Формула остроградского для поверхностных интегралов. Квадр формулы гаусса

1. В основе теории векторного поля лежат две интегральные формулы. Первая из них принадлежит русскому математику и механику Михаилу Васильевичу Остроградскому (1801-1861). Эта формула была открыта Остроградским в 1826 г. и опубликована в 1838 г. в связи с его исследованиями в области вариациоиного исчисления,

относящимися к проблеме максимумов и минимумов кратных интегралов. При этом получил он ее в гораздо более общем виде, чем тот, в котором она применяется в теории векторного поля.

Вторая интегральная формула теории поля была найдена английским гидромехаником Стоксом (1819-1903) в 1854 г.

2. Преобразование Остроградского.

Это преобразование решает задачу сведения интеграла любой кратности к интегралу меньшей кратности. Для целей теории поля мы разберем эту задачу лишь применительно к тройному интегралу.

Мы знаем, что для вычисления тройного интеграла следует сначала частным образом проинтегрировать подинтегральную функцию по одному из аргументов, а затем вычислить двойной интеграл от полученного результата.

Для сведения тройного интеграла, распространенного по произвольной области, к двойному интегралу нужно, чтобы первое интегрирование было выполнено в общем виде. для этого нужно, чтобы подинтегральная функция была частной производной от некоторой функции по одному из аргументов.

Итак, рассмотрим, например, интеграл

причем пока будем предполагать, что область интеграции (V) нормальная, т. е. пересекающая область вертикаль имеет с пей только один общий отрезок (рис. 162). Кроме того, будем предполагать, что непрерывна в области (V), включая ее границу.

По правилу вычисления тройного интеграла мы получим

Следовательно,

Пусть соответственно нижняя и верхняя части поверхности ограничивающей область интеграции (V). Нормаль к поверхности мы направим наружу но отношению к области Тогда, но определению поверхностного интеграла (гл. XIII, § 3), мы получим

В силу этого формула (15.1) для исходного тройного интеграла примет вид

Объединив поверхностные интегралы, мы получим формулу преобразования тройного интеграла в двойной, которую и называют преобразованием Остроградского:

«Колечко» на знаке поверхностного интеграла напоминает о замкнутости поверхности интеграции

Замечание 1. Если область не является нормальной, то мы разобьем эту область на нормальные области Для каждой из частичных нормальных областей выведенная формула справедлива:

Сложив эти равенства, мы получим

В получепной сумме взаимно уничтожатся поверхностные интегралы по всем тем частям поверхностей по которым соприкасаются друг с другом частичные области и останутся лишь поверхностные интегралы по тем частям которые располагаются на наружной границе Поэтому мы получим

Итак, формула преобразования Остроградского верна для произвольной области

Замечание 2. Аналогичные формулы мы получим, если под знаком тройного интеграла будет стоять частная производная по х или по у:

3. Формула Остроградского.

Рассмотрим поток поля И через замкнутую поверхность ограничивающую трехмерную область (рис. 163). По формуле (14.18) этот поток равен

Пусть D - односвязная область в (т. е. для любой кусочно гладкой замкнутой кривой С, расположенной в D, можно указать ориентируемую кусочно гладкую поверхность расположенную в D, имеющую границей С), граница, удовлетворяющая двум условиям:

1) поверхность - кусочно гладкая двусторонняя полная ограниченная замкнутая и без особых точек;

2) прямоугольную декартову систему координат в можно выбрать так, что для каждой из осей координат любая прямая, параллельная этой оси, будет пересекать поверхность не более чем в двух точках.

Пусть - единичный вектор внешней нормали к Справедлива следующая теорема.

Теорема 6.2 (формула Остроградского-Гаусса). Пусть а - векторное поле, дифференцируемое в области D, удовлетворяющей условиям 1), 2), и такое, что производная по любому направлению непрерывна в Тогда справедлива формула

Интеграл справа в формуле (6.26) называется потоком векторного поля а через поверхность а интеграл слева в этой формуле - это объемный интеграл от дивергенции вектора по области D. Поэтому теорема 6.2 допускает такую формулировку:

Объемный интеграл от дивергенции вектора по области D равен потоку векторного поля а через поверхность - границу этой области.

Доказательство. Все входящие в формулу (6.26) функции непрерывны, поэтому интегралы слева и справа существуют.

Заметим, что формула (6.26) инвариантна относительно выбора прямоугольной системы координат, поскольку все входящие в нее величины - инварианты. Поэтому достаточно доказать формулу (6.26) при каком-то одном выборе декартовой системы. Выберем

берем декартову прямоугольную систему координат так, чтобы выполнялось условие 2); пусть Тогда, учитывая, что

Докажем, что справедливы следующие три равенства:

Ограничимся доказательством равенства для интеграла так как равенства для доказываются аналогично. Обозначим через D проекцию области D на плоскость Через граничные гочки области D проведем прямые, параллельные . Каждая из этих прямых пересекается с лишь в одной точке. Множество этих точек разделяет 5 на две части: (см. рис. 6.2). Если мы проведем прямую из внутренней точки области D, параллельную оси то она пересечет поверхность в двух точках: Заметим, что кусочно и непрерывно дифференцируемые функции в D. По формуле сведения тройного интеграла к повторному интегралу получим

Здесь мы воспользовались тем, что и соотношением

справедливым в силу того, что внешняя нормаль к поверхности образует тупой угол с осью (поэтому Теорема доказана.

Замечание 1. Формула Остроградского-Гаусса (6.26) может быть доказана и в случае областей D более общего вида, чем указано, а именно для таких, у которых существует конечное разбиение на области рассмотренного вида. Для этого достаточно формулу (6.26) написать для каждой области и полученные результаты сложить. При этом получится искомая формула. Действительно, в силу аддитивности интеграла в левой части получится интеграл по D. В правой части поверхностные интегралы по соответствующим частям границ областей в сумме дадут ноль, так как внешние нормали в точках границ областей принадлежащих границам двух таких областей, направлены в разные стороны. Таким образом, останутся только интегралы по частям границ составляющим в совокупности границу области D.

Замечание 2. В формулировке теоремы 6.2 от условия 2) можно избавиться и считать, что - кусочно гладкая двусторонняя полная ограниченная поверхность без особых точек. Однако в этом случае доказательство теоремы усложняется.

Замечание 4. Формула Остроградского-Гаусса (6.26) может быть записана, как это следует из доказательства, в виде

Заметим, что интегралы слева и справа имеют инвариантный

характер, т. е. их значение и форма не меняются при переходе к новой декартовой системе координат. Для этого достаточно провести рассуждения, аналогичные проведенным в замечании 5 после доказательства теоремы 6.1.

М.В. Остроградский - российский математик и физик времен Российской империи, академик. Внес огромный вклад в развитие математического анализа, теории вероятностей, механики (раздела физики), теории чисел. В 1826 году вывел формулу, называемую сейчас формулой Остроградского - Гаусса.

История открытия

Впервые формула Остроградского - Гаусса была упомянута Жозефом Лагранжем в 1762 году.

Далее основной способ приведения тройного интеграла к поверхностному был доказан Карлом Гауссом, который использовал в качестве основы для доказательства решение проблем в электродинамике. Произошло это в первой половине XIX века.

Смысл формулы Остроградского

Формула Остроградского-Гаусса соотносит тройной интеграл по пространственному объему с интегралом по поверхности на его грани. Она является аналогом формулы Грина, которая соотносит двойной интеграл по плоскости с криволинейным по ее границам.

Вывод формулы

Формула Остроградского - Гаусса: вывод. Допустим, что в области W определена подынтегральная функция R (x, y, z), которая является определенной и непрерывной. Аналогичной является и ее производная во всей области W, включая ее границу. В таком виде известна сейчас теорема Остроградского - Гаусса (формула приведена ниже).

Причем S - поверхность, которая ограничивает тело, а интеграл справа распространен на ее внешнюю сторону.

И абсолютно верно,

Если аналогично брать во внимание и интегралы по поверхности, то

при этом справа находится сумма двух интегралов - первый из них соотносится с верхней частью поверхности (S 2), а второй - с нижней частью поверхности (S 1). Если приписать к данному равенству справа интеграл, указанный ниже, то его справедливость не будет нарушена:

Он соотносится с внешней частью поверхности S 3 по причине равенства нулю.

Если объединить все три вышеуказанных интеграла в один, будет получен частный случай формулы Остроградского.

Несложно осознать, что данная формула верна для более широкого класса тел и справедлива так же для фигур, ограниченных абсолютно любыми нелинейными поверхностями.

Аналогично справедливы и следующие формулы:

если функции Q и P непрерывны в области вместе со своими производными dP/dx и dQ/dy.

Если сложить оба равенства, будет получено выражение формулы Остроградского. Она отображает интеграл по поверхности, соотнесенный с внешней частью поверхности, через тройной интеграл, который берется по самому телу, границей которого является вышеуказанная поверхность.

Следует понимать, что формулы Грина, Стокса и Остроградского выражают интеграл, связанный с некоторым геометрическим телом, через интеграл, который берется на его границе. Формула Грина используется только в случае двумерности пространства, формула Стокса - к искривленному двумерному пространству.

Формулу Ньютона-Лейбница можно также рассматривать как некоторый аналог этих формул, но для одномерного пространства.

Применение данной формулы

Пусть в какой-либо незамкнутой области пространства заданы непрерывные функции A, B и C. Взяв любую замкнутую поверхность, находящуюся в данной области и ограничивающую некоторое тело, можно рассмотреть следующий интеграл по поверхности:

Необходимо найти такие значения A, B и C, чтобы при любых x, y и z данный интеграл оказывался равен нулю.

Для этого необходимо использовать формулу Остроградского-Гаусса. Одним из подразумеваемых условий является определенность и непрерывность функций A, B и C и их производных.

Так же требуется специально ввести наиболее данное для данного случая ограничение: и тело, и ограничивающая его поверхность должны содержаться одновременно в конкретной и указанной области, называемую односвязной. Основная его особенность заключается в отсутствии пустого пространства (в том числе и точечного). Таким образом, границей тела будет являться одна и при том единственная поверхность.

После применения формулы возможно получение следующего условия, которое является достаточным:

Чтобы доказать, что условие является так же и необходимым, достаточно воспользоваться дифференцированием тройного интеграла.

В заключении необходимо сказать об областях использования.

Как же применяется на практике формула Остроградского-Гаусса? Примеры использования можно обнаружить в самых разных сферах: для вывода некоторых формул в физике (например, уравнение диффузии), преобразования интегралов, вычисления интегралов Гаусса, доказательства некоторых формул и многого иного.

Пусть компоненты векторного поля непрерывны и имеют непрерывные частные производные в пространственно односвязной замкнутой областиV и на ее кусочно гладкой границе .

Тогда справедлива формула Остроградского – Гаусса

Заметим, что левая часть формулы представляет собой поток векторного поля
через поверхность .

Доказательство. 1) Формула Остроградского – Гаусса, в силу произвольностиP, Q, Rсостоит из трех частей, в каждую из которых входит одна из компонент векторного поляP, Q, R. В самом деле, можно взятьP = 0, Q = 0 и доказывать отдельно часть формулы в которую входит толькоR. Остальные части формулы (приP= 0, R= 0, Q= 0, R = 0) доказываются аналогично. Будем доказывать часть формулы

2) Для доказательства выбранной части формулы представим пространственную область Vв виде объединения конечного числа цилиндрических тел, не имеющих общих внутренних точек, с образующими, параллельными осиOZ. Доказательство можно проводить для цилиндрического тела. В самом деле, тройной интеграл в правой части равен сумме тройных интегралов по цилиндрическим телам (свойство аддитивности). Поверхностный интеграл в левой части также равен сумме поверхностных интегралов по полным поверхностям цилиндрических тел, причем при суммировании интегралы по общим границам соседних цилиндрических тел будут сокращаться из-за противоположного направления внешних нормалей на общих границах.

Итак, будем доказывать соотношение
для цилиндрического телаV, проектирующегося в областьDна плоскостиOXY. Пусть «верхняя» граница цилиндрического тела – поверхность описывается уравнением
, «нижняя» граница – поверхность описывается уравнением
. Боковую поверхность цилиндрического тела, параллельную осиOZ, обозначим.

Сразу заметим, что поток векторного поля через боковую поверхность равен нулю. Действительно, , так как нормаль на боковой поверхности ортогональна осиOZи
.

Заметим также, что на «верхней» поверхности
, а на «нижней поверхности
. Поэтому при переходе от поверхностного интеграла пок двойному интегралу по областиDи обратно надо менять знак, а при переходе от поверхностного интеграла пок двойному интегралу по областиDи обратно менять знак не надо.

=
=

+
=

Таким образом, соотношение
доказано.

Замечание. Формулу Остроградского – Гаусса можно записать в «полевом» виде

- поток векторного поля через замкнутую поверхность равен объемному интегралу от дивергенции поля по области, ограниченной поверхностью .

Дивергенция векторного поля (расходимость) есть
.

Дивергенция – это характеристика векторного поля, инвариантная относительно системы координат. Покажем это.

Инвариантное определение дивергенции.

Рассмотрим произвольную точку M в пространственной области V. Выберем ее окрестностьV M – шар радиусаrс центром в точкеM. Обозначим
- ее границу – сферу радиусаr. По теореме о среднем для тройного интеграла

(по формуле Остроградского – Гаусса).

Стягиваем окрестность к точке M, получаем дивергенцию векторного поля в точкеM.

. Это и естьинвариантное определение дивергенции .

Поэтому дивергенция векторного поля в точке M имеет смысл объемной плотности потока векторного поля через окрестность этой точки и характеризует мощность источника (если
>0) или стока (если
<0) векторного поля в точке M .

Если
>0, то точкаM– источник векторного поля, если
<0, то точка M– сток векторного поля. Если в некоторой области дивергенция равна нулю, то в этой области нет ни источников, ни стоков, поток векторного поля через границу такой области равен нулю – «сколько поля втекает в область, столько и вытекает из нее».

Пример. Определить расположение источников и стоков векторного поля. Выяснить, является ли точкаM(1,2,3)источником или стоком.

Все точки, для которых 2xy+xz >0 – источники, все точки, для которых 2xy+xz <0– стоки. На поверхности 2xy+xz = 0 нет ни источников, ни стоков. Точка M– источник, так как.