (электрически нейтральных) содержатся в очень незначительном количестве.

Хотя солнечный ветер исходит из внешнего слоя Солнца, он не отражает реального состава элементов в этом слое, так как в результате процессов дифференциации содержание некоторых элементов увеличивается, а некоторых - уменьшается (FIP-эффект).

Интенсивность солнечного ветра зависит от изменений солнечной активности и его источников. Многолетние наблюдения на орбите Земли (около 150 млн км от Солнца) показали, что солнечный ветер структурирован и обычно делится на спокойный и возмущенный (спорадический и рекуррентный). Спокойные потоки, в зависимости от скорости, делятся на два класса:медленные (примерно 300-500 км/с около орбиты Земли) и быстрые (500-800 км/с около орбиты Земли). Иногда к стационарному ветру относят область гелиосферного токового слоя, который разделяет области различной полярности межпланетного магнитного поля, и по своим характеристикам близок к медленному ветру.

Медленный солнечный ветер

Медленный солнечный ветер порождается «спокойной» частью солнечной короны (областью корональных стримеров) при её газодинамическом расширении: при температуре короны около 2·10 6 К корона не может находиться в условиях гидростатического равновесия, и это расширение при имеющихся граничных условиях должно приводить к разгону коронального вещества до сверхзвуковых скоростей. Нагрев солнечной короны до таких температур происходит вследствие конвективной природы теплопереноса в фотосфере Солнца: развитие конвективной турбулентности в плазме сопровождается генерацией интенсивных магнитозвуковых волн; в свою очередь при распространении в направлении уменьшения плотности солнечной атмосферы звуковые волны трансформируются в ударные; ударные волны эффективно поглощаются веществом короны и разогревают её до температуры (1-3)·10 6 К.

Быстрый солнечный ветер

Потоки рекуррентного быстрого солнечного ветра испускаются Солнцем в течение нескольких месяцев и имеют период повторяемости при наблюдениях с Земли в 27 суток (период вращения Солнца). Эти потоки ассоциированы с корональными дырами - областями короны с относительно низкой температурой (примерно 0,8·10 6 К), пониженной плотностью плазмы (всего четверть плотности спокойных областей короны) и радиальным по отношению к Солнцу магнитным полем.

Возмущенные потоки

К возмущенным потокам относят межпланетное проявление корональных выбросов массы (СМЕ), а также области сжатия перед быстрыми СМЕ (называемыми в англоязычной литературе Sheath) и перед быстрыми потоками из корональных дыр (называемыми в англоязычной литературе Corotating interaction region - CIR). Около половины случаев наблюдений Sheath и CIR могут иметь впереди себя межпланетную ударную волну. Именно в возмущенных типах солнечного ветра межпланетное магнитное поле может отклоняться от плоскости эклиптики и содержать южную компоненту поля, которая приводит ко многим эффектам космической погоды (геомагнитной активности, включая магнитные бури). Ранее предполагалось, что возмущенные спорадические потоки вызываются солнечными вспышками, однако в настоящее время считается, что спорадические потоки в солнечном ветре обусловлены корональными выбросами. Вместе с тем следует отметить, что и солнечные вспышки, и корональные выбросы связаны с одними и теми же источниками энергии на Солнце и между ними существует статистическая зависимость.

По времени наблюдения различных крупномасштабных типов солнечного ветра быстрые и медленные потоки составляют около 53 %, гелиосферный токовый слой 6 %, CIR - 10 %, CME - 22 %, Sheath - 9 %, и соотношение между временем наблюдения различных типов сильно изменяется в цикле солнечной активности.

Феномены, порождаемые солнечным ветром

Благодаря высокой проводимости плазмы солнечного ветра магнитное поле Солнца оказывается вмороженным в истекающие потоки ветра и наблюдается в межпланетной среде в виде межпланетного магнитного поля.

Солнечный ветер образует границу гелиосферы, благодаря чему препятствует проникновению в . Магнитное поле солнечного ветра значительно ослабляет приходящие извне галактические космические лучи. Локальное повышение межпланетного магнитного поля приводит к краткосрочным понижениям космических лучей, Форбуш-понижениям, а крупномасштабные уменьшения поля приводят к их долгосрочным возрастаниям. Так в 2009 году, в период затянувшегося минимума солнечной активности, интенсивность излучения вблизи Земли выросла на 19 % относительно всех наблюдаемых ранее максимумов.

Солнечный ветер порождает на Солнечной системы, обладающих магнитным полем, такие явления, как магнитосфера, полярные сияния и радиационные пояса планет.



Можно использовать не только как движитель космических парусников, но и как источник энергии. Наиболее известное применение солнечного ветра в этом качестве было впервые предложено Фрименом Дайсоном (Freeman Dyson), предположившим, что высокоразвитой цивилизации по силам создание сферы вокруг звезды, которая бы собирала всю испускаемую ею энергию. Исходя из этого так же был предложен очередной метод поиска внеземных цивилизаций.

Между тем, коллективом исследователей Вашингтонского университета (Washington State University) под руководством Брукса Харропа (Brooks Harrop) была предложена более практичная концепция использования энергии солнечного ветра - спутники Дайсона-Харропа. Они представляют собой довольно простые электростанции, собирающие электроны из солнечного ветра. На длинный металлический стержень, направленный на Солнце, подается напряжение для генерации магнитного поля, которое будет притягивать электроны. На другом конце располагается приемник-ловушка электронов, состоящая из паруса и приемника.

По расчетам Харропа, спутник с 300-метровым стержнем, толщиной 1 см и 10-метровой ловушкой, на орбите Земли сможет «собирать» до 1,7 МВт. Этого достаточно для обеспечения энергией примерно 1000 частных домов. Тот же спутник, но уже с километровым стержнем и парусом в 8400 километров сможет «собирать» уже 1 миллиард миллиардов гигаватт энергии (10 27 Вт). Остается только передать эту энергию на Землю, чтобы отказаться от всех остальных ее видов.

Команда Харропа предлагает передавать энергию с помощью лазерного луча. Однако, если конструкция самого спутника довольно проста и вполне реализуема на современном уровне технологий, то создание лазерного «кабеля» пока технически невозможно. Дело в том, что для эффективного сбора солнечного ветра спутник Дайсона-Харропа должен лежать вне плоскости эклиптики, а значит находится в миллионах километров от Земли. На таком расстоянии луч лазера будет давать пятно, диаметром в тысячи километров. Адекватная же фокусирующая система потребует объектив от 10 до 100 метров в диаметре. Кроме этого, нельзя исключать многие опасности от возможных сбоев системы. С другой стороны, энергия требуется и в самом космосе, и небольшие спутники Дайсона-Харропа вполне могут стать ее основным источником, заменив солнечные батареи и ядерные реакторы.

Ученым известно о существовании солнечного ветра с 1950-х годов. Но несмотря на его серьезное воздействие на Землю и космонавтов, ученые все еще не знают многих его характеристик. Несколько космических миссий, совершенных в последние десятилетия, пытались объяснить эту тайну.

Запущенная в космос 6 октября 1990 года миссия NASA Ulysses изучала Солнце на разных его широтах. Она измеряла различные свойства солнечного ветра в течение более чем десяти лет.

Миссия Advanced Composition Explorer () имела орбиту, связанную с одной из особых точек, находящихся между Землей и Солнцем. Она известна как точка Лагранжа. В этой области гравитационные силы от Солнца и Земли имеют одинаковое значение. И это позволяет спутнику иметь стабильную орбиту. Начатый в 1997 году эксперимент ACE изучает солнечный ветер и обеспечивает измерения постоянного потока частиц в реальном масштабе времени.

Космические аппараты NASA STEREO-A и STEREO-B изучают края Солнца с разных сторон, чтобы увидеть, как рождается солнечный ветер. По данным NASA , STEREO представила «уникальный и революционный взгляд на систему Земля — Солнце».

Новые миссии

NASA планирует запуск новой миссии по изучению Солнца. Она дает ученым надежду узнать еще больше о природе Солнца и солнечного ветра. Солнечный зонд NASA Parker , планируемый к запуску (успешно запущен 12.08.2018 — Navigator ) летом 2018 года, будет работать таким образом, чтобы буквально «коснуться Солнца». Спустя несколько лет полета на орбите, близкой к нашей звезде, зонд впервые в истории погрузится в корону Солнца. Это будет сделано для того, чтобы получить комбинацию фантастических изображений и измерений. Эксперимент продвинет вперед наше понимание природы солнечной короны, и улучшит понимание происхождения и эволюции солнечного ветра.

В конце 40-х годов американский астроном С. Форбуш обнаружил непонятное явление. Измеряя интенсив­ность космических лучей, Форбуш заметил, что она значительно снижается при возрастании солнечной ак­тивности и совсем резко падает во время магнитных бурь.

Это представлялось довольно странным. Скорее, мож­но было ожидать обратного. Ведь Солнце само является поставщиком космических лучей. Поэтому, казалось бы, чем выше активность нашего дневного светила, тем больше частиц оно должно выбрасывать в окружающее пространство.

Оставалось предположить, что возрастание солнечной активности влияет на земное магнитное поле таким об­разом, что оно начинает отклонять частицы космических лучей - отбрасывать их. Путь к Земле как бы запи­рается.

Объяснение казалось логичным. Но, увы, как выяс­нилось вскоре, оно было явно недостаточным. Подсчеты, проделанные физиками, неопровержимо свидетельство­вали о том, что изменение физических условий только в непосредственной близости от Земли не может вызвать эффекта такого масштаба, какой наблюдается в дей­ствительности. Очевидно, должны существовать и какие-то другие силы, препятствующие проникновению космических лучей в солнечную систему, и притом такие, которые возрастают с увеличением солнечной активности.

Тогда-то и возникло предположение, что виновни­ками загадочного эффекта являются потоки заряженных частиц, вырывающиеся с поверхности Солнца и про­низывающие пространство солнечной системы. Этот свое­образный «солнечный ветер» и очищает межпланетную среду, «выметая» из нее частицы космических лучей.

В пользу подобной гипотезы говорили также явления, наблюдающиеся в кометах. Как известно, кометные хво­сты всегда направлены от Солнца. Вначале это обстоя­тельство связывали со световым давлением солнечных лучей. Однако в середине текущего столетия было уста­новлено, что лишь световое давление не может вызывать всех явлений, происходящих в кометах. Расчеты пока­зали, что для образования и наблюдаемого отклонения кометных хвостов необходимо воздействие не только фотонов, но и частиц вещества. Кстати, такие частицы могли бы возбуждать происходящее в кометных хвостах свечение ионов.

Собственно говоря, о том, что Солнце выбрасывает потоки заряженных частиц - корпускул, было известно и до этого. Однако предполагалось, что такие потоки носят эпизодический характер. Их возникновение астро­номы связывали с появлением вспышек и пятен. Но ко­метные хвосты направлены в противоположную от Солн­ца сторону всегда, а не только в периоды усиления сол­нечной активности. Значит, и корпускулярная радиация, заполняющая пространство солнечной системы, должна существовать постоянно. Она усиливается с возраста­нием солнечной активности, но существует всегда.

Таким образом, околосолнечное пространство непре­рывно обдувается солнечным ветром. Из чего же состоит этот ветер и при каких условиях он возникает?

Познакомимся с самым внешним слоем солнечной ат­мосферы - «короной». Эта часть атмосферы нашего дневного светила необычайно разрежена. Даже в непо­средственной близости от Солнца ее плотность состав­ляет всего около одной стомиллионной доли плотности земной атмосферы. Это значит, что в каждом куби­ческом сантиметре околосолнечного пространства содер­жится всего несколько сотен миллионов частиц короны. Но так называемая «кинетическая температура» короны, определяемая по скорости движения частиц, весьма вели­ка. Она достигает миллиона градусов. Поэтому корональный газ полностью ионизован и представляет собой смесь протонов, ионов различных элементов и свободных элект­ронов.

Недавно появилось сообщение о том, что в составе солнечного ветра обнаружено присутствие ионов гелия. Это обстоятельство проливает спет на тот механизм, с помощью которого происходит выброс заряженных

частиц с поверхности Солнца. Если бы солнечный ветер состоял только из электронов и протонов, то еще можно было бы предполагать, что он образуется за счет чисто тепловых процессов и представляет собой нечто вроде пара, образующегося над поверхностью кипящей воды. Однако ядра атомов гелия в четыре раза тяжелее про­тонов и поэтому маловероятно, чтобы они могли выбра­сываться вследствие испарения. Скорее всего образова­ние солнечного ветра связано с действием магнитных сил. Улетая от Солнца, облака плазмы как бы уносят с собой и магнитные поля. Именно эти поля и служат тем своеобразным «цементом», который «скрепляет» воедино частицы с различными массами и зарядами.

Наблюдения и вычисления, проведенные астронома­ми, показали, что по мере удаления от Солнца плотность короны постепенно уменьшается. Но, оказывается, в районе орбиты Земли она еще заметно отличается от нуля. В этой области солнечной системы на каждый ку­бический сантиметр пространства приходится от ста до тысячи корональных частиц. Другими словами, наша планета находится внутри солнечной атмосферы и, если хотите, мы вправе называть себя не только жителями Земли, но и жителями атмосферы Солнца.

Если вблизи Солнца корона более или менее ста­бильна, то по мере увеличения расстояния она стре­мится расшириться в пространство. И чем дальше от Солнца, тем выше скорость этого расширения. Согласно расчетам американского астронома Э. Паркера, уже па расстоянии 10 млн. км корональные частицы движутся со скоростями, превосходящими скорость звука. И но мере дальнейшего удаления от Солнца и ослабления силы солнечного притяжения эти скорости возрастают еще в несколько раз.

Таким образом, напрашивается вывод о том, что сол­нечная корона - это и есть солнечный ветер, обдуваю­щий пространство нашей планетной системы.

Эти теоретические выводы были полностью подтвер­ждены измерениями па космических ракетах и искус­ственных спутниках Земли. Оказалось, что солнечный ветер существует всегда и вблизи Земли «дует» со ско­ростью около 400 км\сек. С увеличением солнечной ак­тивности скорость эта возрастает.

Как далеко дует солнечный ветер? Вопрос этот пред­ставляет значительный интерес, однако для получения соответствующих экспериментальных данных необходимо осуществить зондирование космическими аппаратами внешней части солнечной системы. Пока же это не сде­лано, приходится довольствоваться теоретическими сооб­ражениями.

Однако однозначного ответа получить не удается. В зависимости от исходных предпосылок расчеты при­водят к различным результатам. В одном случае получается, что солнечный ветер затихает уже в районе ор­биты Сатурна, в другом, - что он существует еще на очень большом расстоянии за орбитой последней планеты Плутона. Но это лишь теоретически крайние пределы возможного распространения солнечного ветра. Указать точную границу могут лишь наблюдения.

Наиболее достоверными были бы, как мы уже отме­чали, данные космических зондов. Но в принципе воз­можны и некоторые косвенные наблюдения. В частности, было замечено, что после каждого очередного спада сол­нечной активности соответствующее возрастание интен­сивности космических лучей высоких энергий, т. е. лу­чей, приходящих в солнечную систему извне, происходит с запозданием примерно на шесть месяцев. Видимо, это и есть как раз тот срок, который необходим, чтобы оче­редное изменение мощности солнечного ветра дошло до границы его распространения. Так как средняя скорость распространения солнечного ветра составляет около 2,5 астрономической единицы (1 астрономическая еди­ница = 150 млн. км-среднему расстоянию Земли от Солн­ца) в сутки, то это дает расстояние около 40-45 астро­номических единиц. Другими словами, солнечный ветер иссякает где-то в районе орбиты Плутона.