Вычисление криволинейного интеграла первого рода онлайн. Криволинейные интегралы

1 рода.

1.1.1. Определение криволинейного интеграла 1 рода

Пусть на плоскости Оxy задана кривая (L). Пусть для любой точки кривой (L) определена непрерывная функция f(x;y). Разобьем дугу АВ линии (L) точками А=P 0 , P 1 , P n = В на n произвольных дуг P i -1 P i с длинами (i = 1, 2, n ) (рис.27)

Выберем на каждой дуге P i -1 P i произвольную точку M i (x i ; y i) , вычислим значение функции f(x;y) в точке M i . Составим интегральную сумму

Пусть , где .

λ→0 (n→∞ ), не зависящий ни от способа разбиения кривой (L )на элементарные части, ни от выбора точек M i криволинейным интегралом 1 рода от функции f(x;y) (криволинейным интегралом по длине дуги) и обозначают:

Замечание . Аналогично вводиться определение криволинейного интеграла от функции f(x;y;z) по пространственной кривой (L).

Физический смысл криволинейного интеграла 1 рода:

Если (L)- плоская кривая с линейной плоскостью , то массу кривой находят по формуле:

1.1.2. Основные свойства криволинейного интеграла 1 рода:

3. Если путь интегрирования разбит на части такие что , и имеют единственную общую точку, то .

4. Криволинейный интеграл 1 рода не зависит от направления интегрирования:

5. , где - длина кривой.

1.1.3. Вычисление криволинейного интеграла 1 рода.

Вычисление криволинейного интеграла сводят к вычислению определенного интеграла.

1. Пусть кривая (L) задана уравнением . Тогда

То есть дифференциал дуги вычисляют по формуле .

Пример

Вычислить массу отрезка прямой от точки А(1;1) до точки В(2;4), если .

Решение

Уравнение прямой проходящей через две точки: .

Тогда уравнение прямой (АВ ): , .

Найдём производную .

Тогда . = .

2. Пусть кривая (L) задана параметрически : .

Тогда , то есть дифференциал дуги вычисляют по формуле .

Для пространственного случая задания кривой: .Тогда

То есть дифференциал дуги вычисляют по формуле .

Пример

Найти длину дуги кривой , .

Решение

Длину дуги найдём по формуле : .

Для этого найдём дифференциал дуги .

Найдём производные , , .Тогда и длина дуги: .

3. Пусть кривая (L) задана в полярной системе координат: . Тогда

То есть дифференциал дуги вычислют по формуле .

Пример

Вычислить массу дуги линии , 0≤ ≤ , если .

Решение

Массу дуги найдём по формуле:

Для этого найдёмдифференциал дуги .

Найдём производную .

1.2. Криволинейный интеграл 2 рода

1.2.1. Определение криволинейного интеграла 2 рода


Пусть на плоскости Оxy задана кривая (L) . Пусть на (L) задана непрерывная функция f (x;y). Разобьем дугу АВ линии (L) точками А = P 0 ,P 1 , P n = В в направлении от точки А к точке В на n произвольных дуг P i -1 P i с длинами (i = 1, 2, n ) (рис.28).

Выберем на каждой дуге P i -1 P i произвольную точку M i (x i ; y i) , вычислим значение функции f(x;y) в точке M i . Составим интегральную сумму , где - длина проекции дуги P i -1 P i на ось Оx . Если направление движения вдоль проекции совпадает с положительным направлением оси Оx , то проекцию дуг считают положительной , иначе - отрицательной .

Пусть , где .

Если существует предел интегральной суммы при λ→0 (n→∞ ), не зависящий ни от способа разбиения кривой (L) на элементарные части, ни от выбора точек M i в каждой элементарной части, то этот предел называют криволинейным интегралом 2 рода от функции f(x;y) (криволинейным интегралом по координате х ) и обозначают:

Замечание. Аналогично вводится криволинейный интеграл по координате у:

Замечание. Если (L) - замкнутая кривая, то интеграл по ней обозначают

Замечание. Если на (L ) задано сразу три функции и от этих функций существуют интегралы , , ,

то выражение: + + называют общим криволинейным интегралом 2 рода и записывают:

1.2.2. Основные свойства криволинейного интеграла 2 рода:

3. При изменении направления интегрирования криволинейный интеграл 2 рода изменяет свой знак .

4. Если путь интегрирования разбит на части такие что , и имеют единственную общую точку, то

5. Если кривая (L ) лежит в плоскости:

Перпендикулярной оси Ох , то =0 ;

Перпендикулярной оси Oy , то ;

Перпендикулярной оси Oz , то =0.

6. Криволинейный интеграл 2 рода по замкнутой кривой не зависит от выбора начальной точки (зависит только от направления обхода кривой).

1.2.3. Физический смысл криволинейного интеграла 2 рода.

Работа А силы при перемещении материальной точки единичной массы из точки М в точку N вдоль (MN ) равна:

1.2.4. Вычисление криволинейного интеграла 2 рода.

Вычисление криволинейного интеграла 2 рода сводят к вычислению определенного интеграла.

1. Пусть кривая (L ) задана уравнением .

Пример

Вычислить, где (L )- ломаная OAB : O(0;0), A(0;2), B(2;4).

Решение

Так как (рис.29), то

1)Уравнение (OA) : , ,

2) Уравнение прямой (AB ): .

2. Пусть кривая (L) задана параметрически: .

Замечание. В пространственном случае:

Пример

Вычислить

Где (АВ)- отрезок от А(0;0;1) до B(2;-2;3).

Решение

Найдём уравнение прямой (АВ ):

Перейдём к параметрической записи уравнения прямой (АВ) . Тогда .

Точке A(0;0;1) соответствует параметр t равный: следовательно, t=0.

Точке B(2;-2;3) соответствует параметр t , равный: следовательно, t=1.

При перемещении от А к В ,параметр t меняется от 0 до 1 .

1.3. Формула Грина . L ) в т. М(х;у;z) с осями Оx, Оy, Oz

Лекция 5 Криволинейные интегралы 1 и 2 рода, их свойства..

Задача о массе кривой. Криволинейный интеграл 1 рода.

Задача о массе кривой. Пусть в каждой точке кусочно-гладкой материальной кривой L: (AB) задана ее плотность . Определить массу кривой.

Поступим так же, как мы поступали при определении массы плоской области (двойной интеграл) и пространственного тела (тройной интеграл).

1. Организуем разбиение области- дуги L на элементы – элементарные дуги так, чтобы эти элементы не имели общих внутренних точек и(условие А )

3. Построим интегральную сумму , где - длина дуги (обычно вводятся одни и те же обозначения для дуги и ее длины). Это – приблизительное значение массы кривой. Упрощение состоит в том, что мы предположили плотность дуги постоянной на каждом элементе и взяли конечное число элементов.

Переходя к пределу при условии (условие В ), получим криволинейный интеграл первого рода как предел интегральных сумм:

.

Теорема существования.

Пусть функция непрерывна на кусочно-гладкой дуге L. Тогда криволинейный интеграл первого рода существует как предел интегральных сумм.

Замечание. Предел этот не зависит от

Свойства криволинейного интеграла первого рода.

1. Линейность
а) свойство суперпозиции

б) свойство однородности .

Доказательство. Запишем интегральные суммы для интегралов в левых частях равенств. Так как в интегральной сумме число слагаемых конечно, перейдем к интегральным суммам для правых частей равенств. Затем перейдем к пределу, по теореме о предельном переходе в равенстве получим желаемый результат.

2. Аддитивность.
Если, то = +

3. .Здесь – длина дуги .

4. Если на дуге выполнено неравенство , то

Доказательство. Запишем неравенство для интегральных сумм и перейдем к пределу.

Заметим, что, в частности, возможно

5. Теорема об оценке.

Если существуют константы , что , то

Доказательство. Интегрируя неравенство (свойство 4), получим . По свойству 1 константы можно вынести из-под интегралов. Используя свойство 3, получим искомый результат.

6. Теорема о среднем (значении интеграла).

Существует точка , что

Доказательство. Так как функция непрерывна на замкнутом ограниченном множестве , то существует ее нижняя грань и верхняя грань . Выполнено неравенство . Деля обе части на L, получим . Но число заключено между нижней и верхней гранью функции. Так как функция непрерывна на замкнутом ограниченном множестве L, то в некоторой точке функция должна принимать это значение. Следовательно, .

Вычисление криволинейного интеграла первого рода.

Параметризуем дугу L: AB x = x(t), y = y(t), z =z (t). Пусть t 0 соответствует точке A, а t 1 соответствует точке B. Тогда криволинейный интеграл первого рода сводится к определенному интегралу ( - известная из 1 семестра формула для вычисления дифференциала длины дуги):

Пример. Вычислить массу одного витка однородной (плотность равна k) винтовой линии: .

Криволинейный интеграл 2 рода.

Задача о работе силы.

Какую работу производит сила F (M ) при перемещении точки M по дуге AB ?

Если бы дуга AB была отрезком прямой, а сила была бы постоянной по величине и направлению при перемещении точки M по дуге AB, то работу можно было бы вычислить по формуле , где - угол между векторами. В общем случае эту формулу можно использовать для построения интегральной суммы, предполагая силу постоянной на элементе дуги достаточно малой длины. Вместо длины малого элемента дуги можно взять длину стягивающей ее хорды , так как эти величины – эквивалентные бесконечно малые величины при условии (первый семестр).

1. Организуем разбиение области- дуги AB на элементы – элементарные дуги так, чтобы эти элементы не имели общих внутренних точек и(условие А )

2. Отметим на элементах разбиения «отмеченные точки» M i и вычислим в них значения функции

3. Построим интегральную сумму , где вектор, направленный по хорде, стягивающей -дугу .

4. Переходя к пределу при условии (условие В ), получим криволинейный интеграл второго рода как предел интегральных сумм (и работу силы):

. Часто обозначают

Теорема существования.

Пусть вектор - функция непрерывна на кусочно-гладкой дуге L. Тогда криволинейный интеграл второго рода существует как предел интегральных сумм.

.

Замечание. Предел этот не зависит от

Способа выбора разбиения, лишь бы выполнялось условие А

Выбора «отмеченных точек» на элементах разбиения,

Способа измельчения разбиения, лишь бы выполнялось условие В

Свойства криволинейного интеграла 2 рода.

1. Линейность
а) свойство суперпозиции

б) свойство однородности .

Доказательство. Запишем интегральные суммы для интегралов в левых частях равенств. Так как в интегральной сумме число слагаемых конечно, используя свойство скалярного произведения, перейдем к интегральным суммам для правых частей равенств. Затем перейдем к пределу, по теореме о предельном переходе в равенстве получим желаемый результат.

2. Аддитивность.
Если, то = + .

Доказательство. Выберем разбиение области L так, чтобы ни один из элементов разбиения (первоначально и при измельчении разбиения) не содержал одновременно как элементы L 1 , так и элементы L 2 . Это можно сделать по теореме существования (замечание к теореме). Далее проводится доказательство через интегральные суммы, как в п.1.

3. Ориентируемость.

= -

Доказательство. Интеграл по дуге –L, т..е. в отрицательном направлении обхода дуги есть предел интегральных сумм, в слагаемых которых вместо стоит (). Вынося «минус» из скалярного произведения и из суммы конечного числа слагаемых, переходя к пределу, получим требуемый результат.

Определение: Пусть в каждой точки гладкой кривой L = AB в плоскости Oxy задана непрерывная функция двух переменных f(x,y) . Произвольно разобьем кривую L на n частей точками A = М 0 , М 1 , М 2 , ... М n = B. Затем на каждой из полученых частей \(\bar{{M}_{i-1}{M}_{i}}\) выберем любую точку \(\bar{{M}_{i}}\left(\bar{{x}_{i}},\bar{{y}_{i}}\right)\)и составим сумму $${S}_{n}=\sum_{i=1}^{n}f\left(\bar{{x}_{i}},\bar{{y}_{i}}\right)\Delta {l}_{i}$$ где \(\Delta{l}_{i}={M}_{i-1}{M}_{i}\) - дуга дуги \(\bar{{M}_{i-1}{M}_{i}}\). Полученная сумма называется интегральной суммой первого рода для функции f(x,y) , заданой на кривой L.

Обозначим через d наибольшую из длин дуг \(\bar{{M}_{i-1}{M}_{i}}\) (таким образом, d = \(max_{i}\Delta{l}_{i}\)). Если при d ? 0 существует предел интегральных сумм S n (не зависящих от способа разбиения кривой L на части и выбора точек \(\bar{{M}_{i}}\)), то этот предел называется криволинейным интегралом первого порядка от функции f(x,y) по кривой L и обозначается $$\int_{L}f(x,y)dl$$

Можно доказать, что если функция f(x,y) непрерывна, то криволинейный интеграл \(\int_{L}f(x,y)dl\) существует.

Свойства криволинейного интеграла 1 рода

Криволинейный интеграл первого рода обладает свойствами, аналогичными соответствующим свойства определеннного интеграла:

  • аддитивность,
  • линейность,
  • оценка модуля,
  • теорема о среднем.

Однако есть отличие: $$\int_{AB}f(x,y)dl=\int_{BA}f(x,y)dl$$ т.е. криволинейный интеграл первого рода не зависит от направления интегрирования.

Вычисление криволинейных интегралов первого рода

Вычисление криволинейного интеграла первого рода сводится к вычислению определенного интеграла. А именно:

  1. Если кривая L задана непрерывно дифференцируемой функцией y=y(x), x \(\in \) , то $${\int\limits_L {f\left({x,y} \right)dl} } = {\int\limits_a^b {f\left({x,y\left(x \right)} \right)\sqrt {1 + {{\left({y"\left(x \right)} \right)}^2}} dx} ;}$$ при этом выражение \(dl=\sqrt{{1 + {{\left({y"\left(x \right)} \right)}^2}}} dx \) называется дифференциалом длины дуги.
  2. Если крива L задана параметрически, т.е. в виде x=x(t), y=y(t), где x(t), y(t) - непрерывно дифференцируемые функции на некотором отрезке \(\left [ \alpha ,\beta \right ]\), то $$ {\int\limits_L {f\left({x,y} \right)dl} } = {\int\limits_\alpha ^\beta {f\left ({x\left(t \right),y\left(t \right)} \right)\sqrt {{{\left({x"\left(t \right)} \right)}^2} + {{\left({y"\left(t \right)} \right)}^2}} dt}} $$ Это равенство распространяется на случай пространственной кривой L, заданной параметрически: x=x(t), y=y(t), z=z(t), \(t\in \left [ \alpha ,\beta \right ]\). В этом случае, если f(x,y,z) - непрерывная функция вдоль кривой L, то $$ {\int\limits_L {f\left({x,y,z} \right)dl} } = {\int\limits_\alpha ^\beta {f\left [ {x\left(t \right),y\left(t \right),z\left(t \right)} \right ]\sqrt {{{\left({x"\left(t \right)} \right)}^2} + {{\left({y"\left(t \right)} \right)}^2} + {{\left({z"\left(t \right)} \right)}^2}} dt}} $$
  3. Если плоская кривая L задана полярным уравнением r=r(\(\varphi \)), \(\varphi \in\left [ \alpha ,\beta \right ] \), то $$ {\int\limits_L {f\left({x,y} \right)dl} } = {\int\limits_\alpha ^\beta {f\left({r\cos \varphi ,r\sin \varphi } \right)\sqrt {{r^2} + {{{r}"}^2}} d\varphi}} $$

Криволинейные интегралы 1 рода - примеры

Пример 1

Вычислить криволинейный интеграл первого рода

$$ \int_{L}\frac{x}{y}dl $$ где L дуга параболы y 2 =2x, заключенная между точками (2,2) и (8,4).

Решение: Найдем дифференциал дуги dl для кривой \(y=\sqrt{2x}\). Имеем:

\({y}"=\frac{1}{\sqrt{2x}} \) $$ dl=\sqrt{1+\left ({y}" \right)^{2}} dx= \sqrt{1+\left (\frac{1}{\sqrt{2x}} \right)^{2}} dx = \sqrt{1+ \frac{1}{2x}} dx $$ Следовательно данный интеграл равен: $$\int_{L}\frac{x}{y}dl=\int_{2}^{8}\frac{x}{\sqrt{2x}}\sqrt{1+\frac{1}{2x}}dx= \int_{2}^{8}\frac{x\sqrt{1+2x}}{2x}dx= $$ $$ \frac{1}{2}\int_{2}^{8}\sqrt{1+2x}dx = \frac{1}{2}.\frac{1}{3}\left (1+2x \right)^{\frac{3}{2}}|_{2}^{8}= \frac{1}{6}(17\sqrt{17}-5\sqrt{5}) $$

Пример 2

Вычислить криволинейный интеграл первого рода \(\int_{L}\sqrt{x^2+y^2}dl \), где L - окружность x 2 +y 2 =ax (a>0).

Решение: Введем полярные координаты: \(x = r\cos \varphi \), \(y=r\sin \varphi \). Тогда поскольку x 2 +y 2 =r 2 , уравнение окружности имеет вид: \(r^{2}=arcos\varphi \), то есть \(r=acos\varphi \), а дифференциал дуги $$ dl = \sqrt{r^2+{2}"^2}d\varphi = $$ $$ =\sqrt{a^2cos^2\varphi=a^2sin^2\varphi }d\varphi=ad\varphi $$.

При этом \(\varphi\in \left [- \frac{\pi }{2} ,\frac{\pi }{2} \right ] \). Следовательно, $$ \int_{L}\sqrt{x^2+y^2}dl=a\int_{-\frac{\pi }{2}}^{\frac{\pi }{2}}acos\varphi d\varphi =2a^2 $$

16.3.2.1. Определение криволинейного интеграла первого рода. Пусть в пространстве переменных x,y,z задана кусочно-гладкая кривая , на которой определена функция f (x ,y ,z ).Разобьём кривую точками на частей, на каждой из дуг выберем произвольную точку , найдём и длину дуги , и составим интегральную сумму . Если существует предел последовательности интегральных сумм при , не зависящий ни от способа разбиения кривой на дуги , ни от выбора точек , то функция f (x ,y ,z ) называется интегрируемой по кривой , а значение этого предела называется криволинейным интегралом первого рода, или криволинейным интегралом по длине дуги от функции f (x ,y ,z ) по кривой , и обозначается (или ).

Теорема существования. Если функция f (x ,y ,z ) непрерывна на кусочно-гладкой кривой , то она интегрируема по этой кривой.

Случай замкнутой кривой. В этом случае в качестве начальной и конечной точки можно взять произвольную точку кривой. Замкнутую кривую в дальнейшем будем называть контуром и обозначать буквой С . То, что кривая, по которой вычисляется интеграл, замкнута, принято обозначать кружочком на знаке интеграла: .

16.3.2.2. Свойства криволинейного интеграла первого рода. Для этого интеграла имеют место все шесть свойств, справедливых для определённого, двойного, тройного интеграла, от линейности до теоремы о среднем . Сформулировать и доказать их самостоятельно . Однако для этого интеграла справедливо и седьмое, персональное свойство:

Независимость криволинейного интеграла первого рода от направления прохождения кривой: .

Доказательство. Интегральные суммы для интегралов, стоящих в правой и левой частях этого равенства, при любом разбиении кривой и выборе точек совпадают (всегда длина дуги ), поэтому равны их пределы при .

16.3.2.3. Вычисление криволинейного интеграла первого рода. Примеры. Пусть кривая задана параметрическими уравнениями , где - непрерывно дифференцируемые функции, и пусть точкам , которые задают разбиение кривой, соответствуют значения параметра , т.е. . Тогда (см. раздел 13.3. Вычисление длин кривых) . По теореме о среднем, существует точка такая, что . Выберем точки , получающиеся при этом значении параметра: . Тогда интегральная сумма для криволинейного интеграла будет равна интегральной сумме для определенного интеграла . Так как , то, переходя к пределу при в равенстве , получим

Таким образом, вычисление криволинейного интеграла первого рода сводится к вычислению определённого интеграла по параметру. Если кривая задана параметрически, то этот переход не вызывает трудностей; если дано качественное словесное описание кривой, то основной трудностью может быть введение параметра на кривой. Ещё раз подчеркнём, что интегрирование всегда ведётся в сторону возрастания параметра.



Примеры. 1. Вычислить , где - один виток спирали

Здесь переход к определённому интегралу проблем не вызывает: находим , и .

2. Вычислить тот же интеграл по отрезку прямой, соединяющей точки и .

Здесь прямого параметрического задания кривой нет, поэтому на АВ необходимо ввести параметр. Параметрические уравнения прямой имеют вид где - направляющий вектор, - точка прямой. В качестве точки берем точку , в качестве направляющего вектора - вектор : . Легко видеть, что точка соответствует значению , точка - значению , поэтому .

3. Найти, где - часть сечения цилиндра плоскостью z =x +1, лежащая в первом октанте.

Решение: Параметрические уравнения окружности - направляющей цилиндра имеют вид x =2cosj, y =2sinj, и так как z=x +1, то z = 2cosj+1. Итак,

поэтому

16.3.2.3.1. Вычисление криволинейного интеграла первого рода. Плоский случай. Если кривая лежит на какой-либо координатной плоскости, например, плоскости Оху , и задаётся функцией , то, рассматривая х как параметр, получаем следующую формулу для вычисления интеграла: . Аналогично, если кривая задаётся уравнением , то .

Пример. Вычислить , где - четверть окружности , лежащая в четвёртом квадранте.

Решение. 1. Рассматривая х как параметр, получаем , поэтому

2. Если за параметр взять переменную у , то и .

3. Естественно, можно взять обычные параметрические уравнения окружности : .

Если кривая задана в полярных координатах , то , и .