Зонная теория френеля. Принцип Гюйгенса – Френеля

Для нахождения результата интерференции вторичных волн Френель предложил метод разбиения волнового фронта на зоны, называемые зонами Френеля. 

Предположим, что источник света S (рис. 17.18) точечный и монохроматический, а среда, в которой распространяется свет, изотропная. Волновой фронт в произвольный момент времени будет иметь форму сферы радиусом \(~r=ct.\) Каждая точка на этой сферической поверхности является вторичным источником волн. Колебания во всех точках волновой поверхности происходят с одинаковой часто-той и в одинаковой фазе. Следовательно, все эти вторичные источники когерентны. Для нахождения амплитуды колебаний в точке М необходимо произвести сложение когерентных колебаний от всех вторичных источников на волновой поверхности.

Френель разбил волновую поверхность Ф на кольцевые зоны такого размера, чтобы расстояния от краев зоны до точки М отличались на \(\frac{\lambda}{2},\) т.е. \(P_1M - P_0M = P_2M - P_1M = \frac{\lambda}{2}.\)

Так как разность хода от двух соседних зон равна \(\frac{\lambda}{2},\) то колебания от них приходят в точку М в противоположных фазах и при наложении эти колебания будут взаимно ослаблять друг друга. Поэтому амплитуда результирующего светового колебания в точке М будет равна

\(A = A_1 - A_2 + A_3 - A_4 + \ldots \pm A_m,\) (17.5)

где \(A_1, A_2, \ldots , A_m,\) - амплитуды колебаний, возбуждаемых 1-й, 2-й, .., m-й зонами.

Френель предположил также, что действие отдельных зон в точке М зависит от направления распростронения (от угла \(\varphi_m\) (рис. 17.19) между нормалью \(~\vec n \) к поверхности зоны и направлением на точку М). С увеличением \(\varphi_m\) действие зон убывает и при углах \(\varphi_m \ge 90^\circ\) амплитуда возбуждаемых вторичных волн равна 0. Кроме того, интенсивность излучения в направлении точки М уменьшается с ростом и вследствие увеличения расстояния от зоны до точки М Учитывая оба фактора, можно записать, что

\(A_1 >A_2 >A_3 > \cdots\)

1. Объяснение прямолинейности распространения света.

Общее число зон Френеля, вмещающихся на полусфере радиусом SP 0 , равным расстоянию от источника света S до фронта волны, очень велико. Поэтому в первом приближении можно считать, что амплитуда колебаний А m от некоторой m-й зоны равна среднему арифметическому от амплитуд, примыкающих к ней зон, т.е.

\(A_m = \frac{ A_{m-1} + A_{m+1} }{2}.\)

Тогда выражение (17.5) можно записать в виде

\(A = \frac{A_1}{2} + \Bigr(\frac{A_1}{2} - A_2 + \frac{A_3}{2} \Bigl) + \Bigr(\frac{A_3}{2} - A_4 + \frac{A_5}{2} \Bigl) + \ldots \pm \frac{A_m}{2}.\)

Так как выражения, стоящие в скобках, равны 0, а \(\frac{A_m}{2}\) ничтожно мала, то

\(A = \frac{A_1}{2} \pm \frac{A_m}{2} \approx \frac{A_1}{2}.\) (17.6)

Таким образом, амплитуда колебаний, создаваемая в произвольной точке М сферической волновой поверхностью, равна половине амплитуды, создаваемой одной центральной зоной. Из рисунка 17.19 радиус г m-ной зоны зоны Френеля \(r_m = \sqrt{\Bigr(b + \frac{m \lambda}{2} \Bigl)^2 - (b + h_m)^2}.\) Так как \(~h_m \ll b\) и длина волны света мала, то \(r_m \approx \sqrt{\Bigr(b + \frac{m \lambda}{2} \Bigl)^2 - b^2} = \sqrt{mb \lambda + \frac{m^2 \lambda^2}{4}} \approx \sqrt{mb\lambda}.\) Значит, радиус первой Учитывая, что \(~\lambda\) длина волны может иметь значения от 300 до 860 нм, получим \(~r_1 \ll b.\) Следовательно, распространение света от S к М происходит так, будто световой поток распространяется внутри очень узкого канала вдоль SM, диаметр которого меньше радиуса первой зоны Френеля, т.е. прямолинейно.

2. Дифракция на круглом отверстии.

Сферическая волна, распространяющаяся из точечного источника S, встречает на своем пути экран с круглым отверстием (рис. 17.20). Вид дифракционной картины зависит от числа зон Френеля, укладывающихся в отверстии. Согласно (17.5) и (17.6) в точке B амплитуда результирующего колебания 

\(A = \frac{A_1}{2} \pm \frac{A_m}{2},\)

где знак "плюс" соответствует нечетным m, а знак "минус" - четным m.

Когда отверстие открывает нечетное число зон Френеля, то амплитуда колебаний в точке В будет больше, чем при отсутствии экрана. Если в отверстии укладывается одна зона Френеля, то в точке В амплитуда \(~A = A_1\) т.е. вдвое больше, чем в отсутствие непрозрачного экрана. Если в отверстии укладываются две зоны Френеля, то их действие в точке В практически уничтожает друг друга из-за интерференции. Таким образом, дифракционная картина от круглого отверстия вблизи точки В будет иметь вид чередующихся темных и светлых колец с центрами в точке В (если m - четное, то в центре темное кольцо, если m - нечетное - светлое кольцо), причем интенсивность максимумов убывает с расстоянием от центра картины.

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - С. 514-517.

Сферическая волна, распространяющаяся от точечного источника S, встречает на своем пути диск. Дифракционную картину наблюдаем на экране Э в окрестности точки Р, лежащей на линии, соединяющей S с центром диска.

В данном случае закрытый диском участок фронта волны надо исключить из рассмотрения и зоны Френеля строить, начиная с краев диска.

Пусть диск закрывает m первых зон Френеля. Тогда амплитуда результатирующего колебания в точке Р равна

т.к. выражения в скобках равны нулю. Следовательно, в точке Р всегда наблюдается интерфереционный max, соответствующий половине действия первой открытой зоны Френеля. Экспериментально светлое пятно (пятно Пуассона) впервые получил Ораго. Как и в случае дифракции на круглом отверстии, центральный max окружен концетрическими с ним темными и светлыми кольцами, и интенсивность максимумов убывает с расстоянием от центра картины.

С увеличением радиуса диска первая открытая зона Френеля удаляется от точки Р и, что особенно существенно, увеличивается угол α между нормалью к поверхности этой зоны и направлением на точку Р. В результате интенсивность центрального максимума с увеличением размеров диска уменьшается. При больших размерах диска (его радиус во много раз больше радиуса закрытой им центральной зоны Френеля), за ним наблюдается обычная тень, вблизи границ которой имеет место весьма слабая дифракционная картина. В данном случае дифракцией света можно пренебречь и считать свет распространяющимся прямолинейно.

Дифракция на круглом отверстии и на диске впервые была рассмотрена Френелем с использованием метода Гюйгенса-Френеля и основанного на нем метода зон Френеля.

Недостатки теории Френеля:

1.В теории Френеля предполагается, что непрозрачные части экранов не являются источниками вторичных волн а также, что амплитуды и начальные фазы колебаний в точке поверхности Ф, не закрытых непрозрачными экранами, такие же, как и в отсутствие последних. Это неверно, т.к. граничные условия на поверхности экрана зависят от его материала. Правда, это сказывается лишь на малых, порядка λ, расстояниях от экрана. На отверстиях и экранах, размеры которых значительно больше λ, теория Френеля хорошо согласуется с опытом.

2. Теория Френеля дает неправильное значение фазы результатирующей волны. Например, при графическом сложении векторов амплитуд колебаний, возбужденных в точке Р всеми малыми элементами открытого фронта волны, оказывается, что фаза результатирующего вектора А отличается на от начальной фазы колебаний в точке Р, происходящих в действительности.

3. Базируется на чисто качественном постулируемом допущении о зависимости амплитуды вторичных волн от угла α.

Теория Френеля дает лишь приближенный расчетный прием. Математическое обоснование и уточнение метода Гюйгенса-Френеля было сделано в 1882 году Кирхгофом.

§ Дифракция Фраунгофера.

Явление дифракции принято классифицировать в зависимости от расстояний источника и точки наблюдения (экрана) от препятствия, поставленного на пути распространения света. Дифракция сферических волн, картина распределения интенсивности которой наблюдается на конечном расстоянии от препятствия, вызвавшего дифракцию, называется дифракцией Френеля. Если же расстояния от препятствия до источника и точки наблюдения очень велики (бесконечно велики), говорят о дифракции Фраунгофера.

Между френелевой и фраунгоферовой дифракциями нет принципиального различия и резкой границы. Одна непрерывно переходит в другую. Если для точки наблюдения, лежащей на оси системы, в отверстии препятствия, например, укладывается заметная часть первой зоны или несколько зон Френеля, то дифракция считается френелевой. Если в отверстии укладывается незначительная часть первой зоны Френеля, то дифракция будет фраунгоферовой.


Согласно принципу Гюйгенса-Френеля световое поле в некоторой точке пространства является результатом интерференции вторичных источников. Френель предложил оригинальный и чрезвычайно наглядный метод группировки вторичных источников. Этот метод позволяет приближенным способом рассчитывать дифракционные картины, и носит название метода зон Френеля.

Зоны Френеля вводятся следующим образом. Рассмотрим распространение световой волны из точки L в точку наблюдения P. Сферический волновой фронт, исходящий из точки L разобьем концентрическими сферами с центром в точке P и с радиусами z1 + λ/2; z1 + 2 λ/2; z1 + 3 λ/2…

Полученные кольцевые зоны и носят название зон Френеля.

Смысл разбиения поверхности на зоны Френеля состоит в том, что разность фаз элементарных вторичных волн, приходящих в точку наблюдения от данной зоны, не превышает π. Сложение таких волн приводит к их взаимному усилению. Поэтому каждую зону Френеля можно рассматривать как источник вторичных волн, имеющих определенную фазу. Две соседние зоны Френеля действуют как источники, колеблющиеся в противофазе, т.е вторичные волны, распространяющиеся из соседних зон в точке наблюдения будут гасить друг друга. Чтобы найти освещенность в точке наблюдения P нужно просуммировать напряженности электрических полей от всех вторичных источников, приходящих в данную точку. Результат сложения волн зависит от амплитуды и разности фаз. Так как разность фаз между соседними зонами равна P, то можно перейти к суммированию амплитуд.

Амплитуда вторичной сферической волны пропорциональна площади элементарного участка, испускающего эту волну (т.е пропорциональна площади зоны Френеля). Кроме того, она убывает с увеличением расстояния z1 от источника вторичной волны до точки наблюдения по закону 1 / z1 и с ростом угла φ между нормалью к элементарному участку, испускающего волну, и направлением распространения волны.

19.Дифракция Френеля на круглом отверстии и диске.

На круглом отверстии:

Сферическая волна, распространяющаяся из точечного источника монохроматического света S, встречает на своем пути экран с круглым отверстием, диаметр которого d=BC. Пусть Ф - фронт волны, который является частью поверхности сферы. Разобьем поверхность фронта на зоны Френеля так, что волны от соседних зон приходят в точку наблюдения М в противофазе. Тогда амплитуда результирующей волны в точке М.

А=А1-А2+А3-А4+-Аm, где Аi - амплитуда волны, пришедшей от i-ой зоны Френеля. Перед Аm берется знак плюс, если m - нечетное, и минус, если m (число зон Френеля)- четное.

На диске: пусть диск перекрывает 1-ое m зон, тогда амплитуда результирующей волны: А=А m +1 -А m +2 +А m +3 +…=А m +1 /2 и тогда, на экране всегда в центре будет наблюдаться максимум светлое пятно, вверх и вниз будут располагаться менее интенсивные максимумы более высоких порядков.

20.Дифракция Фраунгофера на бесконечно длинной щели. Дифракция Фраунгофера, имеющая большое практическое значение, наблюдается в том случае, когда источник света и точка наблюдения бесконечно удалены от препятствия, вызвавшего дифракцию. Чтобы этот тип дифракции осуществить, достаточно точечный источник света поместить в фокусе собирающей линзы, а дифракционную картину исследовать в фокальной плоскости второй собирающей линзы, установленной за препятствием. Рассмотрим дифракцию Фраунгофера от бесконечно длинной. Пусть плоская монохроматическая световая волна падает нормально плоскости узкой щели шириной а .Оптическая разность хода между крайними лучами , идущими от щели в произвольном направлении

где F - основание перпендикуляра, опущенного из точки на луч .

разобьем эту пов-ть на зоны Френеля,тогда на отрезок FN будет укладыв. число зон Френеля .Если открыто четное число зон Френ.,то волны от этих зон компенсируют друг друга и в выбранной точке будет наблюдаться минимум.

Это условие минимума на ДК.m – порядок минимума.

Вычисление интеграла в пункте в общем случае - трудная задача.

В случаях, если в задаче существует симметрия, амплитуду результирующего колебания можно найти методом зон Френеля, не прибегая к вычислению интеграла.

Пусть от источника света S распространяется монохроматическая сферическая волна, P - точка наблюдения. Через точку O проходит сферическая волновая поверхность. Она симметрична относительно прямой SP. Разобьем эту поверхность на кольцевые зоны I, II, III и т.д. так, чтобы расстояния от краев зоны до точки P отличались на λ/2 - половину длины световой волны. Это разбиение было предложено O. Френелем и зоны называют зонами Френеля.

Что дает такое разбиение для расчета интенсивности в точке P? Возьмем произвольную точку 1 в первой зоне Френеля. В зоне II найдется, в силу правила построения зон, такая соответствующая ей точка, что разность хода лучей, идущих в точку P от точек 1 и 2 будет равна λ/2. Вследствие этого колебания от точек 1 и 2 погасят друг друга в точке P.

Из геометрических соображениях следует, что при не очень больших номерах зон их площади примерно одинаковы. Значит каждой точке первой зоны найдется соответствующая ей точка во второй, колебания которых погасят друг друга. Амплитуда результирующего колебания, приходящего в точку P от зоны с номером m, уменьшается с ростом m, т.е.

Происходит это из-за увеличения с ростом m угла между нормалью к волновой поверхности и направлением на точку P. Значит гашение колебаний соседних зон будет не совсем полным.

Дифракция Френеля.

Пусть на пути сферической световой волны, испускаемой источником S, расположен непрозрачный экран с круглым отверстием радиуса r 0 . Если отверстие открывает четное число зон Френеля, то в точке P будет наблюдаться минимум, так как все открытые зоны можно объединить в соседние пары, колебания которых в точке P приблизительно гасят друг друга.

При нечетном числе зон в точке P будет максимум, так как колебания одной зоны останутся не погашенными.

Можно показать, что радиус зоны Френеля с номером m при не очень больших m:

.

Расстояние "a" примерно равно расстоянию от источника до преграды, расстояние "b" - от преграды до точки наблюдения P.

Если отверстие оставляет открытым целое число зон Френеля, то, приравняв r 0 и r m , получим формулу для подсчета числа открытых зон Френеля:

.

При m четном в точке P будет минимум интенсивности, при нечетном - максимум.

Пятно Пуассона.

e s

С помощью спирали Френеля можно получить еще один замечательный результат. Действительно, если на пути сферической волны находится непрозрачное круглое отверстие (любого размера), то оказывается закрытым какое-то число внутренних зон Френеля. Но вклад в колебания в точке наблюдения, находящегося в центре геометрической тени,будут давать остальные зоны. В результате в этой точке должен наблюдаться свет.

Этот результат показался в свое время Пуассону столь невероятным, что он выдвинул его как возражение против рассуждений и расчетов Френеля при рассмотрении дифракции. Однако, когда был проведен соответствующий опыт, такое светлое пятнышко в центра геометрической тени было обнаружено. С тех пор оно носит название пятна Пуассона, хотя он не допускал и самой возможности его существования.

Пятно Пуассона – светлое пятно в центре геометрической тени от непрозрачного объекта. Пятно Пуассона обусловлено загибанием света в область геометрической тени.

Вычисления по формуле

Представляет собой в общем случае очень трудную задачу. Однако, как показал Френель, в случаях, отличающихся симметрией, нахождение амплитуды результирующего колебания может быть осуществлено простым алгебраическим или геометрическим суммированием.
 Найдем в произвольной точке М амплитуду сферической световой волны, распространяющейся в однородной среде из точечного источника S .
 Согласно принципу Гюйгенса-Френеля, заменим действие источника S действием воображаемых источников, расположенных на вспомогательной поверхности Ф , являющейся поверхностью фронта волны, идущей из S (поверхность сферы с центром S ). Френель разбил волновую поверхность A на кольцевые зоны такого размера, чтобы расстояния от краев зоны до М отличались на λ/2 ,

 Подобное разбиение фронта волны на зоны можно выполнить, проведя с центром в точке разбиения фронта волны на зоны можно выполнить, проведя с центром в точке М сферы радиусами



 Так как колебания от соседних зон проходят до точки М расстояния, отличающиеся на λ/2 , то в точку М они приходят в противоположной фазе и при наложении эти колебания будут взаимно ослаблять друг друга. Поэтому амплитуда результирующего светового колебания в точке М :

где А 1 , А 2 , … А m − амплитуды колебаний, возбуждаемых 1-й , 2-й , …, m-й зонами.
 Для оценки амплитуд колебаний найдем площади зон Френеля. Пусть внешняя граница m-й зоны выделяет на волновой поверхности сферический сегмент высоты h m (рис.).

 Обозначив радиус этого сегмента через r m , найдем, что площадь m-й зоны Френеля:

здесь σ m-1 − площадь сферического сегмента, выделяемого внешней границей m 1-й зоны. Из рисунка следует, что

 После элементарных преобразований, учитывая, что λ << a и λ << b , получим

 Площадь сферического сегмента и площадь m-й зоны Френеля:

где Δσ m площадь m-й зоны Френеля, которая, как показывает последнее выражение, не зависит от m . При не слишком больших m площади зон Френеля одинаковы.
 Таким образом, построение зон Френеля разбивает волновую поверхность сферической волны на равные зоны.
 Найдем радиусы зон Френеля

откуда

 Согласно предположению Френеля, действие отдельных зон в точке М тем меньше, чем больше угол φ m между нормалью к поверхности зоны и направлением на М , т.е. действие зон постепенно убывает от центральной (около Р 0 ) к периферическим. Кроме того интенсивность излучения в направлении точки М уменьшается с ростом m и вследствие увеличения расстояния от зоны до точки М . Учитывая оба этих фактора, можем записать:

Фазы колебаний, возбуждаемых соседними зонами, отличаются на π . Поэтому амплитуда результирующего колебания в точке М определяется выражением

 Последнее выражение запишем в виде:

 Вследствие монотонного убывания амплитуд зон Френеля с возрастанием номера зоны, амплитуда колебания A m от некоторой m-й зоны Френеля равна среднему арифметическому от амплитуд примыкающих к ней зон

Тогда


 Таким образом, амплитуда результирующих колебаний в произвольной точке М определяется действием только половины центральной зоны Френеля. Следовательно, действие всей волновой поверхности на точку М сводится к действию ее малого участка, меньшего центральной зоны.
 Если на пути волны поставить непрозрачный экран с отверстием, оставляющим открытой только первую зону Френеля, амплитуда в точке М равна А 1 , а интенсивность в 4 раза больше, чем при отсутствии преграды между точками S и M .
 Распространение света от S к M происходит так, будто световой поток распространяется внутри очень узкого канала вдоль прямой SM , т.е. прямолинейно. Таким образом, принцип Гюйгенса-Френеля позволяет объяснить прямолинейное распространение света в однородной среде.
 Правомерность деления волнового фронта на зоны Френеля подтверждена экспериментально. Если поставить на пути световой волны пластинку, которая перекрывала бы все четные или нечетные зоны Френеля, то интенсивность света в точке М резко возрастает. При закрытых четных зонах Френеля амплитуда в точке М будет равна

 В опыте зонная пластинка во много раз увеличивает интенсивность света в точке М , действуя подобно собирающей линзе.
 Еще большего эффекта можно достичь, не перекрывая четные (или нечетные) зоны Френеля, а изменяя фазу их колебаний на 180° . Такая пластинка называется фазовой зонной пластинкой. По сравнению с амплитудной зонной пластинкой фазовая дает дополнительное увеличение амплитуды в 2 раза , а интенсивность света − в 4 раза .