Вычислить площадь фигуры ограниченной линиями параметрически. Как вычислить площадь фигуры и объём тела вращения, если линия задана параметрически? Как вычислить объем тела вращения

Найдём объём тела, порождённого вращением арки циклоиды вокруг её основания. Роберваль находил его, разбив полученное яйцеобразное тело (рис. 5.1) на бесконечно тонкие слои, вписав в эти слои цилиндрики и сложив их объёмы. Доказательство получилось длинное, утомительное и не вполне строгое. Поэтому для его вычисления обратимся к высшей математике. Зададим уравнение циклоиды параметрически.

В интегральном исчислении при изучении объемов пользуется следующим замечанием:

Если кривая, ограничивающая криволинейную трапецию задана параметрическими уравнениями и функции в этих уравнениях удовлетворяют условиям теоремы о замене переменной в определенном интеграле, то объем тела вращения трапеции вокруг оси Ох, будет вычисляться по формуле:

Воспользуемся этой формулой для нахождения нужного нам объема.

Таким же образом вычислим и поверхность этого тела.

L={(x,y): x=a(t - sin t), y=a(1 - cost), 0 ? t ? 2р}

В интегральном исчислении существует следующая формула для нахождения площади поверхности тела вращения вокруг оси х кривой, заданной на отрезке параметрически (t 0 ?t ?t 1):

Применяя эту формулу для нашего уравнения циклоиды получаем:

Рассмотрим также другую поверхность, порождённую вращением арки циклоиды. Для этого построим зеркальное отражение арки циклоиды относительно её основания, и овальную фигуру, образованную циклоидой и её отражением будем вращать вокруг оси KT (рис. 5.2)

Сначала найдём объём тела, образованного вращением арки циклоиды вокруг оси KT. Его объём будем вычислять по формуле(*):

Таким образом, мы посчитали объём половины данного репообразного тела. Тогда весь объём будет равен

Лекции 8. Приложения определенного интеграла.

Приложение интеграла к физическим задачам основано на свойстве аддитивности интеграла по множеству. Поэтому с помощью интеграла могут вычисляться такие величины, которые сами аддитивны по множеству. Например, площадь фигуры равна сумме площадей ее частей Длина дуги, площадь поверхности, объем тела, масса тела обладают тем же свойством. Поэтому все эти величины можно вычислять с помощью определенного интеграла.

Можно использовать два метода решения задач: метод интегральных сумм и метод дифференциалов.

Метод интегральных сумм повторяет конструкцию определенного интеграла: строится разбиение, отмечаются точки, в них вычисляется функция, вычисляется интегральная сумма, производится предельный переход. В этом методе основная трудность – доказать, что в пределе получится именно то, что нужно в задаче.

Метод дифференциалов использует неопределенный интеграл и формулу Ньютона – Лейбница. Вычисляют дифференциал величины, которую надо определить, а затем, интегрируя этот дифференциал, по формуле Ньютона – Лейбница получают требуемую величину. В этом методе основная трудность – доказать, что вычислен именно дифференциал нужной величины, а не что-либо иное.

Вычисление площадей плоских фигур.

1. Фигура ограничена графиком функции, заданной в декартовой системе координат.

Мы пришли к понятию определенного интеграла от задачи о площади криволинейной трапеции (фактически, используя метод интегральных сумм). Если функция принимает только неотрицательные значения, то площадь под графиком функции на отрезке может быть вычислена с помощью определенного интеграла . Заметим, что поэтому здесь можно увидеть и метод дифференциалов.

Но функция может на некотором отрезке принимать и отрицательные значения, тогда интеграл по этому отрезку будет давать отрицательную площадь, что противоречит определению площади.

Можно вычислять площадь по формуле S =. Это равносильно изменению знака функции в тех областях, в которых она принимает отрицательные значения.

Если надо вычислить площадь фигуры, ограниченной сверху графиком функции , а снизу графиком функции , то можно пользоваться формулой S = , так как .

Пример. Вычислить площадь фигуры, ограниченной прямыми x=0, x=2 и графиками функций y=x 2 , y=x 3 .

Заметим, что на интервале (0,1) выполнено неравенство x 2 > x 3 , а при x >1 выполнено неравенство x 3 > x 2 . Поэтому

2. Фигура ограничена графиком функции, заданной в полярной системе координат.

Пусть график функции задан в полярной системе координат и мы хотим вычислить площадь криволинейного сектора, ограниченного двумя лучами и графиком функции в полярной системе координат.

Здесь можно использовать метод интегральных сумм, вычисляя площадь криволинейного сектора как предел суммы площадей элементарных секторов, в которых график функции заменен дугой окружности .

Можно использовать и метод дифференциалов: .

Рассуждать можно так. Заменяя элементарный криволинейный сектор, соответствующий центральному углу круговым сектором, имеем пропорцию . Отсюда . Интегрируя и используя формулу Ньютона – Лейбница, получаем .

Пример. Вычислим площадь круга (проверим формулу). Полагаем . Площадь круга равна .

Пример. Вычислим площадь, ограниченную кардиоидой .

3 Фигура ограничена графиком функции, заданной параметрически.

Функция может быть задана параметрически в виде . Используем формулу S = , подставляя в нее и пределы интегрирования по новой переменной . . Обычно при вычислении интеграла выделяют те области, где подинтегральная функция имеет определенный знак и учитывают соответствующую площадь с тем или иным знаком.

Пример. Вычислить площадь, ограниченную эллипсом .

Используем симметрию эллипса, вычислим площадь четверти эллипса, находящуюся в первом квадранте. В этом квадранте . Поэтому .

Вычисление объемов тел.

1. Вычисление объемов тел по площадям параллельных сечений.

Пусть требуется вычислить объем некоторого тела V по известным площадям сечений этого тела плоскостями, перпендикулярными прямой OX, проведенными через любую точку x отрезка прямой OX.

Применим метод дифференциалов. Считая элементарный объем , над отрезком объемом прямого кругового цилиндра с площадью основания и высотой , получим . Интегрируя и применяя формулу Ньютона – Лейбница, получим

2. Вычисление объемов тел вращения.

Пусть требуется вычислить OX .

Тогда .

Аналогично, объем тела вращения вокруг оси OY , если функция задана в виде , можно вычислить по формуле .

Если функция задана в виде и требуется определить объем тела вращения вокруг оси OY , то формулу для вычисления объема можно получить следующим образом.

Переходя к дифференциалу и пренебрегая квадратичными членами, имеем . Интегрируя и применяя формулу Ньютона – Лейбница, имеем .

Пример. Вычислить объем шара .

Пример. Вычислить объем прямого кругового конуса, ограниченного поверхностью и плоскостью .

Вычислим объем, как объем тела вращения, образованного вращением вокруг оси OZ прямоугольного треугольника в плоскости OXZ, катеты которого лежат на оси OZ и прямой z = H , а гипотенуза лежит на прямой .

Выражая x через z, получим .

Вычисление длины дуги.

Для того, чтобы получить формулы для вычисления длины дуги, вспомним выведенные в 1 семестре формулы для дифференциала длины дуги.

Если дуга представляет собой график непрерывно дифференцируемой функции , дифференциал длины дуги можно вычислить по формуле

. Поэтому

Если гладкая дуга задана параметрически , то

. Поэтому .

Если дуга задана в полярной системе координат , то

. Поэтому .

Пример. Вычислить длину дуги графика функции, . .

Приветствую вас, уважаемые студенты вуза Аргемоны!

Ещё немного - и курс будет закончен, а сейчас мы займёмся вот чем.

Чжоули чуть взмахнула рукой - и в воздухе проявилась фигура. А точнее, это была прямоугольная трапеция. Она просто висела в воздухе, созданная магической энергией, которая текла по её сторонам, а также клубилась внутри самой трапеции, отчего та вся сверкала и переливалась.
Затем преподаватель чуть заметно сделала круговое движение пальцами руки - и трапеция начала вращаться вокруг невидимой оси. Сначала медленно, потом всё быстрее и быстрее - так, что в воздухе явственно стала проступать объёмная фигура. Казалось, что магическая энергия растекалась по ней.

Далее случилось следующее: сверкающие контуры фигуры и её внутренность стали заполняться каким-то веществом, свечение становилось всё менее заметным, зато сама фигура всё более была похожа на что-то осязаемое. Крупинки материала равномерно распределялись по фигуре. И вот всё закончилось: и вращение, и свечение. В воздухе висел предмет, похожий на воронку. Чжоули аккуратно переместила его на стол.

Ну вот. Примерно так можно материализовать многие предметы - путём вращения каких-то плоских фигур вокруг воображаемых прямых. Конечно, для материализации нужно определённое количество вещества, которое заполнит собой весь образующийся и временно удерживающийся при помощи магической энергии объём. А вот для того, чтобы точно подсчитать, сколько вещества надо, - и нужно знать объём получаемого тела. Иначе, если вещества будет мало, то оно не заполнит собой весь объём и тело может получиться непрочным, с изъянами. А материализовать и ещё удерживать большой избыток вещества - это ненужные затраты магической энергии.
Ну а если у нас ограниченное количество вещества? Тогда, умея вычислять объёмы тел, можно прикинуть, какое по размерам тело мы можем сделать без особых затрат магической энергии.
Насчёт излишков привлечённого материала есть ещё и другая мысль. Куда излишки вещества деваются? Осыпаются, будучи не задействованными? Или налипают на тело как попало?
В общем, тут ещё есть над чем подумать. Если вдруг у вас какие-то мысли появились, то с удовольствием их выслушаю. А пока перейдём к вычислению объёмов тел, полученных таким способом.
Здесь рассматривается несколько случаев.

Случай 1.

Область, которую мы будем вращать, представляет собой самую классическую криволинейную трапецию.

Естественно, что вращать её мы можем только вокруг оси ОХ. Если же эту трапецию сдвинуть вправо по горизонтали так, чтобы она не пересекала ось OY, то её можно вращать и относительно этой оси. Заклинательные формулы для обоих случаев следующие:

Мы с вами уже достаточно хорошо освоили основные магические воздействия на функции, поэтому для вас, думаю, не составит труда при необходимости передвинуть фигуру так в координатных осях, чтобы она располагалась удобно для работы с ней.

Случай 2.

Можно вращать не только классическую криволинейную трапецию, но и фигуру вот такого вида:

При вращении мы получим своеобразное кольцо. А передвинув фигуру в положительную область, мы можем её вращать и относительно оси OY. Тоже получим кольцо или нет. Всё зависит от того, как будет располагаться фигура: если её левая граница пройдёт точно по оси OY, то кольца не получится. Рассчитать объёмы таких тел вращения можно, используя следующие заклинания:

Случай 3.

Вспомним, что у нас есть замечательные кривые, но задающиеся не привычным нам способом, а в параметрическом виде. Такие кривые часто замкнуты. Параметр t должен меняться таким образом, чтобы замкнутая фигура при обходе её по кривой (границе) оставалась слева.

Тогда для вычисления объёмов тел вращения относительно оси ОХ или OY надо использовать вот такие заклинания:

Эти же формулы можно использовать и для случая незамкнутых кривых: когда оба конца лежат на оси ОХ или на оси OY. Фигура-то по-любому получается замкнутой: концы замыкает отрезок оси.

Случай 4.

Часть замечательных кривых у нас задаются полярными координатами (r=r(fi)). И тогда фигуру можно вращать относительно полярной оси. В этом случае декартовая система координат совмещается с полярной и полагается
x=r(fi)*cos(fi)
y=r(fi)*sin(fi)
Таким образом, мы приходим к параметрическому виду кривой, где параметр fi должен меняться так, чтобы при обходе кривой область оставалась слева.
И пользуемся заклинательными формулами из случая 3.

Однако, для случая полярных координат есть и своя заклинательная формула:

Конечно, плоские фигуры можно вращать и относительно любых других прямых, не только относительно осей OX и OY, но эти манипуляции уже более сложные, поэтому мы ограничимся теми случаями, что были рассмотрены в лекции.

А теперь домашнее задание . Я не буду вам давать конкретные фигуры. Мы уже изучили много функций, и мне хочется, чтобы вы сами что-то такое сконструировали, что вам может понадобится в магической практике. Думаю, четырёх примеров на все указанные в лекции случаи будет достаточно.

Когда мы выясняли геометрический смысл определенного интеграла, у нас получилась формула, с помощью которой можно найти площадь криволинейной трапеции, ограниченной осью абсцисс, прямыми x = a , x = b , а также непрерывной (неотрицательной или неположительной) функцией y = f (x) . Иногда удобнее задавать функцию, ограничивающую фигуру, в параметрическом виде, т.е. выражать функциональную зависимость через параметр t . В рамках данного материала мы покажем, как можно найти площадь фигуры, если она ограничена параметрически заданной кривой.

После объяснения теории и выведения формулы мы разберем несколько характерных примеров на нахождение площади таких фигур.

Основная формула для вычисления

Допустим, что у нас имеется криволинейная трапеция, границами которой являются прямые x = a , x = b , ось O x и параметрически заданная кривая x = φ (t) y = ψ (t) , а функции x = φ (t) и y = ψ (t) являются непрерывными на интервале α ; β , α < β , x = φ (t) будет непрерывно возрастать на нем и φ (α) = a , φ (β) = b .

Определение 1

Чтобы вычислить площадь трапеции при таких условиях, нужно использовать формулу S (G) = ∫ α β ψ (t) · φ " (t) d t .

Мы вывели ее из формулы площади криволинейной трапеции S (G) = ∫ a b f (x) d x методом подстановки x = φ (t) y = ψ (t) :

S (G) = ∫ a b f (x) d x = ∫ α β ψ (t) d (φ (t)) = ∫ α β ψ (t) · φ " (t) d t

Определение 2

Учитывая монотонное убывание функции x = φ (t) на интервале β ; α , β < α , нужная формула принимает вид S (G) = - ∫ β α ψ (t) · φ " (t) d t .

Если функция x = φ (t) не относится к основным элементарным, то нам понадобится вспомнить основные правила возрастания и убывания функции на интервале, чтобы определить, будет ли она возрастающей или убывающей.

В этом пункте мы разберем несколько задач на применение формулы, выведенной выше.

Пример 1

Условие : найдите площадь фигуры, которую образует линия, заданная уравнениями вида x = 2 cos t y = 3 sin t .

Решение

У нас есть параметрически заданная линия. Графически ее можно отобразить в виде эллипса с двумя полуосями 2 и 3 . См на иллюстрацию:

Попробуем найти площадь 1 4 полученной фигуры, которая занимает первый квадрант. Область находится в интервале x ∈ a ; b = 0 ; 2 . Далее умножим полученное значение на 4 и найдем площадь целой фигуры.

Вот ход наших вычислений:

x = φ (t) = 2 cos t y = ψ (t) = 3 sin t φ α = a ⇔ 2 cos α = 0 ⇔ α = π 2 + πk , k ∈ Z , φ β = b ⇔ 2 cos β = 2 ⇔ β = 2 πk , k ∈ Z

При k , равном 0 , мы получим интервал β ; α = 0 ; π 2 . Функция x = φ (t) = 2 cos t на нем будет монотонно убывать (подробнее см. статью об основных элементарных функциях и их свойствах). Значит, можно применить формулу вычисления площади и найти определенный интеграл, используя формулу Ньютона-Лейбница:

- ∫ 0 π 2 3 sin t · 2 cos t " d t = 6 ∫ 0 π 2 sin 2 t d t = 3 ∫ 0 π 2 (1 - cos (2 t) d t = = 3 · t - sin (2 t) 2 0 π 2 = 3 · π 2 - sin 2 · π 2 2 - 0 - sin 2 · 0 2 = 3 π 2

Значит, площадь фигуры, заданной исходной кривой, будет равна S (G) = 4 · 3 π 2 = 6 π .

Ответ: S (G) = 6 π

Уточним, что при решении задачи выше можно было взять не только четверть эллипса, но и его половину – верхнюю или нижнюю. Одна половина будет расположена на интервале x ∈ a ; b = - 2 ; 2 . В этом случае у нас бы получилось:

φ (α) = a ⇔ 2 cos α = - 2 ⇔ α = π + π k , k ∈ Z , φ (β) = b ⇔ 2 cos β = 2 ⇔ β = 2 π k , k ∈ Z

Таким образом, при k равном 0 , мы получили β ; α = 0 ; π . Функция x = φ (t) = 2 cos t на этом интервале будет монотонно убывать.

После этого вычисляем площадь половины эллипса:

- ∫ 0 π 3 sin t · 2 cos t " d t = 6 ∫ 0 π sin 2 t d t = 3 ∫ 0 π (1 - cos (2 t) d t = = 3 · t - sin (2 t) 2 0 π = 3 · π - sin 2 · π 2 - 0 - sin 2 · 0 2 = 3 π

Важно отметить, что можно взять только верхнюю или нижнюю часть, а правую или левую нельзя.

Можно составить параметрическое уравнение данного эллипса, центр которого будет расположен в начале координат. Оно будет иметь вид x = a · cos t y = b · sin t . Действуя так же, как и в примере выше, получим формулу для вычисления площади эллипса S э л и п с а = πab .

Задать окружность, центр которой расположен в начале координат, можно с помощью уравнения x = R · cos t y = R · sin t , где t является параметром, а R – радиусом данной окружности. Если мы сразу воспользуемся формулой площади эллипса, то то у нас получится формула, с помощью которой можно вычислить площадь круга с радиусом R: S к р у г а = πR 2 .

Разберем еще одну задачу.

Пример 2

Условие: найдите, чему будет равна площадь фигуры, которая ограничена параметрически заданной кривой x = 3 cos 3 t y = 2 sin 3 t .

Решение

Сразу уточним, что данная кривая имеет вид вытянутой астроиды. Обычно астроида выражается с помощью уравнения вида x = a · cos 3 t y = a · sin 3 t .

Теперь разберем подробно, как построить такую кривую. Выполним построение по отдельным точкам. Это самый распространенный метод, который применим для большинства задач. Более сложные примеры требуют проведения дифференциального исчисления, чтобы выявить параметрически заданную функцию.

У нас x = φ (t) = 3 cos 3 t , y = ψ (t) = 2 sin 3 t .

Данные функции являются определенными для всех действительных значений t . Для sin и cos известно, что они являются периодическими и их период составляет 2 пи. Вычислив значения функций x = φ (t) = 3 cos 3 t , y = ψ (t) = 2 sin 3 t для некоторых t = t 0 ∈ 0 ; 2 π π 8 , π 4 , 3 π 8 , π 2 , . . . , 15 π 8 , получим точки x 0 ; y 0 = (φ (t 0) ; ψ (t 0)) .

Составим таблицу итоговых значений:

t 0 0 π 8 π 4 3 π 8 π 2 5 π 8 3 π 4 7 π 8 π
x 0 = φ (t 0) 3 2 . 36 1 . 06 0 . 16 0 - 0 . 16 - 1 . 06 - 2 . 36 - 3
y 0 = ψ (t 0) 0 0 . 11 0 . 70 1 . 57 2 1 . 57 0 . 70 0 . 11 0
t 0 9 π 8 5 π 4 11 π 8 3 π 2 13 π 8 7 π 4 15 π 8 2 π
x 0 = φ (t 0) - 2 . 36 - 1 . 06 - 0 . 16 0 0 . 16 1 . 06 2 . 36 3
y 0 = ψ (t 0) - 0 . 11 - 0 . 70 - 1 . 57 - 2 - 1 . 57 - 0 . 70 - 0 . 11 0

После этого отметим нужные точки на плоскости и соединим их одной линией.

Теперь нам надо найти площадь той части фигуры, что находится в первой координатной четверти. Для нее x ∈ a ; b = 0 ; 3:

φ (α) = a ⇔ 3 cos 3 t = 0 ⇔ α = π 2 + πk , k ∈ Z , φ (β) = b ⇔ 3 cos 3 t = 3 ⇔ β = 2 πk , k ∈ Z

Если k равен 0 , то у нас получится интервал β ; α = 0 ; π 2 , и функция x = φ (t) = 3 cos 3 t на нем будет монотонно убывать. Теперь берем формулу площади и считаем:

- ∫ 0 π 2 2 sin 3 t · 3 cos 3 t " d t = 18 ∫ 0 π 2 sin 4 t · cos 2 t d t = = 18 ∫ 0 π 2 sin 4 t · (1 - sin 2 t) d t = 18 ∫ 0 π 2 sin 4 t d t - ∫ 0 π 2 sin 6 t d t

У нас получились определенные интегралы, которые можно вычислить с помощью формулы Ньютона-Лейбница. Первообразные для этой формулы можно найти, используя рекуррентную формулу J n (x) = - cos x · sin n - 1 (x) n + n - 1 n J n - 2 (x) , где J n (x) = ∫ sin n x d x .

∫ sin 4 t d t = - cos t · sin 3 t 4 + 3 4 ∫ sin 2 t d t = = - cos t · sin 3 t 4 + 3 4 - cos t · sin t 2 + 1 2 ∫ sin 0 t d t = = - cos t · sin 3 t 4 - 3 cos t · sin t 8 + 3 8 t + C ⇒ ∫ 0 π 2 sin 4 t d t = - cos t · sin 3 t 4 - 3 cos t · sin t 8 + 3 8 t 0 π 2 = 3 π 16 ∫ sin 6 t d t = - cos t · sin 5 t 6 + 5 6 ∫ sin 4 t d t ⇒ ∫ 0 π 2 sin 6 t d t = - cos t · sin 5 t 6 0 π 2 + 5 6 ∫ 0 π 2 sin 4 t d t = 5 6 · 3 π 16 = 15 π 96

Мы вычислили площадь четверти фигуры. Она равна 18 ∫ 0 π 2 sin 4 t d t - ∫ 0 π 2 sin 6 t d t = 18 3 π 16 - 15 π 96 = 9 π 16 .

Если мы умножим это значение на 4 , получим площадь всей фигуры – 9 π 4 .

Точно таким же образом мы можем доказать, что площадь астроиды, заданной уравнениями x = a · cos 3 t y = a · sin 3 t , можно найти по формуле S а с т р о и д ы = 3 πa 2 8 , а площадь фигуры, которая ограничена линией x = a · cos 3 t y = b · sin 3 t , считается по формуле S = 3 πab 8 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter