Дайте определение фс предложенное анохиным. Теория функциональной системы П.К.(Анохин)


Теория функциональных систем была разработана П.К.Анохиным (1935) в результате проводимых им исследований компенсаторных приспособлений нарушенных функций организма. Как показали эти исследования, всякая компенсация нарушенных функций может иметь место только при мобилизации значительного числа физиологических компонентов, зачастую расположенных в различных отделах центральной нервной системы и рабочей периферии, тем не менее, всегда функционально объединенных на основе получения конечного приспособительного эффекта. Такое функциональное объединение различно локализованных структур и процессов на основе получения конечного (приспособительного) эффекта и было названо «функциональной системой» [П.К.Анохин, 1968]. При этом принцип функциональной системы используется как единица саморегуляторных приспособлений в многообразной деятельности целого организма. «Понятие функциональной системы представляет собой, прежде всего, динамическое понятие, в котором акцент ставится на законах формирования какого-либо функционального объединения, обязательно заканчивающегося полезным приспособительным эффектом и включающего в себя аппараты оценки этого эффекта» [П.К.Анохин, 1958]. Ядром функциональной системы является приспособительный эффект, определяющий состав, перестройку эфферентных возбуждений и неизбежное обратное афферентирование о результате промежуточного или конечного приспособительного эффекта. Понятие функциональной системы охватывает все стороны приспособительной деятельности целого организма, а не только взаимодействия или какую-либо комбинацию нервных центров («констелляция нервных центров» - по
А.А.Ухтомскому, 1966) [П.К.Анохин, 1958].
Согласно теории функциональных систем, центральным системообразующим фактором каждой функциональной системы является результат ее деятельности, определяющий в целом для организма условия течения метаболических процессов [П.К.Анохин, 1980]. Именно достаточность или недостаточность результата определяет поведение системы: в случае его достаточности организм переходит на формирование другой функциональной системы с другим полезным результатом, представляющим собой следующий этап в универсальном континууме результатов. В случае недостаточности полученного результата происходит стимулирование активирующих механизмов, возникает активный подбор новых компонентов, создается перемена степеней свободы действующих синаптических организаций и, наконец, после нескольких «проб и ошибок» находится совершенно достаточный приспособительный результат. Таким образом, системой можно назвать только комплекс таких избирательно вовлеченных компонентов, у которых взаимодействие и взаимоотношения принимают характер взаимосодействия компонентов для получения конкретного полезного результата [П.К.Анохин, 1978].
Были сформулированы основные признаки функциональной системы как интегративного образования:
  1. Функциональная система является центральнопериферическим образованием, становясь, таким образом, конкретным аппаратом саморегуляции. Она поддерживает свое единство на основе циклической циркуляции от периферии к центрам и от центров к периферии, хотя и не является «кольцом» в полном смысле этого слова.
  2. Существование любой функциональной системы непременно связано с получением какого-либо четко очерченного результата. Именно этот результат определяет то или иное распределение возбуждений и активностей по функциональной системе в целом.
  3. Другим абсолютным признаком функциональной системы является наличие рецепторных аппаратов, оценивающих результаты ее действия. Эти рецепторные аппараты в одних случаях могут быть врожденными, в других это могут быть обширные афферентные образования центральной нервной системы, воспринимающие афферентную сигнализацию с периферии о результатах действия. Характерной чертой такого афферентного аппарата является то, что он складывается до получения самих результатов действия.
  4. Каждый результат действия такой функциональной системы формирует поток обратных афферентаций, представляющих все важнейшие признаки (параметры) полученных результатов. В том случае, когда при подборе наиболее эффективного результата эта обратная афферентация закрепляет последнее наиболее эффективное действие, она становится «санкционирующей афферентацией» [П.К.Анохин, 1935].
  5. В поведенческом смысле функциональная система имеет ряд дополнительных широко разветвленных аппаратов.
  6. Жизненно важные функциональные системы, на основе которых строится приспособительная деятельность новорожденных животных к характерным для них экологическим факторам, обладают всеми указанными выше чертами и архитектурно оказываются созревшими точно к моменту рождения. Из этого следует, что объединение частей каждой жизненно важной функциональной системы (принцип консолидации) должно стать функционально полноценным на каком-то сроке развития плода еще до момента рождения [П.К.Анохин, 1968].
Функциональная система всегда гетерогенна. Конкретным механизмом взаимодействия компонентов любой функциональной системы является освобождение их от избыточных степеней свободы, не нужных для получения данного конкретного результата, и, наоборот, сохранение всех тех степеней свободы, которые способствуют получению результата. В свою очередь, результат через характерные для него параметры и благодаря системе обратной афферентации имеет возможность реорганизовать систему, создавая такую форму взаимодействия между ее компонентами, которая является наиболее благоприятной для получения именно запрограммированного результата. Смысл системного подхода состоит в том, что элемент или компонент функционирования не должен пониматься как самостоятельное и независимое образование, он должен пониматься как элемент, чьи степени свободы подчинены общему плану функционирования системы, направляемому получением полезного результата. Таким образом, результат является неотъемлемым и решающим компонентом системы, создающим упорядоченное взаимодействие между всеми другими ее компонентами.
Все ранее известные формулировки систем построены на принципе взаимодействия множества компонентов. Вместе с тем элементарные расчеты показывают, что простое взаимодействие огромного числа компонентов, например, человеческого организма, ведет к бесконечно огромному числу степеней их свободы. Даже оценивая только число степеней свобод основных компонентов центральной нервной системы, но, принимая при этом во внимание наличие, по крайней мере, пяти возможных изменений в градации состояний нейрона , можно получить совершенно фантастическую цифру с числом нулей на ленте длиной более 9 км [П.К.Анохин, 1978]. То есть простое взаимодействие компонентов реально не является фактором, объединяющим их в систему. Именно поэтому в большинство формулировок систем входит термин «упорядочение». Однако, вводя этот термин, необходимо понять, что же «упорядочивает» «взаимодействие» компонентов системы, что объединяет эти компоненты в систему, что является системообразующим фактором. П.К.Анохин (1935, 1958, 1968, 1978, 1980 и др.) считает, что «таким упорядочивающим фактором является результат деятельности системы». Согласно его концепции, только результат деятельности системы может через обратную связь (афферентацию) воздействовать на систему, перебирая при этом все степени свободы и оставляя только те, которые содействуют получению результата. «Традиция избегать результат действия как самостоятельную физиологическую категорию не случайна. Она отражает традиции рефлекторной теории, которая заканчивает «рефлекторную дугу» только действием, не вводя в поле зрения и не интерпретируя результат этого действия» [П.К.Анохин, 1958]. «Смешение причины с основанием и смешение действия с результатами распространено и в нашей собственно повседневной речи» . «Фактически физиология не только не сделала результаты действия предметом научно объективного анализа, но и всю терминологию, выработанную почти на протяжении 300 лет, построила на концепции дугообразного характера течения приспособительных реакций («рефлекторная дуга»)» [П.К.Анохин, 1968]. Но «результат господствует над системой, и над всем формированием системы доминирует влияние результата. Результат имеет императивное влияние на систему: если он недостаточен, то немедленно эта информация о недостаточности результата перестраивает всю систему, перебирает все степени свободы, и, в конце концов, каждый элемент вступает в работу теми своими степенями свободы, которые способствуют получению результата» [П.К.Анохин, 1978].
«Поведение» системы определяется прежде всего ее удовлетворенностью или неудовлетворенностью полученным результатом. В случае удовлетворенности системы полученным результатом, организм «переходит на формирование другой функциональной системы, с другим результатом, представляющим собой следующий этап в универсальном непрерывном континууме результатов» [П.К.Анохин, 1978]. Неудовлетворенность системы результатом стимулирует ее активность в поиске и подборе новых компонентов (на основе перемены степеней свободы действующих синаптических организаций - важнейшего звена функциональной системы) и достижении достаточного результата. Более того, одно из главнейших качеств биологической самоорганизующейся системы состоит в том, что система в процессе достижения окончательного результата непрерывно и активно производит перебор степеней свободы множества компонентов, часто даже в микроинтервалах времени, чтобы включить те из них, которые приближают организм к получению конкретного запрограммированного результата. Получение системой конкретного результата на основе степени содействия ее компонентов определяет упорядоченность во взаимодействии множества компонентов системы, а, следовательно, любой компонент может быть задействован и способен войти в систему только в том случае, если он вносит свою долю содействия в получение запрограммированного результата. В соответствии с этим в отношении компонентов, входящих в систему, более пригоден термин «взаимосодействие» [П.К.Анохин, 1958, 1968 и др.],
отражающий подлинную кооперацию компонентов множества отобранных ею для получения конкретного результата. «Системой можно назвать только комплекс таких избирательно вовлеченных компонентов, у которых взаимодействие и взаимоотношения принимают характер взаимосодействия компонентов для получения фокусированного полезного результата» [П.К.Анохин, 1978]. Именно потому, что в рассматриваемой концепции результат оказывает центральное организующее влияние на все этапы формирования системы, а сам результат ее функционирования является, по сути, функциональным феноменом, вся архитектура системы была названа функциональной системой [П.К.Анохин, 1978].
Следует подчеркнуть, что «функциональные системы организма складываются из динамически мобилизуемых структур в масштабе целого организма и на их деятельности и окончательном результате не отражается исключительное влияние какой-нибудь участвующей структуры анатомического типа», более того, «компоненты той или иной анатомической принадлежности мобилизуются и вовлекаются в функциональную систему только в меру их содействия получению запрограммированного результата» [П.К.Анохин, 1978]. Введение понятия структуры в систему приводит к ее пониманию как чего-то жестко структурно детерминированного. Вместе с тем, именно динамическая изменчивость входящих в функциональную систему структурных компонентов является одним из ее самых характерных и важных свойств. Кроме того, в соответствии с требованиями, которые функция предъявляет структуре, живой организм обладает крайне важным свойством внезапной мобилизуемости его структурных элементов. «.Существование результата системы как определяющего фактора для формирования функциональной системы и ее фазовых реорганизаций и наличие специфического строения структурных аппаратов, дающего возможность немедленной мобилизации объединения их в функциональную систему, говорят о том, что истинные системы организма всегда функциональны по своему типу», а это значит, что «функциональный принцип выборочной мобилизации структур является доминирующим» [П.К.Анохин, 1978].
Не менее важным обстоятельством является то, что функциональные системы, обеспечивающие какой-то результат, можно изолировать только с дидактической целью. В конечном итоге единственно полноценной функциональной системой является собственно живой организм, существующий в непрерывном пространственно-временном континууме получаемых приспособительных результатов. Выделение любых функциональных систем в организме в достаточной степени искусственно и может быть оправдано лишь с позиций облегчения их исследования. Вместе с тем, эти «функциональные системы» сами по себе являются взаимосодействующими компонентами целостных функциональных систем используемых организмом в процессе своего существования в среде. Поэтому, по мнению П.К.Анохина (1978), говоря о составе функциональной системы, необходимо иметь в виду тот факт, что «...каждая функциональная система, взятая для исследования, неизбежно находится где-то между тончайшими молекулярными системами и наиболее высоким уровнем системной организации в виде, например, целого поведенческого акта».
Независимо от уровня своей организации и от количества составляющих их компонентов функциональные системы имеют принципиально одну и ту же функциональную архитектуру, в которой результат является доминирующим фактором, стабилизирующим организацию систем [П.К.Анохин, 1978].
Центральная архитектура целенаправленного поведенческого акта развертывается последовательно и включает следующие узловые механизмы:
  1. Афферентный синтез.
  2. Принятие решения.
  3. Формирование акцептора результата действия.
  4. Обратная афферентация (эфферентный синтез).
  5. Целенаправленное действие.
  6. Санкционирующая стадия поведенческого акта [П.К.Анохин, 1968].
Таким образом, функциональная система по П.К.Анохину (1935) - это
«законченная единица деятельности любого живого организма и состоящая из целого ряда узловых механизмов, которые обеспечивают логическое и физиологическое формирование поведенческого акта».
Образование функциональной системы характеризуется объединением частных физиологических процессов организма в единое целое, обладающее своеобразием связей, отношений и взаимных влияний именно в тот момент, когда все эти компоненты мобилизованы на выполнение конкретной функции.
Однако мне хотелось бы обратить внимание читателя на одно из высказываний великого физиолога: «Как целостное образование любая
функциональная система имеет вполне специфические для нее свойства, которые в целом придают ей пластичность, подвижность и в какой-то степени независимость от готовых жестких конструкций различных связей, как в пределах самой центральной системы, так и в масштабе целого организма» [П.К.Анохин, 1958, 1968]. Именно здесь кроется ошибка. П.К.Анохина и это именно тот момент, который обусловил фактическую невозможность до последнего времени реального применения теории функциональных систем в науке и практике. П.К.Анохин (1958, 1968) наделил функциональные системы свойством практически безграничной лабильности (возможности неограниченного выбора компонентов для получения одного и того же «полезного результата») и таким образом лишил функциональные системы присущих им черт функционально-структурной специфичности [С.Е.Павлов,
2000].
Тем не менее, функциональные системы обладают свойством относительной лабильности лишь на определенных этапах своего формирования, постепенно теряя это свойство к моменту окончательного формирования системы [С.Е.Павлов, 2000]. В этом случае целостные функциональные системы организма (по «внешнему» содержанию - его многочисленные поведенческие акты) становятся предельно специфичными и «привязываются» к вполне конкретным структурным образованиям организма [С.Е.Павлов, 2000, 2001]. Другими словами пробегание 100-метровой
дистанции трусцой и с максимальной скоростью - две совершенно разные функциональные системы бега, обеспечиваемые различными структурными компонентами. Равно как примерами различных функциональных систем являются, например, проплывания с одной скоростью, но разными стилями одной и той же дистанции. Более того, изменение любых параметров двигательного акта при сохранении одинакового конечного результата также будет свидетельствовать о «задействовании» в реализации данных поведенческих актов различных функциональных систем, «собранных» из различных структурно-функциональных компонентов. Однако это положение не принимается сегодня ни физиологами, ни спортивными педагогами (в противном случае последним придется кардинальным образом пересмотреть свои позиции по вопросам теории и методики спортивной тренировки). Так
В.Н.Платоновым (1988, 1997) в защиту концепции абсолютной лабильности функциональных систем приводятся данные о проплывании соревновательной дистанции Линой Качюшите, свидетельствующие о том, что одного и того же конечного результата можно достичь при разной частоте гребковых движений. Однако, здесь г-н Платонов проигнорировал как ряд положений теории функциональных систем П.К.Анохина (1935, 1958, 1968 и др.), описывающих особенности формирования целостных функциональных систем поведенческих актов, так и дополнения к теории функциональных систем, сделанные
В.А.Шидловским (1978, 1982) и обязывающие оценивать не только конечный результат, но и максимум его параметров [С.Е.Павлов, 2000]. Более того, указанные положения и дополнения привносят необходимость оценки максимума параметров всего рабочего цикла функциональной системы. Пример же, приведенный В.Н.Платоновым (1988, 1997), свидетельствует лишь о том, что один и тот же конечный результат может быть достигнут с использованием различных функциональных систем. Не одно и то же идти за водой к колодцу во дворе или к роднику, находящемуся в нескольких километрах от дома, хотя конечные результаты и той и другой деятельности - наличие воды в доме - будут одинаковыми [С.Е.Павлов, 2000].
П.К.Анохин (1968) писал: «Совершенно очевидно, что конкретные механизмы интеграции, связанные с определенными структурными образованиями, могут менять свою характеристику и удельный вес в процессе динамических превращений функциональной системы». В связи с этим следует вспомнить о свойстве функциональной системы изменяться в процессе своего формирования и признать, что на начальных этапах своего формирования функциональная система обязательно должна быть в достаточной степени лабильна. В противном случае окажется невозможным перебор множества всевозможных сочетаний исходно «свободных» компонентов с целью поиска единственно необходимых для формирующейся системы. В то же время сформированная функциональная система всегда должна быть предельно «жестка» и обладать минимумом лабильности. Следовательно, на разных этапах своего формирования функциональная система будет обладать различными уровнями лабильности, а сам процесс формирования любой функциональной системы должен сопровождаться сужением пределов ее лабильности, определяемых уже исключительно параметрами промежуточных и конечного результатов.

Министерство высшего профессионального образования РФ

Российский Государственный Гуманитарный Университет

Институт Психологии

Сорокин Александр Алексеевич

I курс, 1 группа.

Реферат

“Основные понятия в теории функциональных систем”.

Москва,

1999 год.

Что есть функциональная система ?

В данной работе я должен по возможности ясно и коротко описать основные понятия теории П.К. Анохина о функциональных системах, как принципах жизнедеятельности. Поэтому прежде чем разбирать составляющие системы, надо осветить что есть она сама и для чего она функционирует.

Основные физиологические закономерности таких систем были сформулированы лабораторией Анохина ещё в 1935 году, т.е. задолго до того, как были опубликованы первые работы по кибернетике, однако смысл публикаций соответствовал тем принципам, которые Анохин выделил позже. По своей архитектуре функциональные системы целиком соответствуют любой кибернетической модели с обратной связью, и потому изучение свойств различных функциональных систем организма, сопоставление роли в них частных и общих закономерностей, несомненно, послужит познанию любых систем с автоматической регуляцией.

Под функциональной системой мы понимаем такое сочетание процессов и механизмов, которое формируясь динамически в зависимости от данной ситуации, непременно приводя к конечному приспособительному эффекту, полезному для организма как раз именно в этой ситуации . То есть в приведённой формулировке до нас хотят донести, что функциональная система может быть составлена из таких аппаратов и механизмов, которые могут быть весьма отдалёнными в анатомическом отношении. Получается, что состав функциональной системы (далее ФС) и направление её деятельности определяются не органом, ни анатомической близостью компонентов а динамикой объединения, диктуемой только качеством конечного приспособленного эффекта.

В некоторых случаях формирование саморегулирующихся систем получило название “биологического регулирования ( Wagner, 1958) , но только когда саморегуляция рассматривалась в отношении живых существ. Однако независимо от наименования, для того, чтобы приобрести приспособленный смысл для организма, эти различные формы объединения во всех случаях должны обладать всеми теми свойствами, которые мы формулируем для ФС. Получается, что ФС не относится только к коре головного мозга или даже к целому головному мозгу. Она есть по самой своей сути центрально - периферическое образование, в котором импульсы циркулируют как от центра к периферии, так и от периферии к центру (обратная афферентация ), что создаёт непрерывную информацию центральной нервной системы о достигнутых на периферии результатах.

Необходимо так же охарактеризовать основу или “жизненный узел” всякой ФС – чрезвычайно прочно увязанную функциональную пару – конечный эффект системы и аппарат оценки достаточности или недостаточности этого эффекта при помощи специальных рецепторных образований. Как правило, конечный приспособительный эффект служит основным задачам выживания организма и в той или иной степени жизненно необходим. Это положение абсолютно верно, когда речь идёт о жизненно важных функциях, как то: дыхание, осмотическое давление крови, уровень кровяного давления, концентрация сахара в крови и др. Здесь ФС представляет собой разветвлённую физиологическую организацию, составляющую конкретный физиологический аппарат , служащий поддержанию жизненно важных констант организма (гомеостазис) т.е. осуществление процесса саморегуляции. Когда речь идёт о ФС, то это относится не только к системам с константными конечными, которые располагают большею частью врождёнными механизмами.

Основное отличие в построении и организации данного вида системы, формирование её экстремально или на основе условного рефлекса. Однако, несмотря на столь разные качественные различия, все ФС имеют те же архитектурные особенности, а доказательство этого то, что “ФС действительно является универсальным принципом организации процессов и механизмов, заканчивающихся получением конечного приспособительного эффекта ”. Общепринято ФС рассматривается как единица интегративной деятельности человека.

С помощью экспериментов П.К. Анохин сформулировал основные постулаты в общей теории ФС.

Постулат первый

Ведущим системообразующим фактором ФС любого уровня организации является полезный для жизнедеятельности организма, приспособительный результат.

Постулат второй

Любая функциональная система организма строится на основе принципа саморегуляции: отклонение результата от уровня, обеспечивающего нормальную жизнедеятельность, посредством деятельности соответствующей функциональной системы само является причиной восстановления оптимального уровня этого результата.

Постулат третий

Функциональные системы являются центрально - периферическими образованиями, избирательно объединяющими различные органы и ткани для достижения полезных для организма приспособительных результатов.

Постулат четвёртый

Функциональные системы различного уровня характеризуются изоморфной организацией: они имеют однотипную архитектонику.

Постулат пятый

Отдельные элементы в функциональных системах взаимодействуют достижению их полезных для организма результатов.

Постулат шестой

Функциональные системы и их отдельные части избирательно созревают в процессе онтогенеза, отражая тем самым общие закономерности системогенеза.

Теперь мы знаем, что ФС – это организация активных элементов во взаимосвязи, которое направлено на достижение полезного приспособительного результата. Надо полагать, что настала пора разобрать понятия, которые включены в систему, потому что в этом и заключается основная тема.

Основные понятия в теории ФС.

По разным источникам можно по-разному выделить и основные понятия в ФС. Для начала приведём классическую схему самой системы, а затем разберём её отдельные понятия.



1) Пусковой стимул (иначе раздражение).

2) Обстановочные афферентации.

3) Память.

4) Доминирующая мотивация.

5) Афферентный синтез.

6) Принятие решения.

7) Акцептор результата действия.

8) Программа действия.

9) Эфферентные возбуждения.

10) Действие.

11) Результат действия.

12) Параметры результата

13) Обратная афферентация.

Если мною ничего не забыто, то именно в такой компоновке и работает система. Только во многих работах даже не встречается упоминание о таких частях системы как: установочная афферентация, пусковой стимул. Это заменено одной единственной фразой – афферентный синтез. Он составляет начальную стадию поведенческого акта любой степени сложности, а следовательно и начало работы ФС составляет он же. Важность же афферентного синтеза состоит в том, что он определяет всё последующее поведение организма. Основная задача этой стадии состоит в том, чтобы собрать необходимую информацию о различных параметрах внешней среды. Благодаря ему из множества внешних и внутренних раздражителей организм отбирает главные и создаёт цель поведения (надо полагать здесь параллельно действует механизм доминирующей мотивации) . Считаю, что доминирующая мотивация – это действия в данный момент, направленные на решение, удовлетворение какой-либо нужды, необходимости, желания, которые преобладают над всеми другими побуждениями. Поскольку на выбор такой информации оказывает влияние как цель поведения, так и предыдущий опыт жизнедеятельности, то афферентный синтез всегда индивидуален. Я уже упомянул, что стадия афферентного синтеза включает в себя не один компонент. Согласно данным установочной афферентации и при содействии доминирующей мотивации, базируясь на опыте заложенном в памяти, формируется решение о том что делать. Происходит это в блоке принятия решения. Если к этому блоку доходят сразу несколько пусковых стимулов, то должно сформироваться решение о доминирующем направлении действий (но иногда и о доминирующих, т.е. нескольких) и запуске его в программу выполнения, остальные же должны отсеится и распасться как более не функциональные. Происходит переход к формированию программы действий, которая обеспечивает последующую реализацию одного действия из множества потенциально возможных. Копия выбранного решения передаётся в блок акцептора результата действий, а основная информация поступает в блок эфферентного синтеза. Команда, представленная комплексом эфферентных возбуждений, направляется к периферическим исполнительным органам и воплощается в соответствующее действие. В этом блоке уже содержится некий набор стандартных программ, отработанных в ходе индивидуального и видового опыта для получения положительных результатов. Задача блока на данный момент определить и “подключить” наиболее адекватную программу. Важной чертой ФС являются её индивидуальные и меняющиеся требования к афферентации. Именно количество и качество афферентных импульсаций характеризует степень сложности, произвольности или автоматизированности функциональной системы.

Задачи намеченные к выполнению в блоке принятия решения и запущенные в осуществление и следует называть программой. Чего ради создаётся программа? Ответ уже был дан выше, для того же ради чего существует система – для достижения конечной цели. Это практическая часть системы в отличие от стратегического афферентного синтеза. Но программа по каким-либо внешним воздействиям может не выполнить поставленной цели. Что же из-за этого разрушать всю систему и формировать новую? Это бы было не функционально, обеспечивало бы плохую приспособляемость и требывало бы больше времени. Система не действует по такому пути, уже при исполнении программы в работу вступает акцептор полученного результата. В нём всегда хранится копия полученного ранее решения. Он является необходимой частью ФС – это центральный аппарат оценки результатов и параметров ещё не совершившегося действия. Допустим что должно быть осуществлено некое поведенческое действие, а уже до его осуществления смоделировано представление о нём или образ ожидаемого результата. В процессе реального действия от акцептора идут эфферентные сигналы к нервным моторным структурам, обеспечивающим достижение необходимой цели. Если допустить что из-за каких-то воздействий установочной афферентации поставлена под угрозу жизнь всей системы, то акцептор корректирует программу прямо по ходу её выполнения, причём адекватно с изменениями. А об успешности \ неуспешности поведенческого акта сигнализирует поступающая в мозг афферентная импульсация от всех рецепторов, которые регистрируют последовательные этапы выполнения конкретного действия (обратная афферентация). Оценка поведенческого акта как в целом, так и в деталях невозможна без такой точной информации о результатах каждого из действий. Чтобы гарантировать реализацию любого поведенческого акта необходимо наличие именно этого механизма. Более того, скорее всего организм погиб бы в первые же часы из-за неадекватности действий, если бы подобного механизма не существовало.

П. К. Анохин (1898 - 1974) сформулировал оригинальную теорию функциональных систем, которая, по существу, явилась основой новой интегративной физиологии, медицины и психологии.

Функциональная система - это самоорганизующаяся и саморегулирующаясяся, динамическая центрально - периферические организация,в которой взаимодействие всех ее составляющих частей направлено на получение определенного и полезого для организма в целом приспособительного результата.

Типы функциональных систем:

  • 1) ФС первого типа: обеспечивают гомеостаз за счет системы саморегуляции, звенья которой не выходят за пределы самого организма (например, система постоянства кровяного давления, температуры тела и т.д).
  • 2) ФС второго типа: используют внешнее звено регуляции. Лежат в основе разных типов поведения.

Физиологическая структура поведенческого акта строится из последовательно сменяющих друг друга стадий:

  • -- афферентный синтез всей поступающей в нервную систему информации (из множества внешних и внутренних раздражителей организм отбирает главные и создает цель поведения. Всегда индивидуален т.к. на выбор такой информации оказывает влияние как цель поведения, так и предыдущий опыт жизнедеятельности. На стадии АС происходит взаимодействие трех компонентов: мотивационного возбуждения, обстановочной афферентации (т.е. информации о внешней среде) и извлекаемых из памяти следов прошлого опыта.
  • -- принятие решения о том, "что делать"
  • -- акцептор результатов действия-центральный аппарат оценки результатов и параметров еще не совершившегося действия. Т.е, еще до осуществления какого-либо поведенческого акта у живого организма уже имеется представление о нем, своеобразная модель или образ ожидаемого результата.
  • -- эфферентный синтез (программы действия) обеспечивает выбор и последующую реализацию одного действия из множества потенциально возможных
  • -- собственно действие; Команда, представленная комплексом эфферентных возбуждений, направляется к периферическим исполнительным органам и воплощается в соответствующее действие.
  • -- оценка достигнутого результата (сличение на основе обратной связи афферентной модели акцептора результатов действия и параметров выполненного действия)
  • -- коррекция поведения в случае рассогласования реальных и идеальных (смоделированных НС) параметров действия.

Важной чертой ФС являются ее индивидуальные и меняющиеся требования к афферентации. Именно количество и качество афферентных импульсаций характеризует степень сложности, произвольности или автоматизированности функциональной системы.

Каждая ФС обладает способностью к саморегуляции, которая присуща ей как целому. При возможном дефекте ФС происходит быстрая перестройка составляющих ее компонентов, так, чтобы необходимый результат, пусть даже менее эффективно (как по времени, так и по энергетическим затратам), но все же был бы достигнут.

Целостный организм в каждый данный момент времени представляет собой слаженное взаимодействие, интеграцию (по горизонтали и вертикали) различных функциональных систем с использованием принципов иерархии, многосвязного одновременного и последовательного их взаимодействия, что определяет нормальное течение метаболических процессов и поведения.

Физико-химические процессы, разыгрывающиеся в нейронах акцептора результата действия под влиянием доминирующей мотивации, порождают информационный процесс опережающего возбуждения - предвидения свойств потребных результатов и способов их достижения. Таким образом, материальная потребность трансформируется в идеальный информационный процесс. Различные результаты деятельности человека имеют эмоциональную и словесную значимость. Из этого следует, что операциональная архитектоника психических процессов у человека определяется информационно эмоциональными и словесными эквивалентами.

Теория функциональных систем в построении психической деятельности исходит из оценки результата, который определяет информационное наполнение соответствующей функциональной системы психического уровня.

Большое признание в научном мире получила также разработана в 30-60-е pp. XX в. теория функциональных систем П.К. Анохина. Часто считается наиболее завершенной системной теории в психологии и физиологии, поскольку в ней не только четко определено понятие системы, но и разработана внутренняя операционная архитектоника системы и определены основные принципы ее функционирования.

В русле системного подхода поведение рассматривается как целостный, определенным образом организованный процесс, направленный, во-первых, на адаптацию организма к среде и, во-вторых на активное его преобразования,. Приспособительный поведенческий акт, связанный с изменениями внутренних процессов, всегда носит целенаправленный характер, что обеспечивает организму нормальную жизнедеятельности. Сейчас как методологическая основа психофизиологического описания поведения используется теория функциональной системы П.К. Анохина .

Функциональные системы - это динамические организации, саморегулирующиеся, деятельность всех составляющих компонентов которых способствует получению жизненно важных для организма приспособительных результатов (П.К. Анохин).

П.К. Анохин выделил такие универсальные для различных систем узловые механизмы:

♦ красный приспособительный результат как ведущий пункт функциональной системы;

♦ рецепторы результата;

♦ обратная афферентация от рецепторов результата в центральные образований функциональной системы;

♦ центральная архитектура, представляет собой выборочное объединение нервных элементов различных уровней;

♦ исполнительные соматические, вегетативные и эндокринные элементы, включая организованную целенаправленное поведение.

Результат деятельности для каждой функциональной системы ее является центральным системообразующим фактором. П.К. Анохиным были выделены четыре группы приспособительных результатов:

1) ведущие показатели внутренней среды, определяющие нормальный метаболизм тканей;

2) результаты поведенческой деятельности, удовлетворяющие основные биологические потребности;

3) результаты стадной деятельности животных, которые удовлетворяют потребности группировки;

4) результаты социальной деятельности человека, удовлетворяющие ее социальные нужды, обусловленные ее положением в определенной общественно-экономической формации.

Центральная архитектура функциональной системы, в свою очередь, тоже состоит из взаимосвязанных и организованных в единое целое блоков (стадий):

♦ афферентный синтез - стадия функционирования системы, инициируется определенной потребностью, для удовлетворения которой и создается упомянутая система; на этой стадии решается вопрос "что делать?", какой же именно сейчас нужен результат; к компонентам афферентного синтеза входят - доминирующая на данный момент мотивация, учредительная афферентация, которая также отвечает данному моменту, пусковая афферентация и память;

♦ принятие решения - это стадия характеризуется выбором основной для данного момента "линии поведения";

♦ формирование акцептора результата действия - определяет процесс формирования образа результата или цели системы;

♦ эфферентный синтез - стадия, на которой происходит динамическое объединение соматических и вегетативных функций для выполнения целенаправленного воздействия;

♦ целенаправленное действие - динамическое взаимодействие соматических, вегетативных и эндокринных компонентов, направленная на достижение цели системы; целенаправленное действие происходит под постоянным контролем соответствующих механизмов акцептора результата действия с помощью обратной афферентации, информации (параметры, образ) о реально полученный результат; при этом происходят постоянное сравнение, оценка достигнутого и соответствующая коррекция действия;

♦ санкционируя стадия - если сравнение достигнутого результата через обратную аферентацию соответствует запрограммированным качествам в акцепторе результата действия, то делается вывод об удовлетворении данной потребности и поведенческий акт заканчивается.

Вышесказанное схематическое представление в определенной мере гипотетическим, поскольку реальных механизмов его осуществления пока не обнаружено. Как не обнаружено и конкретных мозговых структур, которые отвечают за работу указанных блоков. Поиск механизмов функциональной системы продолжается.

Кроме вышеприведенных принципов организации функциональной системы, также существуют основные принципы ее функционирования.

♦ взаемоспивдии - системой можно назвать только такой комплекс избирательно вовлеченных компонентов, в которых взаимодействие и взаимоотношения имеют характер взаемоспивдии компонентов для получения сфокусированного полезного результата (чтобы подчеркнуть основной механизм функционирования системы, П.К. Анохин в своих работах часто выделял долю "пение" в слове взаемоспивдия)

♦ динамичности - приводит свойство системы быть пластичной, внезапно менять свою структуру для достижения запрограммированного полезного результата;

♦ иерархичности - принцип функционирования и организации системы, который, с одной стороны, отражает многоуровневость ее внутренней реализации, а с другой - предполагает, что определенная система также входит и в иерархии системы высшего порядка;

♦ саморегуляции - принцип функционирования системы, которая реализуется на основе механизма обратной афферентации и аппарата акцептора результатов действия для достижения запрограммированного результата;

♦ минимизации - введение в структуру функциональной системы только тех элементов, которые необходимы для получения конечного результата, и отвержение всех других.

Функциональная система представляет собой универсальную модель для понимания и построения любой системы в различных классах явлений, включая организмы, машины и социально-экономические организации. Преимущество теории функциональных систем перед другими системными теориями заключается в том, что она дает конкретные возможности для системного анализа различных классов явлений природы и общества и является связующим звеном между синтетическим и аналитическим уровнем исследований (К.В. Судаков).

Именно теория функциональных систем П.К. Анохина оказалась наиболее эффективным и пригодным для психологов вариантом системной методологии, ибо, в отличие от других вариантов системного подхода, в ней было разработано понятие системообразующего фактора. Этот фактор - результат системы, под которым понимается красный приспособительный эффект в соотношении организма и среды, достигается при реализации системы. Поэтому детерминантой поведения и деятельности в теории функциональных систем рассматривается не прошла по ним событие - стимул, а будущее - результат (Ю.И. Александров, В. Дружинин).

Выдающимся проявлением влияния теории функциональных систем на психологическую науку стало создание нового направления в психологии - системной психофизиологии, задачей которой является изучение систем и межсистемных отношений, составляющих и обеспечивают психику и поведение человека.

10.4. Человек как целостная биопсихосоциальная система

В последнее время в науке получили широкое распространение взглядов о необходимости рассмотрения человека как целостной биопсихосоциальной системы. Истоки этих взглядов был заложен еще в 60-80-х pp. прошлого столетия трудами Н.А. Агаджаняна, Б.Г. Ананьева, В.А. Ганзена, А.С. Батуева, Б.Ф. Ломова, BC Мерлина, В.М. Русалова и др.

Согласно теории Б. Ананьева человек представляет собой пол- системным образования, в котором выделяются различные ипостаси. Первая из них определяется как индивид (или целостный организм). Индивид ни качества, в свою очередь, делятся на первичные и вторичные. К первичным относятся соматические, нейродинамических, конституциональные и половые, к вторичным - те, что образуются на основе первичных в процессе жизнедеятельности: сенсомоторная организация, структура органических потребностей, темперамент, задатки.

Б.Ф. Ломов выделял три уровня индивидуальности человека, представляющие собой целостную систему: социальный, психический и психологический, биологический. При этом ученый отмечал, что ведущую роль в отношении человека к миру играют те качества, которые определяются ее принадлежности к социальной системы.

Согласно теории интегральной индивидуальности BC Мерлина совокупность индивидуальных качеств человека представляет собой большую иерархическую систему, которая саморегулируется. Иерархические уровни этой большой системы включают:

1. Система индивидуальных качеств организма. ее подсистемы: а) биохимические; б) общесоматические; в) качества нервной системы (нейродинамических).

2. Система индивидуальных психических качеств. Ее подсистемы: а) психодинамические (качества характера) б) психические качества личности.

3. Систему социально-психологических индивидуальных качеств. Ее подсистемы: а) социальные роли в социальной группе и коллективе; б) социальные роли в социально-исторических общностях.

В.М. Русалов, основываясь на системных принципах, определил человеческую индивидуальность как целостную систему, целью которой является сохранение целостности и тождественности человека самому себе в условиях непрерывных внутренних (организмических) и внешних (социальных) изменений.

В структуре человеческой индивидуальности он выделил два основных компонента: организм и личность и следующие основные признаки: целостность, обособленность, неповторимость, автономность, самосознание, творческие способности.

В.М. Русалова было также выделено два основных уровня индивидуально-психологических различий между людьми, подчеркивает преимущественно "социальное" или "биологическое" происхождение этих различий:

♦ к первому уровню относятся "содержанию" индивидуальные различия, касающиеся социально обусловленных качеств (направленности, отношений, моральных установок, желаний, мотивов, интересов, а также знаний, умений, навыков и т.д.).

♦ второй уровень касается "психодинамических" качеств личности, которые обусловлены организмический качествами человека, его биологической организацией. При этом разделение психики человека на "содержательный" и "динамический" уровне не означает существование непроходимой границы между ними, а указывает лишь на возможность рассмотрения этих различных аспектов единого целостного психического процесса.

Вышеприведенные взгляды на человеческую индивидуальность представляют собой общенаучную основу современных представлений о человеке как целостную биопсихосоциальная систему.

Несмотря на определенную абстрактность изложенных представлений, они имеют важное значение для теоретического обоснования психофизиологических исследований и интерпретации их результатов. О том, что между психическим и соматическим существуют причинно-следственные связи, которые имеют двустороннюю направленность (психическое влияет на физиологическое и наоборот), свидетельствует множество фактов. Только при таком подходе получают объяснения феномена изменения физиологических показателей под влиянием психических изменений, и наоборот, изменения в психике человека под действием воздействий на ее тело. Итак, целостность индивидуальности лежит в основе того факта, что любое воздействие (например, прием химического препарата, изменение атмосферного давления, шум на улице, неприятные известия и т.д.) хотя бы на один из уровней (биохимический, физиологический, психологический и др.) неизбежно приводит к отзывам на всех других уровнях и меняет текущее состояние организма человека, его психическое состояние, а возможно, и поведение. Поэтому следует рассматривать различные аспекты индивидуальности во всем многообразии их взаимосвязей и взаимодействия .

Вопросы для самоконтроля

1. Что представляет собой понятие системного подхода и системы?

2. Какие системные принципы рассмотрения психических явлений были определены Б.Ф. Ломовым?

3. Какие уровне исследования человека и его психики были определены Б.Ф. Ломовым?

4. Что представляет собой функциональная система и каковы ее узловые механизмы?

5. По каким блоков состоит центральная архитектура функциональной системы?

6. Каковы основные принципы функционирования функциональной системы?

7. В чем заключаются основные взгляды относительно понимания человека как целостной биопсихосоциальной системы?

Литература

1. Аиохин П.К. Узловые вопросы теории функциональных систем. - М.: Наука, 1980. - 197 с.

2. Кокун А.Н. Онтимизация адаптационных возможностей человека: психофизиологический аспект обеспечения деятельности: Монография. - М.: Миле- ниум, 2004. - 265 с.

3. Лол.ов Б.Ф. Методологические и теоретические проблемы психологии. - М.: Наука, 1984. - 446 с.

4. Ломов Б. Системность в психологии: Избр. психол. тр. / Под ред В.А. Барабан тиковая. - М.: Институт практической. психологии, 1996. - 384 с.

5. Мпрютина Т.М., Ермолаев О.Ю. Введение в психофизиологию. - Четвёртый изд. - М.: Флинта, 2004. - 400 с.

6. Теория функциональных систем в физиологии и психологии. - М.: Наука, 1978. - 384 с.

7. Психофизиология: Учебник для вузов / Под. ред. Ю.И. Александрова. - 3-е изд. - СПб.: Питер, 2004. - 464 с.

Темы рефератов

1. История развития системного подхода.

2. Системный подход в психологии.

3. Системная психофизиология как новое направление психологии.

Творческое задание

Подробно опишите, основываясь на методологических принципах-теории функциональных систем, какой-нибудь (на выбор) поведенческий акт человека.

Функциональная система П.К. Анохина - это схематичная модель основных блоков мозга, обеспечивающих целенаправленное поведение, т.е. поведение, направленное на достижение определённой цели. Она отражает более сложный нервный механизм, обеспечивающий поведение, по сравнению с рефлекторными дугами.

Функциональная система П.К. Анохина

Для того чтобы легче было запомнить эту схему, я её несколько модифицировал по сравнению с той схемой, которая даётся в учебниках по физиологии.

Итак, запоминаем функциональную систему П.К. Анохина:

  • три входа
  • три блока
  • три этажа в каждом блоки
  • три явления на выходе
  • три нововведения (АРД, обратная афферентация, параметры результата).

Внутренняя афферентация

Потребность, т.е. недостаток чего-то в организме, порождает внутреннюю афферентацию.

Внутренняя афферентация - это сенсорный (афферентный) поток импульсов от интерорецепторов, расположенных во внутренних органах, мышцах, кровеносных сосудах. Интерорецепторы (или интероцепторы) реагируют на изменения во внутренней среде организма.

В блоке мотивации во главе с миндалиной мозга из множества текущих потребностей выбирается только одна наиболее биологически значимая потребность. На её основе формируется поток мотивационного возбуждения.

Добавим к схеме П.К. Анохина представления Ю. Конорского о драйв-рефлексах. Тогда получится, что поток мотивационного возбуждения передается в систему драйв-рефлексов. Драйв - это подготовительное поведение для повышения вероятности исполнительного рефлекса.
В результате драйва организм оказывается в таком месте, или создаёт такую ситуацию, где повышена вероятность нахождения пускового раздражителя и реализации исполнительного поведения, которое даёт желаемый результат и удовлетворяет потребность.

Акцептор результата действия (АРД) = планировщик, активатор, компаратор (сравнитель) и завершатель.

  • Планирует ожидаемый результат, точнее - его воспринимаемые параметры.
  • Активирует программу действий для достижения этого результата.
  • Сравнивает полученные параметры с ожидаемыми.
  • Завершает деятельность функциональной системы при совпадении полученных параметров результата с ожидаемыми.