Запись и восстановление голограммы. Голографии

November 23rd, 2012

Компания NICE Interactive

Продолжаю выполнять заявки своих френдов из Месяц уже близиться к концу, а я еще далек от завершения очереди ваших вопросов. Сегодня мы разбираем, обсуждаем и дополняем задание trudnopisaka :

Технологии создания трехмерных голограмм. Бывают ли они непрозрачными? С чем можно сравнить энергетические затраты на их создание? Какие есть перспективы развития?

Голография основывается на двух физических явлениях - дифракции и интереференции световых волн.

Физическая идея состоит в том, что при наложении двух световых пучков, при определенных условиях возникает интерференционная картина, то есть, в пространстве возникают максимумы и минимумы интенсивности света (это подобно тому, как две системы волн на воде при пересечении образуют чередующиеся максимумы и минимумы амплитуды волн). Для того, чтобы этаинтерференционная картина была устойчивой в течение времени, необходимого для наблюдения, и ее можно было записать, эти две световых волны должны быть согласованы в пространстве и во времени. Такие согласованные волны называются когерентными.

Если волны встречаются в фазе, то они складываются друг с другом и дают результирующую волну с амплитудой, равной сумме их амплитуд. Если же они встречаются в противофазе, то будут гасить одна другую. Между двумя этими крайними положениями наблюдаются различные ситуации сложения волн. Результирующая сложения двух когерентных волн будет всегда стоячей волной. То есть интерференционная картина будет устойчива во времени. Это явление лежит в основе получения и восстановления голограмм.


Обычные источники света не обладают достаточной степенью когерентности для использования в голографии. Поэтому решающее значение для ее развития имело изобретение в 1960 г. оптического квантового генератора или лазера - удивительного источника излучения, обладающего необходимой степенью когерентности и могущего излучать строго одну длину волны.

Деннис Габор, изучая проблему записи изображения, выдвинул замечательную идею. Сущность ее реализации заключается в следующем. Если пучок когерентного света разделить на два и осветить регистрируемый объект только одной частью пучка, направив вторую часть на фотографическую пластинку, то лучи, отраженные от объекта, будут интерферировать с лучами, попадающими непосредственно на пластину от источника света. Пучок света, падающий на пластину, назвали опорным, а пучок, отраженный или прошедший через объект, предметным. Учитывая, что эти пучки получены из одного источника излучения, можно быть уверенным в том, что они когерентны. В данном случае интерференционная картина, образующаяся на пластинке, будет устойчива во времени, т.е. образуется изображение стоячей волны.

Полученная интерференционная картина является кодированным изображением, описывающим объект таким, каким он виден из всех точек фотопластинки. В этом изображении сохранена информация как об амплитуде, так и о фазе отраженных от объекта волн и, следовательно, заложена информация о трехмерном (объемном) объекте.
Фотографическая запись картины интерференции предметной волны и опорной волны обладает свойством восстанавливать изображение объекта, если на такую запись снова направить опорную волну. Т.е. при освещении записанной на пластине картины опорным пучком восстановится изображение объекта, которое зрительно невозможно отличить от реального. Если смотреть через пластинку под разными углами, можно наблюдать изображение объекта в перспективе с разных сторон. Конечно, полученную таким чудесным способом фотопластинку нельзя назвать фотографией. Это - голограмма.

В 1962 г. И. Лейт и Ю. Упатниекс получили первые пропускающие голограммы объемных объектов, выполненные с помощью лазера. Схема, предложенная ими, используется в изобразительной голографии повсеместно:
Пучок когерентного излучения лазера направляется на полупрозрачное зеркало, с помощью которого получают два пучка - предметный и опорный. Опорный пучок направляют непосредственно на фотопластинку. Предметный пучок освещает объект, голограмму которого регистрируют. Отраженный от объекта световой пучок - объектный попадает на фотопластинку. В плоскости пластинки два пучка - объектный и опорный образуют сложную интерференционную картину, которая вследствие когерентности двух пучков света остается неизменной во времени и представляет собой изображение стоячей волны. Остается только зарегистрировать ее обычным фотографическим путем.


Японский концерт с 3D голограммой Hatsune Miku

Если голограмму записать в некоторой объемной среде, то полученная модель стоячей волны однозначно воспроизводит не только амплитуду и фазу, но и спектральный состав записанного на ней излучения. Это обстоятельство было положено в основу создания трехмерных (объемных) голограмм.
В основу работы объемных голограмм положен дифракционный эффект Брэгга. B результате интерференции волн, распространяющихся в толстослойной эмульсии, образуются плоскости, засвеченные светом большей интенсивности. После проявления голограммы на засвеченных плоскостях образуются слои почернения. В результате этого создаются так называемые брэгговские плоскости, которые обладают свойством частично отражать свет. Т.е. в эмульсии создается трехмерная интерференционная картина.

Такая толстослойная голограмма обеспечивает эффективное восстановление объектной волны при условии, что угол падения опорного пучка при записи и восстановлении останется неизменным. Не допускается также изменение длины волны света при восстановлении. Такая избирательность объемной пропускающей голограммы позволяет записать на пластинке до нескольких десятков изображений, изменяя угол падения опорного пучка соответственно при записи и восстановлении.

Схема записи пропускающих объемных голограмм аналогична схеме Лейта-Упатниекса для двумерных голограмм.

При восстановлении объемной голограммы, в отличие от плоских пропускающих голограмм, образуется только одно изображение вследствие отражения от голограммы восстанавливающего пучка только в одном направлении, определяемом углом Брэгга.

Отражательные объемные голограммы записываются по иной схеме. Идея создания данных голограмм принадлежит Ю.Н.Денисюку. Поэтому голограммы этого типа известны под именем их создателя.

Опорный и предметный световые пучки образуются с помощью делителя и посредством зеркала направляются на пластину с двух сторон. Предметная волна освещает фотографическую пластину со стороны эмульсионного слоя, опорный - со стороны стеклянной подложки. Плоскости Брэгга в таких условиях записи располагаются почти параллельно плоскости фотопластины. Таким образом, толщина фотослоя может быть сравнительно небольшой.
На приведенной схеме объектная волна образуется с пропускающей голограммы. Т.е. вначале изготавливаются обычные пропускающие голограммы по описанной выше технологии, а потом уже с этих голограмм (которые называются мастер-голограммами) изготавливают в режиме копирования голограммы Денисюка.

Основное свойство отражательных голограмм - это возможность восстановления записанного изображения с помощью источника белого света, например, лампы накаливания или солнца. Не менее важным свойством является цветовая избирательность голограммы. Это значит, что при восстановлении изображения белым светом, оно восстановится в том цвете, в каком было записано. Если для записи был использован, например, рубиновый лазер, то восстановленное изображение объекта будет красным.

Уникальная 3D-голограмма в ГУМе!

В соответствии со свойством цветовой избирательности можно получить цветную голограмму объекта, в точности передающую его естественный цвет. Для этого необходимо при записи голограммы смешать три цвета: красный, зеленый и синий либо провести последовательное экспонирование фотопластинки этими цветами. Правда, технология записи цветных голограмм находится еще в экспериментальной стадии и потребует еще значительных усилий и экспериментов. Примечательно при этом, что многие, посетившие выставки голограмм, уходили оттуда в полной уверенности, что видели цветные объемные изображения!

Технология связи при помощи объемных голограмм, описанная впервые в "Звездных войнах" еще 30 лет назад, судя по всему, становится реальностью. Еще в 2010 году команда физиков из Университета Аризоны смогла разработать технологию передачи и просмотра движущихся трехмерных изображений в реальном времени. Разработчики из Аризоны называют свою работу прототипом "голографического трехмерного телеприсутствия". В реальности показанная сегодня технология представляет собой первую в мире практическую трехмерную систему передачи подлинно трехмерных изображений без необходимости использования стереоскопических очков.

"Голографическое телеприсутствие означает, что мы можем записать трехмерное изображение в одном местоположении и показать его в трехмерном режиме при помощи голограммы в другом, которое будет удалено на многие тысячи километров. Показ может проводиться в реальном времени", - говорит руководитель исследований Нассер Пейгамбарьян.


Для создания эффекта виртуальной инсталляции (3D голограммы) объекта в месте инсталляции натягивается специальная проекционная сетка. На сетку осуществляется проекция с помощью видеопроектора, который располагается за этой сеткой на расстоянии 2-3 метра. В идеале проекционная сетка натягивается на ферменную конструкцию, которая полностью обшивается темной тканью для затемнения и усиления эффекта. Создается подобие некого темного куба, на переднем плане которого разворачивается 3D изображение. Лучше чтобы действие происходило в полной темноте, тогда не будет виден темный куб и сетка, а только 3D голограмма!

Существующие системы 3D-проекций способны производить либо статические голограммы с превосходной глубиной и разрешением, либо динамические, но смотреть на них можно только под определенным углом и в основном через стереоскопические очки. Новая технология объединяет в себе преимущества обеих технологий, но лишена их многих недостатков.

В сердце новой системы находится новой фотографический полимер, разработанный калифорнийской исследовательской лабораторией Nitto Denko, работающей с электронными материалами.

В новой системе трехмерное изображение записывается на несколько камер, захватывающих объект с разных позиций и затем кодирует в цифровой сверхбыстрый лазерный поток данных, который создает на полимере голографические пиксели (хогели). Само по себе изображение - это результат оптического преломления лазеров между двумя слоями полимера.

Прототип устройства имеет 10-дюймовый монохромный экран, где картинка обновляется каждые две секунды - слишком медленно, чтобы создать иллюзию плавного движения, но все же динамика тут есть. Кроме того, ученые говорят, что показанный сегодня прототип - это лишь концепция и в будущем ученые обязательно создадут полноцветный и быстро обновляющийся поток, создающих натуральные трехмерные и плавно двигующиеся голограммы.

Профессор Пейгамбарьян прогнозирует, что примерно через 7-10 лет в домах у обычных потребителей могут появиться первые голографические системы видеосвязи. "Созданная технология абсолютно устойчива ко внешним факторам, таким как шумы и вибрация, поэтому она подходит и для промышленного внедрения", - говорит разработчик.


Голографическая 3D-установка AGP

Авторы разработки говорят, что одним из наиболее реальных и перспективных направлений разработки является именно телемедицина. "Хирурги из разных стран по всему миру смогут использовать технологию для трехмерного наблюдения за проведением операций в реальном времени и принимать участие в операции", - говорят исследователи. "Вся система полностью автоматизирована и контролируется компьютером. Лазерные сигналы сами кодируются и передаются, а приемник способен самостоятельно проводить рендеринг изображения".

И последние новости 2012 года по этой теме:

Технологии создания трехмерных изображений, которые "растут как грибы" в последнее время, воплощаясь в виде трехмерных телевизионных экранов и дисплеев компьютеров, фактически не создают полноценного трехмерного изображения. Вместо этого с помощью стереоскопических очков или других ухищрений в каждый глаз человека посылаются немного разнящиеся изображения, а уже головной мозг зрителя соединяет все это воедино прямо в голове в виде трехмерного образа. Такое "насилие" над органами чувств человека и повышенная нагрузка на мозг вызывает напряжение зрения и головные боли у некоторых людей. Поэтому, для того, что бы сделать настоящее трехмерное телевидение требуются технологии, способные создавать реальные трехмерные изображения, другими словами, голографические проекторы . Люди уже давно научились создавать высококачественные статические голограммы, но когда дело заходит о движущихся голографических изображениях, тут возникают большие проблемы.

Исследователи из бельгийского нанотехнологического исследовательского центра Imec, разработали и продемонстрировали работающий опытный образец голографического проектора нового поколения, в основе которого лежат технологии микроэлектромеханических систем (microelectromechanical system, MEMS). Использование технологий, лежащих на грани между нано- и микро-, позволит в ближайшем времени создать новый дисплей, способный демонстрировать движущиеся голографические изображения.

В основе нового голографического проектора лежит пластина, на которой находятся крошечные, в половину микрона размером, отражающие свет подвижные площадки. Эта пластина освещается светом от нескольких лазеров, направленных на нее под различными углами. Регулируя положение по вертикальной оси светоотражающих площадок можно добиться того, что волны отраженного света начинают интерферировать между собой, создавая трехмерное голографическое изображение. Это все звучит невероятно и кажется очень сложным, но, тем не менее, на одном из снимков можно увидеть статическое цветное голографическое изображение, сформированное с помощью этих крошечных светоотражающих площадок.

Пока еще исследователи Imec не создали дисплей, способный работать с движущимися изображениями. Но, согласно заявлению Франческо Пессолано (Francesco Pessolano), ведущего исследователя проекта Imec NVision: "Главное для нас было понять основной принцип, пути его реализации и проверить работоспособность опытного образца. Все остальное - это всего лишь дело техники и реализуется достаточно легко". Согласно планам Imec, первый опытный голографический проектор и система его управления должны появиться не позже середины 2012 года, вероятно что это не будет громоздкой вещью, ведь 400 миллиардов светоотражающих площадок, требующихся для создания качественного изображения, можно разместить на пластине, размером с пуговицу. Так что ждать осталось уже совсем не долго, а попозже люди смогут забыть про обычные экраны и дисплеи и полностью погрузиться в виртуальный трехмерный мир.

А какие же перспективы этого направления? Мне кажется вот они...

Голограмма Цоя на Сцене

Голограмма Тупака Шакура

Вот это тоже мне понравилось - http://kseniya.do100verno.com/blog/555/12 012 - посмотрите...

Кто еще знает современные методы воспроизведения голографиеского изображения?

Наиболее распространенным и широко применяемым способом регистрации изображения предметов является фотография. В фотографии регистрируется распределение интенсивности световых волн в двумерной проекции изображения объекта на плоскости фотоснимка.

Поэтому, под каким углом мы ни рассматривали бы фотографию, мы не видим новых ракурсов. Не можем увидеть также предметы, расположенные на заднем плане и скрытые впереди стоящими. Перспектива на фотографии видна лишь по изменению относительных размеров предметов и четкости их изображения.

Голография - одно из замечательных достижений современной науки и техники. Название происходит от греческих слов holos - полный и grapho - пишу, что означает полную запись изображения.

Голография принципиально отличается от обычной фотографии тем, что в светочувствительном материале происходит регистрация не только интенсивности, но и фазы световых волн, рассеянных объектом и несущих полную информацию о его трехмерной структуре. Как средство отображения реальной действительности, голограмма обладает уникальным свойством: в отличие от фотографии, создающей плоское изображение, голографическое изображение может воспроизводить точную трехмерную копию оригинального объекта. Современные голограммы наблюдают при освещении обычными источниками света, и полноценная объемность в комбинации с высокой точностью передачи фактуры поверхностей обеспечивает полный эффект присутствия.

Голография основывается на двух физических явлениях - дифракции и интереференции световых волн.

Физическая идея состоит в том, что при наложении двух световых пучков, при определенных условиях возникает интерференционная картина, то есть, в пространстве возникают максимумы и минимумы интенсивности света. Для того, чтобы эта интерференционная картина была устойчивой в течение времени, необходимого для наблюдения, и ее можно было записать, эти две световых волны должны быть согласованы в пространстве и во времени. Такие согласованные волны называются когерентными.

Результирующая сложения двух когерентных волн будет всегда стоячей волной . То есть интерференционная картина будет устойчива во времени. Это явление лежит в основе получения и восстановления голограмм.

Обычные источники света не обладают достаточной степенью когерентности для использования в голографии. Поэтому решающее значение для ее развития имело изобретение в 1960 г. оптического квантового генератора или лазера - удивительного источника излучения, обладающего необходимой степенью когерентности и могущего излучать строго одну длину волны.

Деннис Габор, изучая проблему записи изображения, выдвинул замечательную идею. Сущность ее реализации заключается в следующем. Если пучок когерентного света разделить на два и осветить регистрируемый объект только одной частью пучка, направив вторую часть на фотографическую пластинку, то лучи, отраженные от объекта, будут интерферировать с лучами, попадающими непосредственно на пластину от источника света. Пучок света, падающий на пластину, назвали опорным , а пучок, отраженный или прошедший через объект, предметным. Учитывая, что эти пучки получены из одного источника излучения, можно быть уверенным в том, что они когерентны. Фотографическая запись картины интерференции предметной волны и опорной волны обладает свойством восстанавливать изображение объекта, если на такую запись снова направить опорную волну. Т.е. при освещении записанной на пластине картины опорным пучком восстановится изображение объекта, которое зрительно невозможно отличить от реального. Если смотреть через пластинку под разными углами, можно наблюдать изображение объекта в перспективе с разных сторон. Конечно, полученную таким чудесным способом фотопластинку нельзя назвать фотографией. Это - голограмма.


В 1962 г. И. Лейт и Ю. Упатниекс получили первые пропускающие голограммы объемных объектов, выполненные с помощью лазера. Пучок когерентного излучения лазера направляется на полупрозрачное зеркало, с помощью которого получают два пучка - предметный и опорный. Опорный пучок направляют непосредственно на фотопластинку. Предметный пучок освещает объект, голограмму которого регистрируют. Отраженный от объекта световой пучок - объектный попадает на фотопластинку. В плоскости пластинки два пучка - объектный и опорный образуют сложную интерференционную картину, которая вследствие когерентности двух пучков света остается неизменной во времени и представляет собой изображение стоячей волны. Остается только зарегистрировать ее обычным фотографическим путем Полученная интерференционная картина является кодированным изображением, описывающим объект таким, каким он виден из всех точек фотопластинки. В этом изображении сохранена информация как об амплитуде, так и о фазе отраженных от объекта волн.

Если голограмму записать в некоторой объемной среде, то полученная модель стоячей волны однозначно воспроизводит не только амплитуду и фазу, но и спектральный состав записанного на ней излучения. Это обстоятельство было положено в основу создания трехмерных (объемных) голограмм. В основу работы объемных голограмм положен дифракционный эффект Брэгга: в результате интерференции волн, распространяющихся в толстослойной эмульсии, образуются плоскости, засвеченные светом большей интенсивности.

После проявления голограммы на засвеченных плоскостях образуются слои почернения. В результате этого создаются так называемые брэгговские плоскости, которые обладают свойством частично отражать свет.

Т.е. в эмульсии создается трехмерная интерференционная картина.

Такая толстослойная голограмма обеспечивает эффективное восстановление объектной волны при условии, что угол паденияопорного пучка при записи и восстановлении останется неизменным. Не допускается также изменение длины волны света при восстановлении. Такая избирательность объемной пропускающей голограммы позволяет записать на пластинке до нескольких десятков изображений, изменяя угол падения опорного пучка соответственно при записи и восстановлении.

При восстановлении объемной голограммы, в отличие от плоских пропускающих голограмм, образуется только одно изображение вследствие отражения от голограммы восстанавливающего пучка только в одном направлении, определяемом углом Брэгга.

Отражательные объемные голограммы записываются по иной схеме. Идея создания данных голограмм принадлежит Ю.Н. Денисюку. Поэтому голограммы этого типа известны под именем их создателя.

Опорный и предметный световые пучки образуются с помощью делителя и посредством зеркала направляются на пластину с двух сторон. Предметная волна освещает фотографическую пластину со стороны эмульсионного слоя, опорный - со стороны стеклянной подложки. Плоскости Брэгга в таких условиях записи располагаются почти параллельно плоскости фотопластины. Таким образом, толщина фотослоя может быть сравнительно небольшой.

9.4. Элементы интегральных микросхем.

Начало формы

ИНТЕГРАЛЬНАЯ СХЕМА (ИС), микроэлектронная схема, сформированная на крошечной пластинке (кристаллике, или «чипе») полупроводникового материала, обычно кремния, которая используется для управления электрическим током и его усиления. Типичная ИС состоит из множества соединенных между собой микроэлектронных компонентов, таких, как транзисторы, резисторы, конденсаторы и диоды, изготовленные в поверхностном слое кристалла. Размеры кремниевых кристаллов лежат в пределах от примерно 1,31,3 мм до 1313 мм. Прогресс в области интегральных схем привел к разработке технологий больших и сверхбольших интегральных схем (БИС и СБИС). Эти технологии позволяют получать ИС, каждая из которых содержит многие тысячи схем: в одном чипе может насчитываться более 1 млн. компонентов.. Интегральные схемы обладают целым рядом преимуществ перед своими предшественниками – схемами, которые собирались из отдельных компонентов, монтируемых на шасси. ИС имеют меньшие размеры, более высокие быстродействие и надежность; они, кроме того, дешевле и в меньшей степени подвержены отказам, вызываемым воздействиями вибраций, влаги и старения. Миниатюризация электронных схем оказалась возможной благодаря особым свойствам полупроводников. Полупроводник – это материал, обладающий гораздо большей электропроводностью (проводимостью), чем такой диэлектрик, как стекло, но существенно меньшей, чем проводники, например, медь. В кристаллической решетке такого полупроводникового материала, как кремний, при комнатной температуре имеется слишком мало свободных электронов, чтобы обеспечить значительную проводимость. Поэтому чистые полупроводники обладают низкой проводимостью. Однако введение в кремний соответствующей примеси увеличивает его электрическую проводимость. Легирующие примеси вводят в кремний двумя методами. Для сильного легирования или в тех случаях, когда точное регулирование количества вводимой примеси необязательно, обычно пользуются методом диффузии. Диффузию фосфора или бора выполняют, как правило, в атмосфере легирующей примеси при температурах между 1000 и 1150 С в течение от получаса до нескольких часов. При ионной имплантации кремний бомбардируют высокоскоростными ионами легирующей примеси. Количество имплантируемой примеси можно регулировать с точностью до нескольких процентов; точность в ряде случаев важна, поскольку коэффициент усиления транзистора зависит от числа примесных атомов, имплантированных на 1 см 2 базы.

1. Схема записи голограмм Денисюка

Итак, мы начинаем практический курс по голографии. Первые занятия будут посвящены ознакомлению с работой на схеме Денисюка - самой популярной голографической схеме. И это неудивительно, ведь схема Денисюка - самая простая из голографических схем. Тем не менее, с ее помощью можно записывать голограммы самого высокого качества.
Свое название схема получила по имени известнейшего российского ученого - Юрия Николаевича Денисюка , который в начале семидесятых годов изобрел метод записи отражающих голограмм на прозрачных фотопластинках. До этого голограммы записывались по методу Лейта -Упатниекса , и для их наблюдения требовался лазер. Чтобы голограммы можно было видеть в обычном, белом свете, Денисюк предложил освещать фотопластинку и объект одним и тем же лазерным пучком. Для этого потребовалась разработка специальных фотопластинок, которые должны быть прозрачными и иметь очень большую разрешающую способность. Задача была успешно решена.

На первом рисунке показана схема записи голограмм Денисюка, а на втором - фотография реальной установки. Узкий световой пучок 2 от лазера 1 направляется зеркалом 3 на пространственный фильтр 4 , который расширяет пучок до нужной величины и одновременно повышает его однородность. Расширенный пучок 5 освещает фотопластинку 6 и объект 7 , закрепленный на жестком основании 8 . Лазерный свет отражается от объекта на фотопластинку с обратной стороны. В плоскости фотопластинки встречаются два пучка: идущий от лазера, он называется опорным, и от объекта, он называется сигнальным. Эти пучки создают интерференционную картину , которая и регистрируется на фотопластинке. Картина интерференции - это мельчайшие перепады интенсивности света с периодом менее 1 микрона. Чтобы зарегистрировать такую мелкую картину требуется полная неподвижность объекта и фотопластинки во время экспонирования. Поэтому мягкие предметы и живые объекты, например, портрет человека, в схеме с лазером непрерывного действия записать нельзя.

Интерференция наблюдается при сложении двух волн, когда при условии их когерентности, т.е. постоянной разности фаз этих волн, возникает характерное пространственное распределение интенсивности света - интерференционная картина. Фотопластинка-детектор регистрирует это в виде чередующихся светлых и темных полос, или интерферограммы.

Для определения остаточных напряжений применялась и обычная интерферометрия, но эту работу можно было провести только в хорошо оборудованной лаборатории: требовалась специальная подготовка поверхности исследуемого объекта, придание ей правильной формы, специальное освещение и оборудование.

Когда создали лазер, т.е. источник излучения с высокой пространственной и временной когерентностью, стала развиваться оптическая голография - способ записи и восстановления световых волн, рассеянных объектом и несущих информацию о его форме (т.е. трехмерного образа объекта). Некоторые методики интерферометрии сильно упростились, так как снялись проблемы освещения и подготовки поверхности.

Принципиальная оптическая схема для записи голограммы по Лейту-Упатниексу показана на рисунке 4. Луч лазера 1 расширяется линзой 2 и делится полупрозрачным зеркалом 3 на две части. Одна часть - это опорный луч (ОЛ), он проходит через зеркало и сразу падает на фотопластинку-детектор 5. Вторая часть, отраженная от зеркала, освещает объект 4 и, диффузно рассеянная им, проходит через линзу 6 и тоже падает на детектор. Это предметный луч (ПЛ).

Рисунок 4 - Принципиальная схема записи голограммы Лейта-Упатниекса:

1 - лазер; 2 - линза; 3 - полупрозрачное зеркало; 4 - объект; 5 - фотопластинка-детектор; 6 - линза в режиме лупы.

ОЛ - опорный луч, ПЛ - предметный луч.

Схема регистрации голограмм Ю.Н. Денисюка

Схема регистрации голограммы, предложенная Ю.Н. Денисюком, представлена на рисунке 5.

Рисунок 5 - Принципиальная схема записи голограммы Ю.Н. Денисюка.

При регистрации голограммы в такой схеме в объеме регистрирующей среды образуется большое количество частично отражающих излучение поверхностей, называемых стратами, действующих подобно 15 отражательному интерференционному фильтру. Даже для толщин регистрирующей среды 10-12 мкм число этих страт может быть более 50. Большое число содержащихся в голограмме частично отражающих поверхностей обуславливает их высокую спектральную селективность, позволяющую восстанавливать записанное на них изображение в белом свете. Такие голограммы называются голограммами Ю.Н. Денисюка или отражательными объемными голограммами. Следует отметить, что известная фотография Липпмана является, по своей сути, частным случаем голограммы Денисюка.

От многих аналитиков можно слышать еще не совсем уверенный, но постоянно упоминаемый прогноз о возможной тотальной экспансии энергонезависимой NAND флеш-памяти в области хранения данных, причем как в сфере мобильных устройств, так и в стационарных компьютерах. Успехи Blu ray показывают, что оптические диски напрочь списывать не стоит. А, как выяснилось, вовсе не они являются вершиной технологии в данной сфере. Несколько известных компаний ведут активные разработки в области создания новых, в несколько раз более вместительных и быстро читаемых носителей, которые станут выгодной альтернативой имеющимся на сегодняшний день устройствам хранения данных.

История

Первая голограмма была получена задолго до изобретения лазеров. В 1947 г. венгерским физиком Деннисом Габором (Dennis Gabor) был получен патент на изобретение голографической записи, которая была им разработана случайно: в ходе экспериментов по повышению разрешающей способности электронного микроскопа, проводившихся в Британской Томсон-Хьюстоновской компании в английском городе Рэгби (British Thomson-Houston Company, Rugby, England). Его работа была награждена Нобелевской премией в 1971 г.


Он же стал автором слова «голография», которым подчеркнул полную запись оптических свойств объекта. К сожалению, его голограммы отличались низким качеством. Это достижение стало осуществимым во многом благодаря смежным работам таких физиков, как Мечеслав Вольфке (Mieczysław Wolfke).

Исследования в данной области не были продуктивны до 1960 г., когда были изобретены красный рубиновый (длина волны 694 нм, работает в импульсном режиме) и гелий-неоновый (длина волны 633 нм, работает непрерывно) лазеры, так как получить качественную голограмму без когерентного источника света невозможно. Ну а после создания лазера голография начала интенсивно развиваться.


Первая 3D-голограмма была записана Юрием Денисюком (Yuri Denisyuk) в Советском Союзе в 1962 г., а позднее в том же году - Эмметом Лейтом (Emmett Leith) и Юрисом Упатниксом (Juris Upatnieks) в Мичиганском университете в США (University of Michigan, USA).


Усовершенствования в области фотохимии, позволившие создавать высококачественные голограммы, разработаны Николасом Джей Филипсом (Nicholas J. Phillips).


В 1967 году рубиновым лазером был записан первый голографический портрет.

В результате длительной работы в 1968 году Юрий Денисюк (Yuri Denisyuk) получил высококачественные голограммы, которые восстанавливали изображение отражая белый свет. Для этого им была разработана своя собственная схема записи, получившая название схемы Денисюка, а полученные с её помощью голограммы называются голограммами Денисюка.

Наиболее многообещающее изобретение в короткой истории рассматриваемой технологии - массовое производство дешевых твердотельных лазеров, широко применяемых в миллионах DVD-рекордеров, оказавшихся полезными и в области голографии. Эти компактные, дешевые лазеры вполне могут сменить дорогие, большие, газовые лазеры, ранее использовавшиеся для создания голограмм. Потому теперь есть возможность для широкого применения данной разработки в научных исследованиях, для хранения различного рода данных.


Принцип голографической записи

Когда в некоторой области пространства складываются несколько электромагнитных волн, частоты которых с очень высокой степенью точности совпадают, возникает стоячая электромагнитная волна. Когда записывают голограмму, в определённой области пространства складывают две волны: одна из них идёт непосредственно от источника (опорная волна), а другая отражается от объекта записи (объектная волна). В области стоячей электромагнитной волны размещают фотопластинку или иной регистрирующий материал, в результате чего на нем возникает сложная картина полос потемнения, которые соответствуют распределению электромагнитной энергии (картине интерференции) в этой области пространства. Если теперь эту пластинку осветить волной, близкой к опорной, то она преобразует ее в волну, близкую к объектной. Таким образом, зрителю с различной степенью точности будет виден тот же свет, какой отражался бы от объекта записи.

Схемы записи голограмм


Схема записи Ю. Денисюка

В 1962 г. русский физик Юрий Денисюк предложил перспективный метод голографии с записью в трехмерной среде. В этой схеме луч лазера расширяется линзой и направляется зеркалом на фотопластинку. Часть луча, прошедшая через неё, освещает объект. Отраженный от объекта свет формирует объектную волну. Объектная и опорная волны падают на пластинку с разных сторон, так называемая схема на встречных пучках. В этой схеме записывается отражающая голограмма, которая самостоятельно вырезает из сплошного спектра узкие участки и отражает только их, т.е. выполняет роль светофильтра. Благодаря этому изображение голограммы видно в обычном белом свете солнца или лампы. Изначально голограмма вырезает ту длину волны, на которой её записывали (однако в процессе обработки и при хранении голограммы эмульсия может менять свою толщину, при этом меняется и длина волны), что позволяет записать на одну пластинку три голограммы одного объекта красным, зелёным и синим лазерами, получив тем самым одну цветную голограмму, которую практически невозможно отличить от самого объекта.

Эта схема отличается предельной простотой и в случае применения полупроводникового лазера, имеющего крайне малые размеры и дающего расходящийся пучок без применения линз, число необходимых для записи голограмм предметов сводится к одному лишь лазеру и некоторой основе, на которую закрепляется лазер, пластинка и объект. Потому именно такие схемы применяются при записи любительских голограмм.

Схема записи Лейта-Упатниекса (1962)

В этой схеме записи луч лазера делится специальным устройством — делителем — на два. После этого лучи с помощью линз расширяются и с помощью зеркал направляются на объект и регистрирующую среду. Обе волны (объектная и опорная) падают на пластинку с одной стороны. При такой схеме записи формируется пропускающая голограмма, требующая для своего восстановления источника света с той же длиной волны, на которой производилась запись, в идеале — лазера.

В 1977 году Ллойд Кросс создал так называемую мультиплексную голограмму. Она принципиально отличается от всех остальных голограмм тем, что состоит из множества (от десятков до сотен) отдельных плоских ракурсов, видимых под разными углами. Такая голограмма, естественно, не содержит полную информацию об объекте, кроме того, она, как правило, не имеет вертикального параллакса (т.е. нельзя посмотреть на объект сверху и снизу), но зато размеры записываемого объекта не ограничены длиной когерентности лазера, которая редко превышает несколько метров, а чаще всего составляет всего несколько десятков сантиметров, и размерами фотопластинки. Мало того, можно создать мультиплексную голограмму объекта, которого вовсе не существует! Например, нарисовав выдуманный объект с множества различных ракурсов. Мультиплексная голография превосходит по качеству все остальные способы создания объёмных изображений на основе отдельных ракурсов, однако она всё равно далека от традиционных методов голографии по реалистичности.

Технология записи голографических дисков

Современные методы записи на носители основаны на последовательных принципах, когда в каждый определенный момент времени на их поверхность может быть записан только один бит информации. В случае с голографией все обстоит иначе: здесь процесс основывается на параллельном методе — единственная вспышка лазера формирует пространственную запись миллионов битов информации в пространстве, ограниченном структурой носителя. Процесс записи данных на поверхности и в глубине носителя называется мультиплексированием.

В общих чертах принцип голографической записи выглядит достаточно просто. Световой поток разделяется на два луча: опорный (reference beam) и объектный (signal beam). Последний обеспечивает запись данных, а опорный остается неизменным. Цифровые данные формируют «образ» объектного луча при помощи пространственного светового модулятора Spatial Light Modulator (SLM), преобразующего последовательность нулей и единиц в массив черных и белых точек — создается подобие решетки (interference pattern), в которой просветы соответствуют очередной порции цифровых данных, а сквозь эту решетку просвечивает объектный луч, имеющий на выходе точную копию текущего состояния решетки пространственного светового модулятора. Чем больше разрешающая способность SLM, тем большую порцию данных может запечатлеть объектный луч в текущий момент времени и на сегодняшний день эта цифра составляет миллионы битов.

После преобразования в SLM уже несущий определенный набор данных объектный луч проецируется на физический носитель (storage medium). В точку проекции направляется и опорный луч, пересекаясь в ней с объектным. В этот момент происходит химическая реакция, которая и лежит в основе записи информации на носитель, причем там, где в SLM была непрозрачная точка. Если изменять длину волны опорного луча, угол его наклона или пространственное положение носителя, в один момент времени можно записать множество разных голограмм.

Есть несколько способов выполнения мультиплексирования, например, при помощи варьирования угла наклона опорного луча. К сожалению, неизвестно, какова степень мультиплексирования и как, например, «толщина» одной записанной голограммы соотносится с толщиной носителя, ведь, если предположить, что один молекулярный или атомарный слой соответствует одной голограмме, это могло бы стать настоящей революцией на рынке хранения данных.

Считывание записанных голограмм обеспечивается одним опорным лучом (reference beam), который создает отражение записанной голограммы и проецирует его на чувствительный элемент (detector array). Этот же элемент преобразует попадающую на него решетку данных в последовательность битов, а чтение голограмм на различной глубине носителя обеспечивается тем же путем, который применяется и при записи, — изменением угла наклона опорного луча, положения носителя.

Для осуществления голографической записи потребовалось разработать особый тип носителя, сочетающий большую светочувствительность, прочность, дешевизну и стабильность. Немаловажным требованием были и приемлемые линейные размеры носителя. Всем этим критериям, по мнению разработчиков, соответствуют фотополимерные диски. Диаметр их ненамного превышает диаметр современных дисков и составляет 130 мм. Они помещены в картриджи наподобие первых моделей DVD-носителей, так как попадание света на поверхность фотополимера вызовет химическую реакцию, которая необратимо разрушит записанные данные.


На сегодня имеются лишь устройства одноразовой записи, но InPhase Technologies уверяет, что в 2008 г. появятся и перезаписываемые носители.

Безопасность данных

Компании-разработчики уделили огромное внимание безопасности информации, что закрепило security-качества, которыми обладают голографические диски уже в силу особенностей технологии записи.

1) При голографическом «чтении» невозможно получить прямой доступ к носителю, в отличие от других оптических и жестких дисков: данные находятся в толще носителя, что уже намного затрудняет несанкционированный доступ.

2) Каждый голографический накопитель снабжен особой микросхемой, в которую занесена информация о размещении данных на диске. При чтении привод прежде всего обращается к этой информации, а если она зашифрована, считывание данных без необходимых сведений будет неосуществимо.

3) Нанесение особых меток, считывание и распознавание которых необходимо. Они расположены глубже, с определенными координатами. Чтобы преодолеть данный тип защиты, требуется лазер с иной длиной волны, которым не оснащаются приводы для массового потребителя.

4) В диапазоне от 403 до 407 нм варьирует длина волны используемого для записи в голографических приводах лазера. На этом может основываться еще один эффективный способ защиты данных: дисковод, использующий лазер с неверной длиной волны не сможет прочитать диск.

5) В качестве еще одного метода защиты от несанкционированного доступа может служить привязка диска к микропрограмме каждого определенного привода и использование встроенных средств защиты.


Преимущества перед Blu ray :

1) больший объем: 1,6 Тб против 50 Гб;

2) большая скорость записи/считывания информации: 120 МБ/cек против 26 МБ/сек;

3) длительный срок службы (до 50 лет).

Сегодняшние наработки


Голографическая система записи Tapestry, на разработку которой потрачено более 8 лет, была представлена на выставке NAB Show 2008 в Лас-Вегасе в апреле, а в мае 2008 г. InPhase Technologies объявили о начале ее продаж.

Система состоит из покрытых специальным материалом пластиковых дисков диаметром 120 мм, размещенных в картриджах. Голографические изображения наносятся на поверхность дисков с помощью голубого лазера с длиной волны 405 нм — аналогичным используемому в Blu ray. Как утверждает InPhase Technologies, такие диски могут служить до 50 лет. В данный момент они могут хранить 300 Гб, 800 Гб и 1,6 Тб данных, чего удалось достичь следующим образом. Можно хранить больше голограмм на том же количестве материала, совмещая не только страницы, но и книги данных. Страница данных — это около 1 млн. бит, записанных при одной экспозиции лазера. Каждая страница данных располагается по своему адресу, а на одном и том же месте материала может быть записано несколько сотен таких страниц (до 252), что составляет книгу. Последние достижения позволяют записывать «внахлест» не только страницы, но и книги — до 15 штук.

Скорость записи и считывания данных с носителей системой Tapestry составляет от 20 до 120 МБ/сек (прямопропорционально объему носителя). Её цена на данный момент составляет $18 000. В линейке приводов InPhase представлено три модели:

WORM Gen 1 tapestry 300r 300 Гб, 20MБ/сек;

WORM Gen 2 tapestry 800r 800 Гб, 80MБ/сек;

WORM Gen 3 tapestry 1600r 1,6 Tб, 120MБ/сек.

По принципу работы данная система во многом схожа с системой UDO от Plasmon, которая использует голубо-фиолетовый лазер для записи и считывания данных. Главные недостатки UDO — меньший объём диска (120 и 240 Гб), более низкая скорость записи/считывания данных, которая составляет всего 12 МБ/с. Правда, прогнозируемый срок службы у неё тот же - 50 лет. На рынке эта система пока не представлена.

Схожие наработки имеет компания Maxell. Ее сотрудники наряду с InPhase Technologies планировали, что уже в 2007 г. появятся их новые оптические носители — голографические диски объемом 300 Гб. Этого пока не произошло. В 2008 г. у них в планах создать второе поколение новых носителей емкостью 800 Гб, а к 2010 г. ими будут представлены и 1,6 Тб диски. В настоящее время Maxell работает сразу в нескольких направлениях: разрабатываются диски различных размеров, начиная от совсем маленьких и заканчивая классическими 12 см носителями. Для потребительского рынка появятся диски объемом 75 или 100 Гб. Что касается скорости передачи данных новых дисков, то для 300 Гб носителя скорость составляет 20 МБ/с. Как и следовало ожидать стоимость оптических накопителей и дисков к ним столь же велика как и у пионера InPase: на первых порах за голографический привод придется заплатить $15 000, а за диск $120-180.

Наряду с упомянутым, Hitachi Maxell создали голографический носитель HROM и на выставке CEATEC представили работающий на нем прототип системы воспроизведения аудио. Их носители имеют небольшие на сегодня объем 4 Гб и скорость передачи данных - 16 МБ/с. Однако стоит принять во внимание чрезвычайно компактные размеры носителя - немногим больше обычной почтовой марки. Касательно стоимости устройств разработчики отмечают, что цена во многом будет зависеть от объемов налаживаемого производства, но не должна превышать нескольких долларов за один носитель.

Разработки в сфере голографии оказались продуктивны и для Sony.Существующая у них технология позволяет записывать информацию с плотностью 180 Гбит на квадратный дюйм. А в ноябре 2007 г. им удалось довести плотность голографической записи до 270 Гбит на квадратный дюйм. Таким образом, появилась возможность создавать голографические носители информации в 1,5 раза большей емкости. Но когда новая технология Sony будет поставлена на коммерческие рельсы, пока не сообщается.


В апреле 2006 г. представитель компании Daewoo заявил о создании устройства HDDS — Holographic Digital Data Storage (голографический накопитель). Состоит оно из двух подсистем, которые включают электро-оптическую систему контроля, основанную на комплектующих National Instruments (NI), в числе которых контроллер CompactRIO FPGA и видеодекодирующая плата Xilinx FPGA. Голографический накопитель Daewoo работает по тому же принципу, что и устройство компании InPhase Technologies. В качестве носителя информации им используется голографический диск традиционного CD-размера. Несмотря на относительную давность сообщений, до сих пор ни слова о коммерческом внедрении новой технологии пока нет.

Трудности в создании, пути их решения

1)Главной проблемой, с которой сталкивались разработчики систем - необходимость размещения двух оптических систем по разные стороны от носителя информации (первая отвечает за формирование первоначального луча, а вторая — за прием прошедшего через диск измененного сигнала, т.е. считывание информации), а значит и отсутствовали возможности для создания компактных приводов. Но инженерам удалось обе системы расположить с одной стороны от голографического носителя и вторичный сигнал направить к приемнику благодаря наличию отражающего слоя на обратной стороне самого носителя информации.

2)Половина пространства в голографических носителях недоступна для записи данных, так как она используется программным обеспечением для коррекции ошибок. Новая технология компании Sony позволила уменьшить количество ошибок до коррекции. Теперь этот показатель не превышает 10%. А потому со временем придумают способ более экономного расходования дискового пространства.

3)Подверженность световому воздействию: электромагнитное излучение с длиной волны, близкой к световой, вызывает реакцию в регистрирующей среде, что вызывает искажение и повреждение записанных данных — размещение дисков в непрозрачных картриджах позволило снизить вероятность потери информации.

3аключение

Голографическая технология выглядит весьма впечатляюще с учетом большой емкости, скорости записи/чтения информации, наличия убедительных средств защиты от несанкционированного доступа, а потому могла бы стать желанным приобретением для многих пользователей, но чрезвычайно высокая стоимость подтверждает заявления разработчиков, указывающие на применение голографических дисков преимущественно на корпоративном рынке. Не забывая о том, что некоторые компании планируют создание бюджетных решений, вполне стоит рассчитывать на появление подобных устройств для массового потребителя.