Зависимости скорости роста популяций от их плотности. Типы роста популяций

Естественные популяции — это не раз и навсегда застывшая совокупность особей, а динамическое единство находящихся во взаимоотношениях организмов. Изменение в численности, структуре и распределении популяций как реакция на условия окружающей среды называется динамикой популяции.

Динамика популяций в упрощенном варианте может быть описана такими показателями, как рождаемость и смертность. Это наиболее важные популяционные характеристики, на основании анализа которых можно судить об устойчивости и перспективном развитии популяции.

Рождаемость определяется как число особей, рожденных в популяции за некоторый промежуток времени (час, день, месяц, год). Термин «рождаемость» относится к особям любых видов, независимо от способов появления их на свет: будь это прорастание семян подорожника или овса, появление детенышей из яиц у курицы или черепахи, рождение потомства у слона, кита либо человека.

Экологи выделяют максимальную рождаемость в условиях отсутствия лимитирующих экологических факторов (добиться этого весьма сложно, даже невозможно). Под максимальной рождаемостью понимается теоретически возможный максимум скорости образования новых особей в идеальных условиях. Размножение организмов сдерживается только их физиологическими особенностями. Теоретическая скорость размножения различных видов может быть довольно высокой. Если взять за основу такой показатель, как время захвата видом всей поверхности Земли, то для бактерии холеры Vibrio cholerae он будет составлять 1,25 суток, для диатомовой водоросли Nitschia putrida — 16,8, для домашней мухи Musca domestica — 366, для курицы — около 6000, для слона — 376 000 суток. Следует подчеркнуть, что максимальная рождаемость — понятие теоретическое. Ни один вид в природе не может бесконтрольно и безгранично размножаться, иначе не избежать экологической катастрофы.

В отличие от максимальной экологическая , или реализованная , рождаемость (или просто рождаемость) характеризует прирост или увеличение численности популяции при фактических или специфических условиях среды.

Смертность — это число особей, погибших в популяции за единицу времени. Подобно рождаемости, смертность можно выразить числом особей, погибших за данный период (число смертей в единицу времени), или в виде удельной смертности для всей популяции (или ее части). При определении смертности популяции учитываются все погибшие особи независимо от причины смерти (умерли ли они от старости или погибли в когтях хищника, отравились ядохимикатами или замерзли и т.д.).

Кривые роста популяций

Любая популяция теоретически способна к неограниченному росту численности, если ее не лимитируют факторы внешней среды. В таком гипотетическом случае скорость роста популяции будет зависеть только от величины биотического потенциала , свойственного виду.

Общие изменения численности популяции складываются за счет четырех явлений: рождаемости, смертности, вселения и выселения особей (иммиграция и эмиграция).

Рождаемость - число новых особей, появляющихся в популяции за единицу времени в расчете на определенное число ее членов.

Различают абсолютную и удельную рождаемость. Первая характеризуется общим числом родившихся особей. Удельную рождаемость вычисляют как среднее изменение численности особей за определенный период времени, деленное на их первоначальное число.

Наиболее часто в природе встречается повышенная смертность особей в ранний период жизни.

Расселение (выселение) особей из популяции или пополнение ее пришельцами — закономерное явление, основанное на одной из важнейших биологических черт вида — его расселительной способности. В каждой популяции часть особей регулярно покидает ее (дисперсия популяции), пополняя соседние или заселяя новые, еще не занятые видом территории.

Современная теория рассматривает темп роста численности популяций как авторегулируемый процесс. Любой популяции организмов в конкретных условиях свойствен определенный средний уровень численности, вокруг которого происходят колебания.

В одном случае темп роста с самого начала высокий и постоянный, не зависящий от нарастающей плотности, что соответствует лавинообразному, по экспоненте, увеличению численности популяции (рис. 6.2а). Его графически описывает простейшая кривая, характеризующая изменение численности популяции, движущейся к равновесию, при условии изобилии пиши. При достижении же определенной плотности рост популяции прекращается. Если лимитирующий фактор среды обитания действует весьма быстро, то рост популяции прекращается внезапно (кривая «Б» на рис. 626).

Однако оказывает ограничивающее влияние не резко, а постепенно, что приводит к 5-образной кривой роста (рис. 6.2#). Такая форма кривой роста наблюдается при внедрении популяции в новую территорию. В этом случае вначале происходит ускоренный рост (по логарифмическому закону). Затем, под влиянием сопротивления среды обитания, рост замедляется, и в популяции наступает фаза равновесия.

Если же популяция испытывает внешние воздействия (например, нападение хищников), то при постоянной удельной скорости изъятия особей в природе устойчиво существуют взаимодействующие популяции хищник — жертва (кривая «Г» на рис. 6.2и), но при меньшем уровне численности: N из меньше N max .

Рис. 6.2. Кривые роста популяции: А — экспоненциальная; 5 — экспоненциальная с прекращением роста; В — логистическая; Г — логистическая с изъятием особей без превышения квоты; Д — с превышением квоты. N — численность популяции (N mах — максимальная); (U из - реальная скорость изъятия, U max — критическая для популяции скорость изъятия продукции; t — время

Удельная скорость изъятия — число изъятых особей в единицу времен, отнесенных к численности популяции. Если же человек изымает биопродукцию из популяции с постоянной (интегральной, но не удельной) скоростью, то возникает понятие квоты.

Следовательно квота представляет собой скорость отлова. Когда квота не превышает установленной критической величины, то равновесие популяции сохраняется. В этом случае отлов можно вести сколь угодно долго без губительных последствий для популяции. S-образная кривая называется логистической кривой роста, поскольку она получена путем интегрирования уравнения, основанного на логически обоснованных допущениях. Если квота превышает критическую величину отлова, то происходит полный отлов популяции за конечное время: популяция не успевает самовосстановиться и гибнет (рис. 6.2г).

Весьма интересны для ученых-экологов циклические популяции, подверженные закономерным колебаниям численности. Однако единой теории удовлетворительно объясняющей закономерности в циклических популяциях пока нет.

У растений, ввиду особенностей их роста, регуляция плотности популяции происходит обычно не только путем изменения численности особей на единице площади, но и путем изменения их вегетативных возможностей.

У животных жесткие формы регуляции плотности популяций проявляются обычно лишь в тех случаях, когда запасы пищи, воды или других ресурсов резко ограничены, а животные либо не способны в данный период к поискам ресурсов на другой территории, либо эти поиски неэффективны.

Среди механизмов, задерживающих рост популяций, у многих видов большую роль играют химические взаимодействия особей.

Другой механизм ограничения численности популяций — такие изменения физиологии и поведения при увеличении плотности, которые, в конечном счете, приводят к проявлению инстинктов массовой миграции.

Наиболее эффективным механизмом сдерживания роста численности популяции на данном ареале является определенная система инстинктов — мечение и охрана участков, не допускающие размножения на них «чужих» особей.

Генетические процессы в популяциях. В настоящее время известно, что все природные популяции гетерогенны и насыщены мутациями. Генетическая гетерогенность любой популяции при отсутствии давления внешних факторов должна быть неизменной, находиться в определенном равновесии.

Положение о генетическом единстве популяции является одним из наиболее важных выводов популяционной генетики: любая популяция представляет сложную генетическую систему, находящуюся в динами ческом равновесии.

СКОРОСТЬ РОСТА ПОПУЛЯЦИИ прирост популяции за единицу времени: D N/D t, где N - размер популяции (численность), t - время. Может быть постоянной (неограниченный рост - при условии отсутствия сопротивления среды приросту) или затухающей (когда с увеличением численности особей условия их существования ухудшаются и темп воспроизводства падает).

  • - allopatric populations - .Популяции одного вида, обитающие в разных географических районах и не соприкасающиеся друг с другом...

    Молекулярная биология и генетика. Толковый словарь

  • - прирост массы растения или его отдельного органа в единицу времени...

    Словарь ботанических терминов

  • - существование двух обл. равновесия в популяции при неизменных условиях среды, возникающих в результате сильной зависимости свойств самой популяции от ее численности...

    Экологический словарь

  • - численность или плотность популяции на определенной территории, в определенной экологической...

    Экологический словарь

  • - специфическая скорость роста популяции в условиях стационарного и стабильного распределения возрастов - rmax. Часто максимальную величину r называют биотическим, или репродуктивным,...

    Экологический словарь

  • - скорость роста животных, определяемая по формуле И. И. Шмальгаузена и С. Броди: где ln - масса животного в конце опыта; lo - масса животного в начале опыта; tn-to - время опыта...

    Экологический словарь

  • - определяется по уравнению: где N - численность популяции; t - время; r - максимальная специфическая скорость увеличения популяции; K - емкость среды, или предельная плотность насыщения...

    Экологический словарь

  • - степени продолжительности перевозки грузов по железным дорогам...

    Справочный коммерческий словарь

  • - скорость изменения числа организмов r в зависимости от времени в данный момент. Определяется по формуле: ║ где dN - изменение числа организмов в данный момент времени dt...

    Экологический словарь

  • - мера мгновенной удельной скорости изменения размера популяции; выражается числом особей на единицу времени и на одну особь, т. е. имеет размерность 1/время...

    Экологический словарь

  • - способность популяции предотвращать потери, возникающие в случае, когда среда становится неблагоприятной. Термин предложил Р. Уиттекер...

    Экологический словарь

  • - скорость увеличения численности популяции за год. Определяется по формуле: , где R - чистая скорость размножения; Т - среднее время генерации...

    Экологический словарь

  • - : Ir=log R0/Tc, где R0 - скорость воспроизводства, во сколько раз увеличивается численность популяции за одну генерацию; Тс - средний возраст первого размножения или плодоношения...

    Экологический словарь

  • - параметр λ, скорость увеличения численности популяции в расчете на 1 особь и на единицу времени...

    Экологический словарь

  • - графическое изображение роста популяции. См. Логистическая кривая...

    Экологический словарь

  • - см. Скорость размножения чистая...

    Экологический словарь

"СКОРОСТЬ РОСТА ПОПУЛЯЦИИ" в книгах

14 Популяции

автора Барнетт Энтони

Растущие популяции

Из книги Род человеческий автора Барнетт Энтони

Растущие популяции Если мы рассмотрим теперь влияние рождаемости и смертности на численность населения, то обнаружим любопытную тенденцию: население земного шара постоянно увеличивается. При сохранении современных темпов роста к 1980 г. население Земли достигнет 4

Уменьшающиеся популяции?

Из книги Род человеческий автора Барнетт Энтони

Уменьшающиеся популяции? Несмотря на низкий процент смертности, популяции Западной Европы и британских доминионов почти не изменяются: понизившийся уровень рождаемости уравновешивает снижение смертности. Если бы не такое «равновесие», уровень жизни в этих странах не

Популяции будущего

Из книги Род человеческий автора Барнетт Энтони

Популяции будущего Каждую популяцию можно рассматривать как состояние в ряду изменений, зависящих от соотношения между собою рождаемости и смертности. Поэтому демографическая политика страны должна строиться с учетом состояния в данное время возможных изменений в

Глава 8. ПОПУЛЯЦИИ

Из книги Общая экология автора Чернова Нина Михайловна

Глава 8. ПОПУЛЯЦИИ 8.1. Понятие о популяции в экологии Популяцией в экологии называют группу особей одного вида, находящихся во взаимодействии между собой и совместно населяющих общую территорию.Слово «популяция» происходит от латинского «популюс» – народ, население.

8.5.6. Темпы роста популяции

Из книги Общая экология автора Чернова Нина Михайловна

РОСТ ПОПУЛЯЦИИ

Из книги Экология автора Митчелл Пол

РОСТ ПОПУЛЯЦИИ В каком-то из изданий было сказано, что если бы человеческая популяция продолжала расти с нынешней скоростью, то через 200 лет огромная масса людей устремилась бы в космос со скоростью света. Этого, конечно, не произойдет; это всего лишь шутка, показывающая,

14 Популяции

Из книги Род человеческий автора Барнетт Энтони

14 Популяции Плодитесь и размножайтесь, и наполняйте землю, и обладайте ею, и владычествуйте над рыбами морскими, и над птицами небесными, и над всяким животным, пресмыкающимся по земле. Бытие Хотя голод и болезни - эти извечные враги человечества - косили людей с

8.5.6. Темпы роста популяции

Из книги Общая экология автора Чернова Нина Михайловна

8.5.6. Темпы роста популяции Графики роста числа членов любой природной популяции в новых для нее условиях сильно отличаются от экспоненты. Кривая после подъема разной степени крутизны поворачивает параллельно горизонтальной оси, чем знаменует установление некоторой

Глава 27 Большие ожидания (роста) Пределы корпоративного роста

Из книги Больше, чем вы знаете. Необычный взгляд на мир финансов автора Мобуссин Майкл

Глава 27 Большие ожидания (роста) Пределы корпоративного роста В воздушных замках легко найти убежище. И строить их так легко. Генрик Ибсен. Строитель Сольнес Я слышу все больше прогнозов насчет высоких темпов роста прибыли в будущем. Кое-кто более сдержан в своих

1.6. Может ли скорость обмена информацией превышать скорость света?

Из книги Квантовая магия автора Доронин Сергей Иванович

1.6. Может ли скорость обмена информацией превышать скорость света? Довольно часто приходится слышать, что эксперименты по проверке неравенств Белла, опровергающие локальный реализм, подтверждают наличие сверхсветовых сигналов. Это говорит о том, что информация способна

Скорость роста толстолобика

Из книги Ловля карпа, леща, толстолобика, белого амура. Секреты и хитрости успешной рыбалки автора Сторожев Константин

Скорость роста толстолобика При благоприятном температурном режиме и хорошей кормовой базе толстолобики растут очень быстро. Сеголетка может весить до 1 кг. В возрасте 2 лет пестрый толстолобик достигает массы 2–2,5 кг, белый – 1,5–2 кг. Взрослый же толстолобик (5–6 лет и

Скорость тренировочного чтения должна в три раза превышать скорость обычного чтения

Из книги Скорочтение. Как запоминать больше, читая в 8 раз быстрее автора Камп Питер

Скорость тренировочного чтения должна в три раза превышать скорость обычного чтения Основное правило тренировок заключается в том, что если вы хотите читать с определенной скоростью, то вам нужно выполнять тренировочное чтение приблизительно в три раза быстрее. Так,

Параграф 29. Стимуляция роста юных спортсменов «программа роста»

Из книги С самого начала (путь тренера) автора Головихин Евгений Васильевич

Параграф 29. Стимуляция роста юных спортсменов «программа роста» В самом начале тренерского пути я обратил внимание на рослых и мощных спортсменов, которые обладали анатомическими способностями с рождения. Эти спортсмены сразу имели преимущество перед сверстниками. Они

51. Скорость истечения в сужающемся канале, массовая скорость перемещения потока

Из книги Теплотехника автора Бурханова Наталья

51. Скорость истечения в сужающемся канале, массовая скорость перемещения потока Скорость истечения в сужающемся каналеРассмотрим процесс адиабатного истечения вещества. Предположим, что рабочее тело с некоторым удельным объемом (v1) находится в резервуаре под

Если рождаемость в популяции превышает смертность, то популяция будет расти, если, конечно, изменения в результате иммиграции и эмиграции незначительны. Чтобы понять закономерности роста популяций, полезно вначале рассмотреть модель (см. гл. 2), описывающую рост популяции бактерий после посева их на свежую культуральную среду. В этой новой и благоприятной среде условия для роста популяции оптимальны и наблюдается экспоненциальный рост (см. рис. 2.7; см. также разд. 21.1.2). Кривая такого роста - это экспоненциальная , или логарифмическая кривая. Но, как сказано в разд. 2.2.4 и 21.1.2, в конце концов достигается такая точка, когда по нескольким причинам, в том числе из-за уменьшения пищевых ресурсов и накопления токсичных отходов метаболизма экспоненциальный рост становится невозможным. Он начинает замедляться так, что кривая роста приобретает сигмоидную (S-образную) форму, как показано на рис. 2.7 для бактерий и на рис. 21.1 для дрожжей. Такой тип роста называют зависимым от плотности, так как скорость роста зависит от плотности популяции, которая влияет на истощений пищевых ресурсов и накопление токсичных продуктов, а потому на рост. С увеличением плотности скорость роста популяции постепенно снижается до нуля, а кривая выходит на плато. При нулевом росте популяция стабильна, т. е. размеры ее не меняются (напомним, что отдельные организмы при этом могут расти и размножаться; нулевая скорость роста популяции означает лишь то, что скорость размножения, если оно происходит, уравновешена смертностью). Такая сигмоидная кривая роста получена для ряда одноклеточных и многоклеточных организмов, например для клеток водорослей в культуральной среде, для фитопланктона озер и океанов весной, для насекомых, таких, как мучные хрущаки или клещи, интродуцированные в новое местообитание с обильными запасами пищи, где нет хищников.

Кривая другого типа получается, когда экспоненциальный рост продолжается вплоть до внезапного падения плотности популяции в результате исчерпания ресурсов среды. Эту кривую называют "J-образной" или кривой типа "бум и крах". Такой рост не зависит от плотности, так как его регуляция не связана с плотностью популяции до самого момента катастрофы. Крах может происходить по тем же причинам, например из-за истощения пищевых ресурсов, которое в случае сигмоидной кривой роста заблаговременно оказывало регулирующее влияние на рост. Миграция или расселение, так же как и внезапное снижение скорости размножения, может способствовать уменьшению численности популяции. Расселение может быть связано с определенной стадией жизненного цикла, например с образованием семян. На рис. 12.33 показаны примеры того и другого типа. Для обоих типов характерна экспоненциальная фаза в начале роста.

Рассматривая вопрос об оптимальных размерах популяции в данной среде, важно учитывать поддерживающую емкость , или "кормовую продуктивность", этой среды. Чем выше поддерживающая емкость, тем больше максимальный размер популяции, который может существовать в данном местообитании неопределенно долгое время. Дальнейшему росту популяции будет препятствовать один или несколько лимитирующих факторов. Это зависит от доступности ресурсов для данного вида. Как показано на рис. 12.33, в случае J-образной кривой роста популяция внезапно выходит за пределы поддерживающей емкости среды. Эту величину обозначают символом К, который можно использовать также для обозначения максимальных размеров стабильной популяции в данных условиях. Рост, соответствующий сигмоидной и J-образной кривым, можно описать алгебраически с помощью простых дифференциальных уравнений (оба уравнения относятся к популяциям, в которых поколения полностью перекрываются, так что популяция изменяется непрерывно; это и позволяет использовать дифференциальные уравнения). Такие уравнения приведены в табл. 12.10, там же дается краткое объяснение.

dN = rN (K - N)
dt K

Если r положительно, численность популяции увеличивается экспоненциально

Если r отрицательно, численность популяции уменьшается экспоненциально

Отсюда быстые увеличения и падения численности популяции

где K - максимальное число организмов, которое может поддерживаться в данных условиях среды. Введение в уравнение K означет, что влияние среды на снижение роста численности до какого-то стационарного уровня отражено в расчете. K называют также поддерживающей емкостью среды

Скорость роста каждого организма не зависит от плотности популяции. Этот тип роста популяции иногда рассматривают как рост по сложным процентам

Размеры популяции не стабилизируются

Если N>K скорость роста отрицательна

Если K>N, скорость роста положительна, то величина популяции стремится к K = N, т. е. приводится в соответствие с поддерживающей емкостью среды

Когда K = N скорость роста популяции равна нулю

Размеры популяции остаются постоянными

Сигмоидная и J-образная кривые - это две модели роста популяции. При этом предполагается, что все организмы очень сходны между собой, имеют равную способность к размножению и равную вероятность погибнуть, так что скорость роста популяции в экспоненциальной фазе зависит только от ее численности и не ограничена условиями среды, которые остаются постоянными. Но в отношении природных популяций эти предположения часто неверны. Например, скорость роста популяции в естественном местообитании будет зависеть от климатических изменений, от снабжения пищей и от того, ограничено ли размножение определенным временем года. И все же модели роста популяций способствуют лучшему пониманию естественных популяций, и в случае надобности их можно усовершенствовать.

12.6.4. Стратегии популяций

В предыдущем разделе в уравнениях, описывающих рост популяции, были использованы символы r и К. Виды, которые быстро размножаются, имеют высокое значение r и называются r-видами. Это обычно "оппортунистические" виды - типичные пионерные виды нарушенных местообитаний. Такие местообитания называют r-отбирающими, так как они благоприятствуют росту численности r-видов.

Виды с относительно низким значением r называют К-видами. Скорость их размножения чувствительна к плотности популяции и остается близкой к уровню равновесия, определяемому величиной К. Они более характерны для поздних стадий сукцессии. Об этих двух типах видов говорят, что они используют соответственно r-стратегию и Х-стратегию. Хотя существует и целый спектр промежуточных стратегий, концепция двух стратегий находит важное применение в популяционной экологии и в экологии сообществ. Некоторые характерные особенности крайних r- и Х-стратегий суммированы в табл. 12.11.

Таблица 12.11. Характерные особенности r- и K-видов
r - Виды (виды - "оппортунисты") K - виды (с тенденцией к равновесию)
Размножаются быстро (высокая плодовитость, время генерации короткое), поэтому значение r (врожденная скорость роста популяции) высокое Размножаются медленно (низкая плодовитость, продолжительное время генерации), поэтому значение r низкое
Скорость размножения не зависит от плотности популяции Скорость размножения зависит от плотности популяции, быстро увеличивается, если плотность падает
Энергия и вещество распределяются между многими потомками Энергия и вещество концентрируются в немногих потомках; родители заботятся о потомстве
Размеры популяции некоторое время могут превышать К (поддерживающую емкость среды) Размеры популяции близки к равновесному уровню, определяемому К
Вид не всегда устойчив на данной территории Вид устойчив на данной территории
Расселяются широко и в больших количествах; у животных может мигрировать каждое поколение Расселяются медленно
Размножение идет с относительно большими затратами энергии и вещества Размножение идет с относительно малыми затратами энергии и вещества; большая часть энергии и вещества расходуется на нерепродуктивный (вегетативный) рост
Малые размеры особей Крупные размеры особей; у растений деревянистые стебли и большие корни
Малая продолжительность жизни особи Большая продолжительность жизни особи
Могут поселяться на открытом грунте Плохо приспособлены к росту на открытых местах
Местообитания сохраняются недолго (например, зрелые фрукты для личинок Drosophila) Местообитания устойчивые и сохраняются долго (например, лес для обезьян)
Слабые конкуренты (способность к конкуренции не требуется) Сильные конкуренты
Защитные приспособления развиты сравнительно слабо Хорошие защитные механизмы
Не становятся доминантами Могут становиться доминантами
Лучше приспособлены к изменениям окружающей среды (менее специализированные) Менее устойчивы к изменениям условий среды (высокая специализация для жизни в устойчивых местообитаниях)
Примеры Примеры
Бактерии Крупные тропические бабочки
Парамеция Кондор (крупная хищная птица)
Тли Альбатрос
Мучные хрущаки Человек
Однолетние растения Деревья

По существу, эти две стратегии представляют два различных решения одной задачи - задачи длительного выживания вида. Виды с r-стратегией быстрее заселяют нарушенные местообитания (характерные для ранних стадий сукцессий, такие, как обнаженная горная порода, лесные вырубки, выгоревшие участки), чем виды с Х-стратегией, так как они легче распространяются и быстрее размножаются. Виды с Х-стратегией более конкурентоспособны, и в конце концов они вытесняют r-виды, которые тем временем перемещаются в другие нарушенные местообитания. Высокий репродуктивный потенциал r-видов означает, что, оставшись в каком-либо местообитании, они быстро использовали бы доступные ресурсы и превысили поддерживающую емкость среды, а затем популяция погибла бы. Другими словами, для них характерна J-образная кривая роста с быстрым падением численности популяции в конце (рис. 12.33, Б). Виды с r-стратегией занимают данное местообитание лишь в течение жизни одного или, самое большее, нескольких поколений. Затем они переселяются на новое место. Отдельные популяции могут регулярно вымирать, но вид при этом перемещается и выживает. В целом эту стратегию можно охарактеризовать как стратегию "борьбы или бегства".

Как отмечает Саутвуд * , хотя для самых мелких организмов, таких, как бактерии и насекомые, характерна r-стратегия, а для самых крупных, таких, как многие позвоночные и деревья,- Х-стратегия, большинству организмов свойственны стратегии промежуточных типов. Даже в пределах таких групп, как насекомые и позвоночные, можно обнаружить различные стратегии. Среди птиц, например, лазоревка (оппортунистический обитатель лиственных лесов) проявляет резко выраженную r-стратегию. Будучи маленькой, она тем не менее откладывает сравнительно много яиц и способна более чем вдвое увеличить свою численность за один сезон. У одного из самых мелких попугаев - волнистого попугайчика, кочующего по Центральной Австралии,- очень небольшое время генерации, поэтому этот вид тоже можно отнести к видам с r-стратегией. Но существуют и птицы с резко выраженной К-стратегией, например кондор и альбатрос. Размах крыльев у них превышает три метра, но они откладывают только по одному яйцу каждые два года. Альбатрос позднее всех других птиц достигает половой зрелости (к 9-11 годам).

* (Т. R. Е. Southwood, Bionomic Strategies and Population Parameters, in: Theoretical Ecology. Principles and Applications, ed. R.M. May (1976), Blackwell. )

Стабильные местообитания способствуют отбору на К-стратегию. Хорошим примером служат мясные (падальные) мухи, личинки которых питаются падалью. У одного вида (Blaseoxiphia fletcheri ) ли-чинки живут в жидкости кувшинчатых листьев насекомоядного растения саррацении - более долговечном местообитании, чем падаль, которую используют другие виды. Самка этой мухи производит всего лишь 11 личинок (тогда как самки родственных видов - от 50 до 170); каждая такая личинка имеет сравнительно крупные размеры.

12.19. Изучите рис. 12.34, где представлена доля цветков в общей биомассе на корню у трех видов золотарника (Solidago) на востоке США. На рисунке указано, где растет каждый из этих видов - в лесу или на открытых сухих местах (в нарушенных местообитаниях на ранних стадиях сукцессии):

а. Какие виды расходуют на размножение больше биомассы?

б. Какие виды в большей степени подвержены г-отбору?

в. Какие виды в большей степени подвержены К-отбору?

г. Какой общий вывод можно сделать, сравнив интенсивность цветения S. speciosa в лесу и на открытых сухих участках?

Чтобы получить полную картину динамики численности той или иной популяции, а также рассчитать скорость ее роста, наряду с данными о том, как распределяется по разным возрастам смертность, необходимо знать также, в каком возрасте особи начинают производить потомство и какова средняя плодовитость особей разного возраста. Поэтому в таблицы для расчета скорости роста популяции к графам, характеризующим выживаемость, добавляют графу, в которой записывают среднее число потомков, появившихся в течение данного возрастного интервала в расчете на одну особь родительского поколения. Для простоты представим себе гипотетический пример животного, начинающего размножаться на третьем году жизни и живущего, как правило, не более 10 лет. В первой графе табл. 4 запишем возраст (х), во второй - долю особей, доживших до данного возраста от начальной численности когорты (l х), в третьей-среднее число потомков, появившихся на свет у особей данного возраста в расчете на одну родительскую особь (m х), в четвертой-произведение доли доживших особей на среднюю их плодовитость (l x m x). Сумма последних величин по всему столбцу есть величина, называемая чистой скоростью воспроизводства. Чистая скорость воспроизводства показывает, во сколько раз увеличивается численность популяции за одно поколение. Если R 0 = 1, то популяция стационарна-численность ее сохраняется постоянной, поскольку каждое последующее поколение точно замещает предыдущее. В демографии обычно составляют отдельные таблицы для женщин (тогда в графе m х - среднее число дочерей, родившихся от матерей денного возраста) и для мужчин (в графе т х - среднее число сыновей, появившихся у отцов данного возраста).

Величина R 0 сильно варьируется в зависимости от вида организмов, а также условий его существования. Так, например, для содержавшейся в хороших лабораторных условиях популяции пашенной полевки Microtus agrestis величина R 0 оказалась равной 5,90, а у лабораторной популяции рисового долгоносика Саlandra oryzae - 113,48. Таким образом, за одно поколение в благоприятных условиях популяция пашенной полевки может увеличить свою численность примерно в 6 раз, а популяция рисового долгоносика - в 113 раз.



x l x m x l x m x
1,00
0,60
0,50
0,45 2,0 0,90
0,40 2,5 1,0
0,37 1,5 0,55
0,33 1,0 0,33
0,20 0,5 0,10
0,10 0,1 0,01
0,05
0,00
Σl x m x = 2.89

Уже из самого способа расчета R 0 ясно, что величина эта определяется комбинацией выживаемости (l x -кривой) и плодовитости (m x -кривой). Перемножая значения l х и m x для каждого возраста х, мы тем самым определяем площадь под кривой l х m х. Так же как и l х, величина m x может сильно меняться в зависимости от вида организмов и условий его существования.

Использовать показатель R 0 при сравнении видов, характеризующихся разной продолжительностью жизни, не всегда удобно. Гораздо лучше употреблять в таких случаях величину r показатель специфической скорости роста популяции. Чтобы установить связь между этими величинами, представим себе, что в течение промежутка времени, равного длительности одного поколения (= времени генерации) Т, популяция растет экспоненциально. Тогда численность популяции к концу временного интервала Т будет равной N T = N 0 e rT .. Из последнего уравнения следует, что N T /N 0 = e rT . Но ведь N T /N 0 есть не что иное, как отношение численности особей в двух следующих друг за другом поколениях, или, другими словами, величина R 0 - Переписав это уравнение в несколько иной форме: R 0 = e rT , мы можем определить из него и величину r по формуле r = lnR 0 /T .

Приведенный способ оценки показателя r точен настолько, насколько точно определена длительность поколения T . В некоторых случаях вопрос о том, что такое длительность поколения, решается достаточно просто. Так, для некоторых лососевых рыб, например горбуши (Oncorhynchus gorbuscha) или нерки (Опсоrhynchus nerka ), мечущих икру один раз в конце жизни и после того погибающих, длительность поколения - это, очевидно, время от откладки икры (или выклева из икры личинок) до размножения выросших из этих икринок (личинок) особей. Подобным образом раз в конце жизни происходит размножение у многих насекомых (достаточно вспомнить поденок) и ряда видов растений. Однако у многих животных и растений период размножения растянут во времени, причем в пределах того возраста, когда размножение возможно, среднее число потомков на родительскую особь меняется. В этом случае величину длительности поколения приближенно можно рассчитать следующим образом:

Смысл подобного способа расчета легко уяснить, обратившись к механической модели (Dublin, Lotka, 1925), иллюстрирующей реальный пример из человеческой популяции. Представим себе шкалу возраста матери (рис. 25) в виде горизонтальной планки, установленной как балансир на одной опоре в центре (по типу качелей из доски, положенной на бревно). Начало отсчета (момент рождения матери) соответствует точке опоры, от которой идут симметричные шкалы влево и вправо по плечам балансира. На правое плечо нанесена гистограмма, показывающая число дочерей, родившихся у матерей данного возраста. Исходная выборка (а это реальные данные по демографии США в 1920 г.) составляет 100000 матерей, а число их дочерей-116760. Чтобы уравновесить число дочерей (точнее, массу гистограммы) по левому плечу передвигается груз, равный массе гистограммы на правом плече. В приведенном примере равновесие было достигнуто, когда груз установлен на отметку 28,5 лет. Именно на этот возраст матери приходилось среднее для всей популяции рождение «среднего» ребенка (точнее, девочки) в США в 1920 г.

Поскольку скорость роста популяции находится в обратной зависимости от длительности поколения r = lnR 0 /T , очевидно, чем раньше происходит размножение организмов, тем больше скорость роста популяции. Поясним это на воображаемом примере двух человеческих популяций, растущих по экспоненциальному закону. Предположим, что в первой популяции у каждой женщины в среднем по 5 детей, причем первый ребенок появлялся у них в 18 лет, а затем каждый год рождалось по одному ребенку (последний в 22 года). Предположим, что во второй популяции у каждой женщины в среднем по 10 детей, но появлялись на свет они позже, когда матери было от 30 до 39 лет (как и в предыдущем случае, в год по ребенку). Сначала может показаться, что вторая популяция растет в два раза быстрее первой. Но не будем торопиться с выводами и подсчитаем специфическую скорость роста r. Предположим, что девочки составляют половину всех родившихся детей. Тогда число девочек, приходящихся на одну мать, будет в первом случае 2,5, а во втором - 5. Напомним, что отношение численности дочернего поколения к численности материнского поколения есть не что иное, как R 0 - чистая скорость. воспроизводства. Тогда для первой популяции R 0 = 2,5, а для второй R 0 = 5. Длительность поколения Т в первой популяции будет составлять 20 лет, а во второй - 34,5 года. Соответственно значение г для первой популяции будет r 1 = ln2.5/20 = 046 , а для второй r 2 = ln5/34.5 = 0,047.

Полученные величины практически одинаковы. Иными словами, женщины, родившие в возрасте от 18 до 22 лет 5 детей, вносят примерно такой же вклад в увеличение численности популяции, как и женщины, родившие в возрасте от 30 до 39 лет по 10 детей. Конечно, эти рассуждения справедливы только в том случае, если в обеих популяциях сохранится то же распределение рождаемости по возрастам, т. е. девочки, рожденные более молодыми матерями, сами начнут рожать с 18 лет, а те, что родились от матерей 30-39 лет, - только с 30 лет.

Из приведенного выше примера ясно, сколь важное значение g демографической политике любого государства имеют законы, ограничивающие минимальный допустимый возраст вступления в брак, а также другие мероприятия, поощряющие деторождение только в определенном возрасте.

У многих животных возраст достижения половозрелости и. возраст начала размножения могут сильно меняться в зависимости от конкретных условий существования. В менее благоприятных условиях размножение наступает позже, и, таким образом, скорость роста популяций снижается. Так, например, у полевки-экономки (Microtus oeconomus), численность которой регулярно колеблется, половозрелость может наступать на 20-25-й день в период нарастания численности или только на 9-11-й месяц в гиды пиковой численности и в период депрессии. У планктонного ветвистоусого рачка Diaphanosoma brachyurum, обычного в летнее время вида в планктоне озер умеренной зоны, при обилии пищи откладка самками партеногенетических яиц наблюдается на 5-6-й день после рождения, тогда как при нехватке пищи Размножение начинается только через 20-30 дней(при этом добивает до данного возраста только небольшая часть популяции).

Важнейшая особенность популяции, растущей по экспоненциальному закону, - это стабильная возрастная структура, т. е. постоянное соотношение численностей разных возрастных групп. Справедливо и обратное утверждение: если в популяции поддерживается постоянное соотношение разных возрастных групп (а это соотношение в свою очередь есть следствие не меняющихся во времени распределений l х и т х), то такая популяция растет экспоненциально. Конечно, в популяциях, растущих экспоненциально, но с разной скоростью, возрастная структура различна: чем быстрее растет численность популяции, тем больше доля молодых особей (рис. 26). Как частный случай экспоненциального роста можно рассматривать стационарную популяцию, не меняющую свою численность во времени (т. е. r = 0). В такой популяции также устанавливается стабильная возрастная структура.

Если наблюдать за возрастной структурой популяции какого-нибудь вида, продолжительность жизни которого по крайней мере несколько лет, можно заметить, как когорта молодых особей, появившихся на свет в благоприятный для размножения и (или) для выживания ранних стадий развития год, будучи многочисленнее других когорт, переходит из одной возрастной группы в другую. Такие «урожайные» поколения хорошо прослеживаются, например, в популяциях рыб.

Рис. 27. Возрастная структура населения Франции по данным на 1 января 1967 г. (слева - мужчины, справа - женщины). Пониженная численность мужского населения рождения 83-90-х гг. прошлого века - это результат массовой гибели во время первой мировой войны; «талия», приходящаяся на 1916 г. рождения, - это результат резкого снижения рождаемости в годы первой мировой войны; вторая «талия», приходящаяся на 40-е гг. рождения, - это результат снижения рождаемости в годы второй мировой войны; увеличение численности людей рождения 19-!6-1949 гг. - результат подъема рождаемости после массовой демобилизации. Непосредственные потери людей в годы второй мировой войны отражены прежде всего сокращением численности мужчин 1906-1926 гг. рождения (по Shrvock еt al., 1976; из Begon et al., 1986)


В возрастной структуре населения европейских стран мощный след оставили две мировые войны. Например, на гистограмме возрастного распределения населения Франции в 1967 г. (рис. 27) хорошо видны две «талии»: верхняя-это результат снижения рождаемости в годы первой мировой войны, а нижняя-результат снижения рождаемости в годы второй мировой войны. Каждый раз после окончания войны наблюдался подъем рождаемости.

Любая популяция теоретически способна к неограниченному росту численности, если ее не лимитируют факторы внешней среды. В таком гипотетическом случае скорость роста популяции будет зависеть только от величины биотического потенциала, свойственного виду. Понятие биотического потенциала введено в экологию в 1928 г. Р.Чепменом. Этот показатель отражает теоретический максимум потомков от одной пары (или одной особи) за единицу времени, например за год или за весь жизненный цикл.

Динамика численности популяций складывается при взаимодействии основных популяционно-динамических процессов: 1) рождаемости, 2) смертности, 3) скорости роста, 4) иммиграции новых особей из других популяций, 5) эмиграции некоторых особей за пределы ареала данной популяции.

Рождаемость характеризует частоту появления новых особей. Под рождаемостью понимают количество особей (яиц, семян, эмбрионов), производимых в единицу времени в расчете на одну самку. Близкое к приведенному определение приводится А. М. Гиляровым: «рождаемость определяют как число особей (яиц, семян и т. д.), родившихся (отложенных, продуцированных) в популяции за некоторой промежуток времени». Различают максимальную (абсолютную, физиологическую, предельно-возможную) рождаемость и реализуемую (экологическую) рождаемость, или просто рождаемость.

Максимальная рождаемость – это образование теоретически максимально возможного количества новых особей в идеальных условиях, когда отсутствуют лимитирующие факторы и размножение ограничивается лишь физиологическими факторами. У каждой данной популяции эта величина постоянная, она характеризует динамическую, эволюционно приобретенную силу вида. Реализуемая рождаемость – это увеличение популяции за счет появления на свет новых особей при фактических, реальных условиях среды. Данная величина может варьировать в зависимости от физических, химических и прочих условий среды.

Показатель смертности характеризует гибель особей в популяциях. По определению, смертность – это количество особей, умирающих в единицу времени в расчете на особь в популяции. Учитываются все погибшие особи независимо от причины смертности (старость, элиминация хищниками, болезнями и т. д.) Существует некая теоретическая максимальная смертность – постоянная величина, которая характеризует гибель особей в идеальных условиях, когда популяция не подвергается воздействию лимитирующих факторов. Практически более важна реализуемая (экологическая) смертность, т. е. величина, которая подобно экологической рождаемости, зависит от реальных условий биотической и абиотической среды.

Представляет интерес величина, связанная со смертностью, обратная ей – выживаемость, т. е. число или доля выживших особей.

Разность между рождаемостью и смертностью есть некий результирующий параметр, который определяет реальную динамику численности у данной популяции. Популяция может находиться в состоянии динамического равновесия, если естественная убыль особей равна их возобновлению. Существенно то, что антропические воздействия на популяцию могут изменять как рождаемость, так и смертность (например, увеличивать смертность особей данного вида).

Величина прироста популяции за единицу времени в расчете на одну особь представляет скорость роста популяции. По мере роста популяции происходит снижение доступных каждой особи ресурсов среды. При истощении ресурсов рост популяции тормозится и в конце концов прекращается. Популяции разных видов обладают удивительной способностью к быстрому росту численности. Этот вопрос рассматривали Аристотель (4 в. до н.э.), Макиавелли (около 1525 г.), позднее Бюффон (1751 г.). Ч. Дарвин обратил внимание на многочисленные случаи поразительно быстрого размножения некоторых животных в природном состоянии, когда условия особенно благоприятствовали. Он распространил идею геометрического роста, когда численность популяции растет в геометрической прогрессии (в этом случае график увеличения числа особей в ряде поколений представляет собой экспоненциальную, или логарифмическую, кривую) на все виды животных и растений, положив постулат о высоком репродуктивном потенциале видов в основу своей теории естественного отбора.

Заслуживает внимания рост народонаселения в глобальном масштабе. В ранние исторические времена прирост населения за поколение (20 лет) составлял 1,2%, в 17 в. он повысился до 7,2%, к 1930 г. достиг – 36%, причем в наше время нет признаков того, что кривая роста приближается к какому-то уровню насыщения. Поскольку с увеличением числа людей на нашей планете также увеличивается потребление продуктов питания, использование естественных источников сырья, загрязнение среды обитания и т. д., все изменения в динамике численности человечества обусловливают вышеназванные явления. Ограничение роста населения является важным шансом выживания человечества (Г. А. Галковская, 2001).

Кроме рассмотренных характеристик – рождаемости, смертности, скорости роста на величину популяцию влияют эмиграция, иммиграция и общая миграция.

Миграция – это особый случай перемещения особей, когда почти вся популяция на время уходит из определенного района. Сезонные или суточные миграции позволяют организмам использовать оптимальные условия среды в таких местах, где они не могли бы жить постоянно. Перебираясь с места на место вслед за перемещением оптимальных условий, такие виды могут сохранять высокую активность, поддерживать большую плотность популяции и в те периоды, когда немигрирующие виды переходят в неактивное состояние (в состояние диапаузы или зимней спячки).

В природе действуют другие факторы, влияющие на динамику численности популяций. Связано это со следующими причинами. Для некоторых видов решающее значение имеют физические факторы. Численность особей в популяциях могут лимитировать такие факторы, как нехватка природных ресурсов (например, пищи или мест, пригодных для размножения), недоступность этих ресурсов и недостаток времени для размножения (короткий влажный сезон, короткий день, например в Арктике).

Из внутренних факторов на величину популяции могут оказывать влияние различные физиологические или поведенческие факторы, а иногда те и другие одновременно. Если, например, плотность популяции какого-нибудь грызуна чрезмерно возрастает, то животные чаще встречаются между собой. Возникают драки, условия жизни в целом становятся более напряженными («стрессовыми»), и это ведет к увеличению надпочечников; связанное с этим нарушение гормонального баланса отрицательно сказывается на спаривании и размножении; кроме того, при скученности возрастает смертность.

«Волны жизни» резко осложняют планирование эксплуатации данной популяции, поскольку ежегодное изъятие (отстрел, промысел) одного и того же числа особей может означать, что в один год будет изъято, скажем, лишь 5% особей, а в другой год, когда численность популяции упадет в 10 раз, – 50% особей от существующего состава популяции. Кроме того, колебания численности призывают человека увеличить минимальную теоретически допустимую численность популяции.

Популяции животных, растений, грибов и микроорганизмов обладают способностью к естественному регулированию численности, то есть при более или менее значительных колебаниях они остаются в состоянии динамического равновесия, на каком-то уровне между верхним и нижним пределами. Это обеспечивается действием специфических приспособительных механизмов, основанных на том, что поступление энергии, необходимой для выживания популяции, не превышает некоторого уровня и обеспечивает, таким образом, размеры данной популяции. Способность популяции поддерживать устойчивость благодаря способности к саморегулированию через собственные регулирующие механизмы называется гомеостазом популяции. Так, рост численности популяции приводит к истощению запасов пищи, за которым следует снижение рождаемости организмов, увеличение их смертности (отрицательные связи), а, следовательно, и снижение численности. Последнее, в свою очередь, увеличивает запасы пищи, что вызывает рост рождаемости и численности популяции (положительные связи). Равновесное состояние популяции (состояние динамического равновесия) является кратковременным и достигается за счет быстрого чередования положительных и отрицательных обратных связей.

Для оптимизации отношений человека с природой важно учитывать численность популяции, принимать во внимание то, что на численность популяции может повлиять истощение нужных ей ресурсов из-за сокращения кормовой базы, конкуренция со стороны домашних животных, вытаптывание почвы и ухудшение ее аэрации, снижение кислорода в воде при загрязнении и евтрофировании. Человек может искусственно регулировать численность популяций, например, животных путем запрещения охоты или ограничения ее сроков на некоторые виды, ввода лицензий. Это уже дало положительные результаты – предотвратило от истребления ряд видов, в частности, лося, бобра, зубра. Ведя борьбу с вредителями сельского и лесного хозяйств, опасными для жизни видами, человек ограничивает численность их популяций.

В целом, численность популяции, скорость ее роста (в более общем смысле – скорость ее изменения, динамика численности) являются весьма лабильными параметрами, высокочувствительными к воздействию абиотических, биотических, антропических факторов. Поэтому человек должен хорошо представлять все особенности той популяции, которая эксплуатируется, чтобы обеспечить воспроизводство, стабильное длительное ее существование. Сложность этой задачи увеличивается в силу многочисленных связей между популяциями разных видов, населяющих одну территорию.