Герон александрийский простые механизмы. Изобретения герона александрийского


Древнегреческая культура уникальна по нескольким причинам. Её носители смогли перенять, и по-своему реализовать величайшие достижения предшествующих цивилизаций - шумеров, египтян, вавилонян. Именно самыми первыми цивилизациями, ещё до греков, были сделаны важнейшие открытия в таких областях человеческого знания как математика, астрономия, природоведение, архитектура.

Этими знаниями, кстати, пользуемся и мы, являясь наследниками Средневековой и Древнегреческой цивилизаций. Только небольшой пример архаичности наших знаний о мире, то есть знаний, носящих отпечаток чего-то очень древнего.

Сегодня весь мир считает 60 секунд,что бы отсчитать минуту, и столько же минут для часа. Но почему именно 60? Эта традиция именно так считать время происходит из Античности. Безусловно что греки переняли эту традицию у математиков Междуречья. Вавилоняне унаследовали шестидесятеричную систему счисления, вместе с точнейшими таблицами наблюдений за небесными телами, от более древних своих предшественников – шумеров. Позднее, её также переняли и греческие астрономы.

До сих пор неясно происхождение шестидесятеричной системы. Вероятно, она связана с другой, двенадцатеричной системой счисления. Все дело в том, что 5×12= 60. 5 это число пальцев на руке. (6х60).Двенадцатеричная система возникла исходя из количества фаланг четырех пальцев руки при подсчёте их большим пальцем той же самой руки. Фаланги пальцев применялись как простейшие счёты (большой палец текущее засекал состояние счёта), вместо принятого в европейцами загибания пальцев.


Реконструкция паровой турбины Герона

Что и говорить, первые цивилизации Междуречья и долины Нила оставили грекам богатое наследство прикладных знаний. Величайшие древнегреческие ученые ещё глубже их развили, добившись невероятных открытий в геометрии, алгебре и физике. Известны имена многих из этих ученных – Архимед великий математик-теоретик, Евклид - отец геометрии и Аристотель, которого по праву можно назвать отцом физики, как теоретической науки.

Но, пожалуй, ни один древнегреческий естествоиспытатель не добивался таких успехов, и не делал такого большого количества всевозможных изобретений, как Герон Александрийский. Его даже относят к величайшим инженерам за всю историю человечества. Этот древнегреческий механик и математик жил в первой половине I века н.э., и о его личной жизни мало что известно. Не смотря на это, в арабском переводе сохранились целиком многие из его произведений: Пневматика, Метрика, Автоматопоэтика (только прислушайтесь, как звучит!), Механика, Катоптрика (то есть наука о зеркалах). Часть работ сегодня безвозвратно утеряна.В их числе многие свитки, которые хранились в Александрийской библиотеке). Герон использовал достижения многих своих предшественников: Стратона из Лампсака, Архимеда, Евклида. У него был широкий круг интересов - геометрия, оптика, механика, гидростатика.

Именно ему принадлежит ряд удивительных для своего времени изобретений - автоматические двери, скорострельный самозаряжающийся арбалет, механический кукольный театр с автоматическими декорациями, прибор для измерения длины дорог, то есть древний таксометр. Ему приписывают создание первого программируемого устройства. Но сделаем скидку на время – на тот момент такое «устройство» представляло собой вал со штырьками, на который была намотана веревка.


Один из чертежей Герона – орган, издающий звук при помощи ветряной мельницы

Но,пожалуй, самое удивительное изобретение Герона, опередившее свое время на 17 веков является паровая турбина. Да-да, именно ему принадлежит создание первого подобного двигателя. В течение долгого времени (практически все время, за исключением последних 300 лет), люди работали вручную, прежде чем был изобретен паровой двигатель. Сначала применялась сила животных. Затем,люди научились использовать в качестве источника энергии силу ветра, надувавшего паруса и крутившего ветряные мельницы. Сами мельница также были своеобразным двигателем, которым качали воду и перемалывая зерно.

Герон смог первымпредположить что механический вал, можно заставить вращать и с помощью тепла. Хорошо известен принцип работы его аппарата, чертежи которого дошли и до наших дней. В нем, энергия нагретого и сжатого водяного пара преобразуется в кинетическую энергию, с помощью которого совершается механическая работа на валу.

Впрочем, двигатель Герона был слишком мал, чтобы им можно было совершать какую-либо работу. Изобретатель не получил должного признания. В средние века, в Европе, многие из его изобретений были забыты, отвергнуты или же попросту не представляли практического интереса.А зря! Кто знает, когда могла бы начаться индустриальная эпоха, будь вновь изобретен паровой двигатель лет на 400 раньше. Но история не терпит сослагательного наклонения «а если…».

Только в 1705 году, англичанин Томас Ньюкомен, изобретает паровой двигатель, который начали использовать для откачки воды из угольных шахт. В XVIII веке, другой англичанин, Джеймс Ватт, создал усовершенствованный двигатель. Он придумал клапаны, которые автоматически заставляли поршни опускаться и подниматься. То есть теперь не требовалось специального человека, который бы делал это. Так началась эпоха парового двигателя. Уже через сто лет по миру начали плавать первые пароходы на паровых двигателях и первые паровозы, название которых, говорит само за себя.


Один из последних паровозов на паровом двигателе, сделанный в 1944 в Монреале. Он весил 320 тон и в длину составлял 30 метров

Но паровой двигатель был довольно тяжелым, так как сгорание топлива происходило в топке, которая располагалась отдельно от парового котла. Более совершенный бензиновый двигатель,был разработан чуть позже в 1878 году немцем Николасом Отто. Такой двигатель не нуждался в отдельной топке, требовал меньше топлива, и был намного легче, чем паровой двигатель аналогичной мощности.

Так европейская инженерная мысль, без оглядки на опыт прошлых эпох, прокладывала свой путь к прогрессу. Сам Герон, дальше теоретических изысканий не пошел. О нем надолго забыли, и здание современной науки было построено практически без его помощи. Однако трудно недооценить смелый гений этого античного ученного, невероятные проекты которого смогли опередить свое время на целые тысячелетия.

Архимедово учение о равновесии жидкостей было использовано в блестящих изобретениях Герона Александрийского, к рассмотрению которых мы и обращаемся.

Герон Александрийский, ученик Ктезибия, сына брадобрея и также искусного изобретателя, жил во второй половине II в. до н. э. (около 120 г.). В лице Герона мы имеем дело с практиком античной науки. В области математики Герон искал таких соотношений, которые более всего соответствовали бы целям землемерия, разрабатывал методы вычислений, в частности методы приближённых вычислений. Он дал правило, позволяющее определить площадь треугольника по его сторонам; в современном виде это правило записывается в виде так называемой формулы Герона:

Изобретения Герона не носили характера технических приложений, они скорее могут быть названы техническими игрушками и их история - поучительный пример того, как остроумные изобретения, не соответствующие запросам эпохи, остаются бесплодными.

Учитель Герона - Ктезибий, как было уже сказано, являлся крупным изобретателем. Он изобрёл водяные часы с указателем (рис. 28), водяной орган, пожарную машину. Последнее изобретение имело почти что современный вид. Герон так описывает эту машину:

"Пожарные насосы, употребляемые для тушения пожаров, делаются следующим образом (рис. 29): два металлических цилиндра высверливаются изнутри токарным резцом по величине поршня, подобно тому, как высверливают "насосы" колодезных дел мастера. KL и MN - точно пригнанные поршни. Цилиндры соединены между собой трубой XODE и снабжены снаружи (внутри трубы XODE ,) - открывающимися наружу клапанами Р и R. В дне цилиндров имеются отверстия S и Т, которые закрываются гладкими шарнирными пластинками (заслонки клапанов); сквозь них пропущены болты, которые крепко припаиваются или прочно соединяются с дном цилиндра при помощи надетых на их наружных концах заклепок. Поршни снабжены закреплёнными в середине их штоками S, с ними соединяется штанга (балансир Za), которая посередине вращается вокруг болта поршневые же штоки S вращаются вокруг болтов b и v. Над отверстием, находящимся в трубке XODEy устанавливается другая вертикальная вилообразная трубка S, снабжённая краноподобной насадкой, через которую выбрасывается вода таким же образом, как нами уже говорилось выше при описании сосуда, выбрасывавшего воду при помощи сжатого в нём воздуха".

Клапан, о котором упоминается в этом описании (рис. 30), был, по-видимому, также изобретён Ктезибием. Герон описывает этот прибор следующим образом: "Изготовляют две четырёхугольные пластинки соответственной толщины, длиною в палец с каждой стороны. Своими поверхностями они пригоняются друг к другу и пришлифовываются так, что между ними не может пройти ни воздух, ни вода. Пусть эти пластинки будут ABCD и EFGH. В одной из них, именно ABCD, просверлено круглое отверстие в одну треть пальца шириной. Край CD соединён при помощи шарнира с краем FE, так что отшлифованные стороны металлических пластинок ложатся одна на другую. Когда хотят воспользоваться этими клапанами, то пластинку ABCD наглухо припаивают к отверстию, сквозь которое должен входить воздух или вода. В таком случае при давлении изнутри пластинка EFGH открывается и пропускает воздух или воду. Но затем давление воздуха или воды будет прижимать пластинку EFGH к отверстию, сквозь которое входит воздух или вода".

Как видим, техника, в частности техника обработки металлов, достигала в это время довольно высокого уровня. Ниже мы увидим, что Герон даже осуществил тепловой двигатель. Но эта техника, как уже неоднократно указывалось, не могла произвести промышленного переворота, не могла играть той революционной роли, какую она сыграла в период первоначального накопления, в период буржуазных революций.

Знаменитые изобретения Герона описаны в дошедшем до нас трактате "Пневматика". По своим теоретическим позициям Герон примыкает к Аристотелю, однако с существенными поправками. Он так же, как и Аристотель, считает, что пустоты в природе нет, но "хотя в природе и нет большого пустого пространства, тем не менее совсем маленькие пустые пространства существуют в жидкостях, огне и других телах".

Доказательством существования пустых промежутков между частицами Герон считает упругость, смешивание различных жидкостей, расширяемость тел от нагревания и т. д. Воздух Герон считает телом, состоящим из весьма лёгких и подвижных частиц. Доказательством того, что воздух тело, Герон считает, например, факт, что опрокинутый вверх дном сосуд при погружении его в другой сосуд с водой не заполняется водой. Если же в дне сосуда проделать отверстие, через которое воздух может выходить, то вода заполнит внутренность погружаемого сосуда, вытесняя воздух через это отверстие. Аномально больших промежутков между частицами тела природа не допускает и, в этом смысле, "боится пустоты". Так, например, если из сосуда отсосать некоторое количество воздуха, благодаря чему расстояние между частицами оставшегося воздуха увеличивается, то сосуд будет обладать всасывающими свойствами (кровесосные банки): кожа пальца, закрывающего отверстие сосуда, будет втягиваться внутрь. Если палец отнять, то в сосуд входит наружный воздух, заполняя объём его до тех пор, пока расстояния между частицами не достигнут нормальной величины. В этом следует искать причины прочности тел. Жидкая струя, по Герону, также обладает прочностью на разрыв * . Раз возникнувший столб жидкости не может разорваться, ибо это привело бы к образованию значительной пустоты. На этом строится объяснение Героном действия сифона.

* (Галилей в своем учении о сопротивлении материалов реставрировал воззрения Герона. )

Погрузим коленчатую трубку AHDBCKL (рис. 31) в сосуд, заполненный водой до уровня FG. Вода в колене достигнет уровня Я, совпадающего с уровнем FG. Если же отсосать у L воздух ртом, то, в силу указанного свойства не допускать значительных пустот, воздух будет всасывать из сосуда воду по колену AHD. При достаточном разрежении вода заполнит верхнюю часть трубки В и начнёт стекать вниз по колену CKL. Стремясь упасть, как груз в обоих коленах, она не может упасть, ибо это привело бы к разрыву струи. Если уровень жидкости в левом колене ниже, чем в правом, то левый груз воды перетянет правый и вода будет перетекать от более высокого уровня к более низкому до тех пор, пока уровни жидкости слева и справа не сравняются, или до тех пор, пока не опорожнится сосуд (если уровень дна его достаточно высок).

Итак, в теории Герона мы имеем дело с двумя основными допущениями: а) невозможность разрыва струи, b) перевешивание струи более длинной частью, что приводит к перетеканию жидкости от более высокого уровня к более низкому. Раз образовавшаяся жидкая струя ведёт себя наподобие верёвки, перекинутой через блок. Верёвка будет "сбегать" в сторону более длинной части. Давление наружного воздуха в этом объяснении роли не играет.

Любопытно, что это объяснение Герона было сравнительно недавно реставрировано как вновь открытый "принцип действия жидкого сифона". В книге профессора Поля "Введение в механику и акустику" мы встречаем подчёркнутое автором утверждение, что "принцип сифона ничего общего не имеет с давлением воздуха", в пояснение которого (т. е. утверждения) приводится образ сбегающей с блока цепочки. Оставляя в стороне умалчивания проф. Поля о том обстоятельстве, что выдвинутый им против обычной "элементарной" трактовки действия сифона принцип насчитывает двухтысячелетнюю давность, отметим, что проф. Поль обходит молчанием также и некоторые трудности, связанные с героновским объяснением, трудности, которые были известны уже самому Герону. А именно, если представить себе, что левый конец цепочки короче, однако состоит из нескольких цепочек, то можно не только добиться равновесия, но и сбегания цепочки в сторону короткой части. Другими словами, если изготовить сифонную трубку из колен неодинаковой толщины, сделав короткое колено более толстым, можно добиться переливания жидкости от более низкого уровня к более высокому. Герон указывает, что это невозможно. Заполним U-образную трубку жидкостью до самого верха. Закроем концы трубки и опрокинем её в два сосуда с неодинаковыми уровнями жидкостей так, чтобы толстое колено трубки было бы погружено в сосуд с высшим уровнем жидкости. Отняв пальцы от концов трубки, установим сообщение между массами жидкости в обоих сосудах (столб жидкости в сифонной трубке разорваться не может). Но, по Архимеду, сообщающиеся массы жидкости будут находиться в равновесии тогда и только тогда, когда свободная поверхность будет сферической поверхностью с центром в центре Земли. Следовательно, жидкость будет перетекать с высшего уровня на низший, пока уровни не сравняются. Мы видим, что Герон, отправляясь от Архимеда, по существу, формулирует уже принцип сообщающихся сосудов. Что же касается принципа сифона, то объяснение Герона, реставрированное Полем, отражает одну сторону работы сифона, но не всю. Исследования Паскаля представляют собой крупный шаг вперёд в уяснении действия сифона, а не шаг назад, как это хочет сказать проф. Поль. Своеобразное Героново понимание "боязни пустоты" даёт ему возможность объяснить действие пипетки, которая у него имеет форму "магического шара". Если, оставив верхнее отверстие открытым, погрузить шар в жидкость, то жидкость войдёт через отверстия в дне шара внутрь его. Если теперь закрыть отверстие пальцем и вынуть шар, то вода не выльется через решётчатое дно шара, ибо это привело бы к образованию пустот во внутреннем воздушном пространстве. Отнятием пальца можно вылить жидкость в любом месте.

Герон придумал сифоны разнообразной формы. Упомянем здесь о двойном сифоне и о сифоне с постоянной скоростью вытекания (сифон с поплавком). Двойной сифон (рис. 32) представляет собой трубку, закрытую сверху, но открытую внизу. Внутри этой трубки помещается вторая, открытая с обоих концов,- верхний конец несколько не доходит до дна наружной трубки. Если в сосуде имеется отверстие в дне такого размера, что в него входит, плотно прилегая к краям, внутренняя трубка сифона, то в сосуд можно наливать жидкость до тех пор, пока её уровень не будет таков, что наружная трубка сифона не заполнится до самого дна. Тогда, по принципу сифона, жидкость будет вытекать по внутренней трубке до тех пор, пока сосуд не опорожнится. Двойной сифон объясняет действие "волшебного кубка" Герона. В сифоне с постоянной скоростью истечения (рис. 33). внутреннее колено закреплено в чаше, плавающей на поверхности жидкости в сосуде. По мере понижения уровня жидкости опускается и сифон, так что выходное отверстие остаётся ниже уровня жидкости всегда на одну и ту же величину. В качестве примера, иллюстрирующего изобретательность Герона, опишем его автомат "поющая птичка" (рис. 34). Птичка свистит, когда сова на неё не смотрит, и умолкает, когда сова к ней повернётся. Действие этого прибора основано на соответствующем подборе двойных сифонов. Когда жидкость по воронке втекает в верхний сосуд, то она вытесняет воздух, который, проходя по трубочке, вызывает свист. По мере повышения уровня жидкости в резервуаре начинается её вытекание через сифон в нижний ковш. Это вызовет в конце концов перегрузку ковша, который перетянет противовес, и сова повернётся. Сифон подбирается так, что в этот момент вытекание из резервуара превышает скорость поступления жидкости - птичка не поёт. Затем вступает в действие нижний сифон. По мере опорожнения резервуара опорожнится и ковш - сова отвернётся. Работа автомата начинается снова.

Особенно замечательно, что Герон впервые использовал движущую силу тепла. Ознакомимся прежде всего с действием его "Эолипила". Эолипил Герона представляет собой железный шар, могущий вращаться вокруг горизонтальной оси (рис. 35). В верхней части шара имеется выводная трубка, согнутая под прямым углом; такая же трубка, но изогнутая в противоположную сторону, имеется внизу шара. Пар, поступающий из резервуара по боковым трубкам, выбрасывается выпускными трубками. Реакция паровой струи (принцип турбины) приводит шар во вращение.

Так почти за две тысячи лет до изобретения паровой машины был впервые сконструирован тепловой двигатель. Но это было преждевременное изобретение, и с XVII века начинаются новые поиски тепловой машины.

Приведём в качестве примера применения движущей силы тепла - алтарь с автоматически открывающимися дверями при возжигании жертвенного огня (рис. 36).

"В храме находится полый жертвенник DE, который соединён при помощи трубки FG с шарообразным сосудом РН, наполовину наполненным водой. В шар впаивается U-образная трубка KLM. Оси вращения обеих створок дверей продолжены до пола подвала, где они вставлены в соответствующие гнёзда. На осях навиты две цепочки. На конце одной цепочки помещается груз, который своей тяжестью стремится закрыть дверь, а на другой, навитой в обратном направлении на дверных осях, висит сосуд другой, навитой в обратном направлении XN, который, будучи пустым, легче груза. В этот сосуд проходит одно из колен U-образной трубки, которая так установлена, что, когда двери закрыты, это колено доходит почти до дна сосуда.

Когда на алтаре зажигают огонь, алтарь нагревается, заключённый в нём воздух расширяется, давит на воду, находящуюся в шаре, и поднимает её по U-образной трубке в подвешенный сосуд, который благодаря этому опускается и таким образом открывает дверь.

Рассмотренными примерами мы и ограничимся. Из сказанного ясно, насколько остроумны были изобретения Герона. Практическое значение получили только его гидравлические машины, усовершенствовавшие технику водочерпальных машин. Остальные изобретения выполняли роль забавных игрушек, не больше. Только возрождающаяся новая наука обратилась к изобретениям Герона, развив их дальше на новой основе.

Герон считается величайшим инженером за всю историю человечества. Он практически вплотную подобрался к индустриальной революции, которая произошла только через приблизительно 2000 лет. Первым изобрёл автоматические двери, автоматический театр кукол, автомат для продаж, скорострельный самозаряжающийся арбалет, паровую турбину, автоматические декорации, прибор для измерения протяженности дорог (древний «таксометр») и др. Первым начал создавать программируемые устройства (вал со штырьками с намотанной на него веревкой).

Занимался геометрией, механикой, гидростатикой, оптикой. Основные произведения: Метрика, Пневматика, Автоматопоэтика, Механика (фр.; произведение сохранилось целиком по-арабски), Катоптика (наука о зеркалах; сохранилась только в латинском переводе) и др. В 1814 году было найдено сочинение Герона «О диоптре», в котором изложены правила земельной съемки, фактически основанные на использовании прямоугольных координат. Герон использовал достижения своих предшественников: Евклида, Архимеда, Стратона из Лампсака. Многие из его книг безвозвратно утеряны (свитки содержались в Александрийской библиотеке). Одна из копий его книг, сделанная в 16 веке, содержится в Оксфордском Университете.

В средние века многие из его изобретений были отвергнуты, забыты или не представляли практического интереса.

Механика

В трактате «Механика» (????????), состоящем из трёх книг, Герон описал пять типов простейших машин: рычаг, ворот, клин, винт и блок. Герон установил «золотое правило механики», согласно которому выигрыш в силе при использовании этих механизмов сопровождается потерей в расстоянии.

В трактате «Пневматика» (??????????) Герон описал различные сифоны, хитроумно устроенные сосуды, автоматы, приводимые в движение сжатым воздухом или паром. Это эолипил , представлявший собой первую паровую турбину - шар, вращаемый силой струй водяного пара; автомат для открывания дверей, автомат для продажи «святой» воды, пожарный насос, водяной орган, механический театр марионеток. В книге «Об автоматах» (????????) также описаны различные автоматические устройства.

В трактате «Беллопоэтика» (????????????) Герон описал различные военные метательные машины.

Геодезия

В книге «О диоптре» (???? ????????) описан диоптр - простейший прибор, применявшийся для геодезических работ. Этот прибор представляет собой линейку с двумя смотровыми отверстиями, которую можно поворачивать в горизонтальной плоскости и при помощи которой можно визировать углы.

Герон излагает в своём трактате правила земельной съёмки, основанные на использовании прямоугольных координат. В предложении 15 описывается, как строится геодезическое обоснование при прокладке тоннеля сквозь гору, когда работы ведутся одновременно с обоих его концов.

В предложении 34 описан одометр - прибор для измерения расстояния, пройденного повозкой. В предложении 38 описывается сходное устройство, позволяющее определять расстояние, пройденное кораблём.

Оптика

В «Катоптрике» (??????????) Герон обосновывает прямолинейность световых лучей бесконечно большой скоростью их распространения. Он приводит доказательство закона отражения, основанное на предположении о том, что путь, проходимый светом, должен быть наименьшим из всех возможных (частный случай принципа Ферма). Исходя из этого принципа, Герон рассматривает различные типы зеркал, особое внимание уделяя цилиндрическим зеркалам.

Математика

«Метрика» (???????) Герона и извлечённые из неё «Геометрика» и «Стереометрика» представляют собой справочники по прикладной математике. Здесь даны правила и формулы для точного и приближённого расчёта различных геометрических фигур, например «формула Герона» для определения площади треугольника по трём сторонам (открытая Архимедом), правила приближённого извлечения квадратных и кубических корней (см. Итерационная формула Герона). В основном изложение в математических трудах Герона догматично - правила часто не выводятся, а только показываются на примерах.

«Определения» Герона представляют собой обширный свод геометрических определений, по большей части совпадающих с определениями «Начал» Евклида.

Годы жизни Герона

Годы жизни Герона в XX веке стали предметом дискуссии. Согласно античным источникам он жил после Архимеда, но перед Паппом, т.е. где-то между 200 до н.э. и 300 гг. н.э. Некоторые историки XVIII-XIX веков указывали более конкретные даты в этом интервале, напр., Бальди помещает Георона под 120 годом до н.э., а в ЭСБЕ указан год рождения Герона - 155 год до н.э.. В 1938 году Отто Нойгебауер предположил, что Герон жил в 1-ом веке н.э. Это предположение было основано на том, что в его книге «О диоптре» упоминается лунное затмение, которое было замечено за 10 дней до весеннего равноденствия. Его указание, что оно произошло в Александрии в 5 часов ночи, однозначно указывает в интервале между 200 до н. э. и 300 н.э. на лунное затмение от 13 марта 62 года (юлианская дата). В последнее время датировка Нойгебауера была подвергнута критике Натаном Сидоли (Nathan Sidoli) .

Многие из нас, изучая физику или историю техники, с удивлением обнаруживают, что некоторые современные технологии, предметы и знания были открыты и изобретены в далекие античные времена. Фантасты в своих произведениях для описания таких явлений даже используют специальный термин: "хроноклазмы" - таинственные проникновения современных знаний в прошлое. Однако, в реальности все проще: большинство подобных знаний были действительно открыты древними учеными, но потом по каким-то причинам о них забыли и открыли вновь спустя столетия. В этой статье предлагаю вам ближе познакомиться с одним из удивительных ученых античности. Он внес в свое время огромный вклад в развитие науки, но большинство его трудов и изобретений кануло в Лету и было незаслуженно забыто. Имя ему -- Герон Александрийский.

Герон жил в Египте в городе Александрия и поэтому стал известен как Герон Александрийский. Современные историки предполагают, что он жил в 1-м веке н.э. где-то между 10-75 годами. Установлено, что Герон преподавал в Александрийском Музее -- научном центре античного Египта, в состав которого входила и знаменитая Александрийская библиотека. Большинство трудов Герона представлено в виде комментариев и записок к учебным курсам по различным учебным дисциплинам. К сожалению, подлинники этих трудов не сохранились, возможно, они погибли в пламени пожара, охватившем Александрийскую библиотеку в 273 году н.э., а возможно были уничтожены в 391 году н.э. христианами, в порыве религиозного фанатизма крушившими все, что напоминало о языческой культуре. До наших времен дошли лишь переписанные копии трудов Герона выполненные его учениками и последователями. Часть из них на греческом, а часть на арабском языке. Существуют и переводы на латынь, выполненные в XVI веке. Наиболее известна "Метрика" Герона -- научный труд, в котором даны определение шарового сегмента, тора, правила и формулы для точного и приближенного вычисления площадей правильных многоугольников, объемов усеченных конуса и пирамиды. В "Метрике" приводится знаменитая формула Герона для определения площади треугольника по трем сторонам, даются правила численного решения квадратных уравнений и приближенного извлечения квадратных и кубических корней. В "Метрике" исследуются простейшие подъемные приспособления - рычаг, блок, клин, наклонная плоскость и винт, а также некоторые их комбинации. В этом труде Герон вводит термин "простые машины" и использует для описания их работы понятие момента силы. Многие математики обвиняют Герона в том, что в "Метрике" не содержится математических доказательств, сделанных им выводов. Это действительно так. Герон не был теоретиком, все выведенные им формулы и правила, он предпочитал объяснять наглядными практическими примерами. Именно в области практики Герон превосходит многих своих предшественников.

Лучшей иллюстрацией этого является его работа "О диоптре", найденная лишь в 1814 году. В этом труде излагаются методы проведения различных геодезических работ, причем землемерная съемка производится с помощью изобретенного Героном прибора - диоптры.

Рис. 2.

Диоптра была прообразом современного теодолита. Главной ее частью служила линейка с укрепленными на ее концах визирами. Эта линейка вращалась по кругу, который мог занимать и горизонтальное, и вертикальное положение, что давало возможность намечать направления, как в горизонтальной, так и в вертикальной плоскости. Для правильности установки прибора к нему присоединялись отвес и уровень. Пользуясь этим прибором и вводя в употребление прямоугольные координаты, Герон мог решать на местности различные задачи: измерить расстояние между двумя точками, когда одна из них или обе они недоступны наблюдателю, провести прямую, перпендикулярную к недоступной прямой линии, найти разность уровней между двумя пунктами, измерить площадь простейшей фигуры, даже не вступая на измеряемую площадку. Еще во времена Герона одним из шедевров античной инженерии считался водопровод на острове Самос, созданный по проекту Эвпалина и проходивший по тоннелю.

Вода по этому тоннелю подавалась в город из источника, находившемся по другую сторону горы Кастро. Известно было, что в целях ускорения работы тоннель рыли одновременно с обеих сторон горы, что требовало высокой квалификации от инженера, руководившего стройкой. Водопровод работал многие века и удивлял современников Герона, также о нем упоминал в своих сочинениях и Геродот. Именно от Геродота современный мир узнал о существовании тоннеля Эвпалина. Узнал, но не поверил, потому что считалось, что древние греки не обладали необходимой технологией для постройки такого сложного объекта.

Изучив найденный в 1814 году труд Герона "О диоптре" ученые получили второе документальное подтверждение существования тоннеля. И лишь в конце XIX века немецкая археологическая экспедиция действительно обнаружила легендарный тоннель Эвпалина. Вот как в своем труде Герон приводит пример использования изобретенной им диоптры для постройки тоннеля Эвпалина.

Рис.3.

Точки B и D -- входы в тоннель. Рядом с точкой B выбирается точка E, от нее вдоль горы строится отрезок EF, перпендикулярный отрезку BE. Далее в обход горы строится система взаимно перпендикулярных отрезков до тех пор, пока не получают линию КL, на которой выбирают точку M и строят от нее перпендикуляр MD ко входу в тоннель D. Используя линии DN и NB, получают треугольник BND и измеряют угол б.

Кроме всего прочего в 34-й главе труда "О диоптре" Герон дает описание изобретенного им устройства для измерения расстояний -- одометра.

Одометр представлял собой небольшую тележку, установленную на двух колесах специально подобранного диаметра. Колеса поворачивались ровно 400 раз на миллиатрий (древняя мера длины, равная 1598 м). Посредством зубчатой передачи во вращение приводились многочисленные колеса и оси, а индикатором пройденного расстояния были камешки, выпадавшие в специальный лоток. Для того, чтобы узнать, какое расстояние было пройдено, нужно было лишь подсчитать количество камешков в лотке. Работу одометра наглядно демонстрируетэтот видеофрагмент . Одним из самых интересных трудов Герона является "Пневматика". В книге приведены описания около 80 устройств и механизмов, действующих с использованием принципов пневматики и гидравлики. Наиболее известным устройством является эолипил (в переводе с греческого: "шар бога ветров Эола").

Эолипил представлял собой наглухо запаянный котел с двумя трубками на крышке. На трубках устанавливался вращающийся полый шар, на поверхности которого были установлены два Г-образных патрубка-сопла. В котел через отверстие заливалась вода, отверстие закрывалось пробкой, и котел устанавливался над огнем. Вода вскипала, образовывался пар, который по трубкам поступал в шар и в Г-образные патрубки. При достаточном давлении струи пара, вырываясь из сопел, быстро вращали шар. Построенный современными учеными по чертежам Герона эолипил развивал до 3500 оборотов в минуту! При сборке эолипила ученые столкнулись с проблемой уплотнения в шарнирных соединениях шара и пароподающих трубок. При большом зазоре шар получал большую степень свободы вращения, но зато пар легко выходил через щели, и его давление быстро падало. Если зазор уменьшали, потеря пара исчезала, но и шар вращался труднее из-за возросшего трения.

Нам неизвестно, как Герон решал эту проблему. Возможно, его эолипил вращался не с такой большой скоростью, как современная модель.К сожалению эолипил не получил должного признания и не был востребован ни в эпоху античности ни позже, хотя и производил огромное впечатление на всех, кто его видел. К этому изобретению относились лишь, как к забавной игрушке. Фактически эолипил Герона является прототипом паровых турбин, появившихся лишь спустя два тысячелетия! Более того, эолипил можно считать одним из первых реактивных двигателей. До открытия принципа реактивного движения остался один шаг: имея перед собой экспериментальную установку, требовалось сформулировать сам принцип. На этот шаг человечество затратило почти 2000 лет. Сложно представить, как бы выглядела история человечества, если бы принцип реактивного движения получил распространение 2000 лет назад. Возможно, человечество уже давно бы изучило всю Солнечную систему и добралось до звезд. Сознаюсь, иногда возникает мысль, что развитие человечества кем-то или чем-то намеренно задерживалось на протяжении столетий. Впрочем, эту тему оставим для развития писателям-фантастам... Интересно, что повторное изобретение эолипила Герона состоялось в 1750 году.

Венгерский ученый Я.А. Сегнер построил прообраз гидравлической турбины. Отличие так называемого Сегнерова колеса от эолипила состоит в том, что реактивная сила, вращающая устройство, создается не паром, а струей жидкости. В настоящее время изобретение венгерского ученого служит классической демонстрацией реактивного движения в курсе физики, а на полях и в парках оно используется для полива растений. Еще одним выдающимся изобретением Герона, связанным с применением пара является паровой бойлер.

Век паровых машин был недолог. Но оказывается, еще древние греки знали, как "приручить" пар и даже использовать его в военных действиях. Наши близкие предки потратили немало сил и времени на освоение "пара", а в последнее время эта тема даже получила второе дыхание.

Поставить пар на службу человечеству люди смогли лишь в самом конце XVII века. Но еще в начале нашей эры древнегреческий математик и механик Герон Александрийский наглядно показал , что с паром можно и нужно дружить. Наглядным подтверждением тому стал Героновский эолипил, фактически, первая паровая турбина — шар, который вращался силой струй водяного пара.

К великому сожалению, многие удивительные изобретения древних греков на долгие столетия были прочно забыты. Лишь к XVII столетию относится описание чего-то, похожего на паровую машину.

Для справки:

ГЕРОН АЛЕКСАНДРИЙСКИЙ (Heronus Alexandrinus)

даты рождения и смерти неизвестны, вероятно, I - II вв.

Герон Александрийский - греческий учёный, работавший в Александрии.

Автор дошедших до нашего времени работ, в которых систематически изложил основные достижения античного мира в области прикладной механики. В известном двухтомном сочинении "Пневматика" описал различные механизмы, приводимые в движение нагретым или сжатым воздухом или паром: эолипил , т. е. шар, вращающийся под действием пара, автомат для открывания дверей, пожарный насос, различные сифоны, водяной орган, механический театр марионеток и т.д. В "Механике" подробно рассмотрел простейшие механизмы: рычаг, ворот, клин, винт и блок. Используя зубчатую передачу, построил прибор для измерения протяжённости дорог, основанный на том же принципе, что и современные таксометры. Создал автомат для продажи "священной" воды, который явился прообразом наших автоматов для отпуска жидкостей. Механизмы и автоматы Герона не нашли сколько-нибудь широкого практического применения и употреблялись в основном в конструкциях механических игрушек. Исключение составляют только гидравлические машины Герона, при помощи которых были усовершенствованы античные водочерпалки.

В сочинении "О диоптре" изложил правила земельной съёмки, фактически основанные на использовании прямоугольных координат. Здесь же дал описание диоптра - прибора для измерения углов - прототипа современного теодолита. В сочинении "Катоптрика" обосновал прямолинейность световых лучей бесконечно большой скоростью их распространения. Привёл доказательство закона отражения, основанное на предположении о том, что путь, проходимый светом, должен быть наименьшим из всех возможных (частный случай принципа Ферма). Исходя из этого принципа, рассмотрел различные типы зеркал. В трактате "Об изготовлении метательных машин" изложил основы античной артиллерии. Математические работы Герона являются энциклопедией античной прикладной математики. В "Метрике" даны правила и формулы для точного и приближённого расчёта различных геометрических фигур, например формула Герона для определения площади треугольника по трём сторонам, правила численного решения квадратных уравнений и приближённого извлечения квадратных и кубических корней.