Какие вещества обусловливают буферные свойства клетки. Цитоплазма.Химический состав,физические свойства

Буферность и осмос.
Соли в живых организмах находятся в растворенном состоянии в виде ионов – положительно заряженных катионов и отрицательно заряженных анионов.

Концентрация катионов и анионов в клетке и в окружающей ее среде неодинакова. В клетке содержится довольно много калия и очень мало натрия. Во внеклеточной среде, например в плазме крови, в морской воде, наоборот, много натрия и мало калия. Раздражительность клетки зависит от соотношения концентраций ионов Na+, K+, Ca 2+, Mg 2+. Разность концентраций ионов по разные стороны мембраны обеспечивает активный перенос веществ через мембрану.

В тканях многоклеточных животных Са 2+ входит в состав межклеточного вещества, обеспечивающего сцепленность клеток и упорядоченное их расположение. От концентрации солей зависят осмотическое давление в клетке и ее буферные свойства.

Буферностью называется способность клетки поддерживать слабощелочную реакцию ее содержимого на постоянном уровне.

Существует две буферные системы:

1)фосфатная буферная система – анионы фосфорной кислоты поддерживают рН внутриклеточной среды на уровне 6,9

2)бикарбонатная буферная система – анионы угольной кислоты поддерживают рН внеклеточной среды на уровне 7,4.

Рассмотрим уравнения реакций, протекающих в буферных растворах.

Если в клетке увеличивается концентрация Н + , то происходит присоединение катиона водорода к карбонат-аниону:

При увеличении концентрации гидроксид-анионов происходит их связывание:

Н + ОН – + Н 2 О.

Так карбонат-анион может поддерживать постоянную среду.

Осмотическими называют явления, происходящие в системе, состоящей из двух растворов, разделенных полупроницаемой мембраной. В растительной клетке роль полупроницаемых пленок выполняют пограничные слои цитоплазмы: плазмалемма и тонопласт.

Плазмалемма - наружная мембрана цитоплазмы, прилегающая к клеточной оболочке. Тонопласт - внутренняя мембрана цитоплазмы, окружающая вакуоль. Вакуоли представляют собой полости в цитоплазме, заполненные клеточным соком - водным раствором углеводов, органических кислот, солей, белков с низким молекулярным весом, пигментов.

Концентрация веществ в клеточном соке и во внешней среде (в почве, водоемах) обычно не одинаковы. Если внутриклеточная концентрация веществ выше, чем во внешней среде, вода из среды будет поступать в клетку, точнее в вакуоль, с большей скоростью, чем в обратном направлении. При увеличении объема клеточного сока, вследствие поступления в клетку воды, увеличивается его давление на цитоплазму, плотно прилегающую к оболочке. При полном насыщении клетки водой она имеет максимальный объем. Состояние внутреннего напряжения клетки, обусловленное высоким содержанием воды и развивающимся давлением содержимого клетки на ее оболочку носит название тургора Тургор обеспечивает сохранение органами формы (например, листьями, неодревесневшими стеблями) и положения в пространстве, а также сопротивление их действию механических факторов. С потерей воды связано уменьшение тургора и увядание.

Если клетка находится в гипертоническом растворе, концентрация которого больше концентрации клеточного сока, то скорость диффузии воды из клеточного сока будет превышать скорость диффузии воды в клетку из окружающего раствора. Вследствие выхода воды из клетки объем клеточного сока сокращается, тургор уменьшается. Уменьшение объема клеточной вакуоли сопровождается отделением цитоплазмы от оболочки - происходит плазмолиз .

В ходе плазмолиза форма плазмолизированного протопласта меняется. Вначале протопласт отстает от клеточной стенки лишь в отдельных местах, чаще всего в уголках. Плазмолиз такой формы называют уголковым

Затем протопласт продолжает отставать от клеточных стенок, сохраняя связь с ними в отдельных местах, поверхность протопласта между этими точками имеет вогнутую форму. На этом этапе плазмолиз называют вогнутым Постепенно протопласт отрывается от клеточных стенок по всей поверхности и принимает округлую форму. Такой плазмолиз носит название выпуклого

Если плазмолизированную клетку поместить в гипотонический раствор, концентрация которого меньше концентрации клеточного сока, вода из окружающего раствора будет поступать внутрь вакуоли. В результате увеличения объема вакуоли повысится давление клеточного сока на цитоплазму, которая начинает приближаться к стенкам клетки, пока не примет первоначальное положение - произойдет деплазмолиз

Задание №3
Прочитав предложенный текст, ответьте на следующие вопросы.
1)определение буферности

2)от концентрации каких анионов зависят буферные свойства клетки

3)роль буферности в клетке

4)уравнение реакций, протекающих в бикарбонатной буферной системе (на магнитной доске)

5)определение осмоса (привести примеры)

6)определение плазмолиза и деплазмолиза слайды

Тестовые задания по теме

«НЕОРГАНИЧЕСКИЕ ВЕЩЕСТВА КЛЕТКИ»

Выберите один правильный ответ из предложенных вариантов:

1. Какие химические элементы, содержащиеся в клетке, относят к макроэлементам?
а) Zn , I, F, Br;

в) Ni, Cu, I, Br.

г) Au, Ag, Ra, U.

2. Каковы функции воды в клетке?


в) источник энергии.

г) передача нервного импульса

3. Какие ионы входят в состав гемоглобина?
а) Mg 2+ ;

4. Передача возбуждения по нерву или мышце объясняется:

а) разностью концентраций ионов натрия и калия внутри и вне клетки

б) разрывом водородных связей между молекулами воды

в) изменением концентрации водородных ионов

г) теплопроводностью воды

5 . Из перечисленных веществ является гидрофильными:

а) крахмал

г) целлюлоза

6. В состав молекулы хлорофилла входят ионы

г) Na +
7. Одновременно входит в состав костной ткани и нуклеиновых кислот:

б) фосфор

в) кальций

8 . У детей развивается рахит при недостатке:

а) марганца и железа

б) кальция и фосфора

в) меди и цинка

г) серы и азота

9 . В состав желудочного сока входит:

10. Больше всего воды содержится в клетках:
а) эмбриона;

б) молодого человека;

в) старика.

г) взрослого человека

11. Какие химические элементы, содержащиеся в клетке, относят к микроэлементам?
а) S, Na, Ca, K;

в) Ni, Cu, I, Br.

г) Р, S, Cl, Nа

12. В состав желудочного сока входит
а) серная кислота;

б) соляная кислота;

в) угольная кислота.

г) фосфорная кислота

13. Каковы функции минеральных веществ в клетке?
а) передача наследственной информации;
б) среда для химических реакций;
в) источник энергии;

г) поддержание осмотического давления клетки.

14. Какие ионы влияют на свёртываемость крови?
а) Mg 2+ ;

15 . Железо входит в состав:

в) гемоглобина

г) хлорофилла

16. Меньше воды содержится в клетках:
а) костной ткани;

б) нервной ткани;

в) мышечной ткани.

г) жировой ткани

17. Вещества, плохо растворимые в воде, называются:
а) гидрофильными;

б) гидрофобными;

в) амфифильными.

г) амфотерными

18. Буферность в клетке обеспечивают ионы:
а) Na + , K + ;

б) SO 4 2- , Cl - ;

в) HCO 3 - , CO 3 2-.

г) Mg 2+ ; Fe 2+

19. Вода – основа жизни, т.к. она:
а) может находиться в трех состояниях (жидком, твердом и газообразном);
б) является растворителем, обеспечивающим как приток веществ в клетку, так и удаление из нее продуктов обмена;
в) охлаждает поверхность при испарении.

г) обладает свойством теплопроводности

20 . Из перечисленных веществ является гидрофобным:

г) перманганат калия

Эталоны ответов

Подробное решение Раздел стр. 14 по биологии для учащихся 9 класса, авторов С.Г. Мамонтов, В.Б. Захаров, И.Б. Агафонова, Н.И. Сонин 2016

2. Неорганические вещества, водящие в состав клетки

Вопрос 1. Какие химические элементы составляют большую часть массы клетки?

Около 98 % массы клетки образуют четыре элемента: водород, кислород, углерод и азот. Это главные компоненты всех органических соединений. Вместе с серой и фосфором, являющимися необходимыми компонентами молекул биологических полимеров (от греч. полис – много, мерос – часть) – белков и нуклеиновых кислот, их часто называют биоэлементами.

Вопрос 2. Что такое микроэлементы? Приведите примеры и охарактеризуйте их биологическое значение.

Все остальные элементы (цинк, медь, йод, фтор, кобальт, марганец, молибден, бор и др.) содержатся в клетке в очень малых количествах. Общий их вклад в её массу – всего 0,02 %. Поэтому их называют микроэлементами. Однако и они имеют жизненно важное значение. Микроэлементы входят в состав ферментов, витаминов и гормонов – веществ, обладающих большой биологической активностью. Так, йод входит в состав гормона щитовидной железы – тироксина; цинк – в состав гормона поджелудочной железы – инсулина; кобальт – необходимый компонент витамина В12.

Микроэлементы нужны в биотических дозах и их недостаток или избыток в поступлении в организм сказываются на изменении обменных процессов и др. Минеральные вещества играют огромную физиологическую роль в организме человека и животных, входят в состав всех клеток и соков, обусловливают структуру клеток и тканей; в организме они необходимы для обеспечения всех жизненных процессов дыхания, роста, обмена веществ, образования крови, кровообращении, деятельности центральной нервной системы и оказывают влияние на коллоиды тканей и ферментативные процессы. Они входят в состав или активируют до трехсот ферментов.

Марганец (Мn). Марганец содержится во всех органах и тканях человека. Особенно много его в коре мозга, сосудистых системах. Марганец участвует в белковом и фосфорном обмене, в половой функции и в функции опорно-двигательного аппарата, участвует в окислительно-восстановительных процессах, при его участии происходят многие ферментативные процессы, а также процессы синтеза витаминов группы В и гормонов. Дефицит марганца сказывается на работе центральной нервной системы и стабилизации мембран нервных клеток, на развитии скелета, на кроветворении и реакциях иммунитета, на тканевом дыхании. Печень - депо марганца, меди, железа, но с возрастом содержание их в печени снижается, но потребность их в организме остается, возникают злокачественные заболевания, сердечно-сосудистые и др. Содержание марганца в пищевом рационе 4...36 мг. Суточная потребность 2-10 мг. Содержится в рябине обыкновенной, шиповнике коричневом, яблоне домашней, абрикосе, винограде винном, женьшене, клубнике, инжире, облепихе, а также хлебопродуктах, овощах, печени, почках.

Бром (Вr). Наибольшее содержание брома отмечают в мозговом веществе, почках, щитовидной железе, ткани головного мозга, гипофизе, крови, спинномозговой жидкости. Соли брома участвуют в регуляции деятельности нерв ной системы, активируют половую функцию, увеличивая объем эякулята и количество сперматозоидов в нем. Бром при чрезмерном накоплении угнетает функцию щитовидной железы, препятствуя поступлению в нее йода, вызывает кожное заболевание бромодерму и угнетение центральной нервной системы. Бром входит в состав желудочного сока, влияя (наряду с хлором) на его кислотность. Рекомендуемая суточная потребность брома взрослым человеком составляет около 0,5-2,0 мг. Содержание брома в суточном пищевом рационе 0,4-1,1 мг. Основным источником брома в питании человека являются хлеб и хлебопродукты, молоко и молочные продукты, бобовые - чечевица, фасоль, горох.

Медь (Си). Медь влияет на рост и развитие живого организма, участвует в деятельности ферментов и витаминов. Главной биологической функцией ее является участие в тканевом дыхании и кроветворении. Медь и цинк усиливают действие друг друга. Дефицит меди вызывает нарушение образования гемоглобина, развивается анемия, нарушается психическое развитие. Возникает потребность в меди при всяком воспалительном процессе, эпилепсии, анемии, лейкозе, циррозе печени, инфекционных заболеваниях. Нельзя кислые пищевые продукты или напитки держать в медной или латунной посуде. Избыток меди оказывает на организм токсическое действие, могут возникнуть рвота, тошнота, понос. Содержание меди в суточном пищевом рационе 2-10 мг и накапливается преимущественно в печени, костях. Во всех витаминах с микроэлементами медь содержится в пределах нормы, в растительных - айва (1,5 мг %). рябина, яблоня домашняя, абрикос обыкновенный, инжир, крыжовник, ананас - 8,3 мг % на 1 кг, хурма до 0,33 мг %.

Никель (Ni). Никель обнаружен в поджелудочной железе, гипофизе. Наибольшее содержание обнаруживается в волосах, коже и органах эктодермального происхождения. Подобно кобальту никель благотворно влияет на процессы кроветворения, активирует ряд ферментов. При избыточном поступлении никеля в организм в течение длительного времени отмечаются дистрофические изменения в паренхиматозных органах, нарушения со стороны сердечнососудистой системы, нервной и пищеварительной систем, изменения в кроветворении, углеводном и азотистом обмене, нарушении функции щитовидной железы и репродуктивной функции. Много никеля в растительных продуктах, морской рыбе и продуктах моря, печени.

Кобальт (Со). В организме человека кобальт выполняет разнообразные функции, в частности оказывает влияние на обмен веществ и рост организма, и принимает непосредственное участие в процессах кроветворения; он способствует синтезу мышечных белков, улучшает ассимиляцию азота, активизирует ряд ферментов, участвующих в обмене веществ; является незаменимым структурным компонентом витаминов группы В, способствует усвоению кальция и фосфора, понижает возбудимость и тонус симпатической нервной системы. Содержание в суточном пищевом рационе 0,01-0,1 мг. Потребность 40-70 мкг. Кобальт содержится в плодах яблони домашней, абрикоса, винограда винного, клубнике, орехе грецком, молоке, хлебопродуктах, овощах, говяжьей печени, бобовых.

Цинк (Zn). Цинк участвует в деятельности более 20 ферментов, является структурным компонентом гормона поджелудочной железы, влияет на развитие, рост, половое развитие мальчиков, центральную нервную систему. Недостаток цинка ведет к инфантильности у мальчиков и к заболеваниям центральной нервной системы. Считается, что цинк канцерогенный, поэтому его влияние на организм зависит от дозы. Содержание в суточном пищевом рационе 6-30 мг. Суточная доза цинка 5-20 мг. Содержится в субпродуктах, в мясных продуктах, не шлифованном рисе, грибах, устрицах, других морских продуктах, дрожжах, яйцах, горчице, в семенах подсолнуха, хлебопродуктах, мясе, овощах, а также содержится в большинстве лекарственных растений, в плодах яблони домашней.

Молибден (Мо). Молибден входит в состав ферментов, оказывает влияние на вес и рост, препятствует кариесу зубов, задерживает фтор. При недостатке молибдена происходит замедление роста. Содержание в суточном пищевом рационе 0,1-0,6 мг. Суточная доза молибдена - 0,1-0,5 мг Молибден присутствует в рябине черноплодной, яблоне домашней, бобовых, печени, почках, хлебопродуктах.

Селен (Se). Селен принимает участие в обмене серосодержащих аминокислот и предохраняет витамин Е от преждевременного разрушения, защищает клетки от свободных радикалов, но большие дозы селена могут быть опасными и принимать пищевые добавки с селеном нужно только по рекомендации врача. Суточная доза селена 55 мкг. Основной причиной дефицита селена является его недостаточное поступление с пищей, особенно с хлебом и хлебобулочными и мучными изделиями.

Хром (Сr). В последние годы доказана роль хрома в углеводном и жировом обмене. Оказалось, что нормальный углеводный обмен невозможен без органического хрома, содержащегося в натуральных углеводных продуктах. Хром участвует в образовании инсулина, регулирует сахар в крови и жировой обмен, снижает уровень холестерина в крови, защищает сосуды сердца от склеротизирования, препятствует развитию сердечно-сосудистых заболеваний. Недостаток хрома в организме может привести к ожирению, задержке жидкости в тканях и повышению артериального давления. Половина населения земли испытывает дефицит хрома из-за рафинирован ной пищи. Ежедневная суточная норма хрома 125 мкг. В ежедневном рационе питания должны быть сведены к минимуму рафинированные, очищенные продукты - белая мука и изделия из нее, белый сахар, соль, каши быстрого приготовления, разнообразные хлопья зерновых. Необходимо включить в питание натуральные нерафинированные продукты, содержащие хром: хлеб из цельного зерна, каши из натурального зерна (гречки ядрицы, неочищенного риса, овса, пшена), субпродукты (печень, почки и сердце животных и птиц) рыбу и морепродукты. Хром содержат желтки куриных яиц, мед, орехи, грибы, коричневый сахар. Из круп больше всего хрома содержит перловка, затем гречка, из овощей много хрома в свекле, редисе, из фруктов - в персиках. Хороший источник хрома и других микроэлементов - пивные дрожжи, пиво, сухое красное вино. Соединения хрома обладают высокой степенью летучести, происходит значительная потеря хрома при варке продуктов.

Йод (J). Йод принимает участие в образовании гормона щитовидной железы - тироксина. При недостаточном поступлении йода развивается заболевание щитовидной железы (зоб эндемический). При недостатке йода в пищевых продуктах, главным образом в воде, применяют йодированную соль и лекарственные препараты йода. Избыток поступления йода в организм приводит к развитию гипотиреоза. Содержание в суточном пищевом рационе 0,04-0,2 мг. Суточная потребность в йоде 50-200 мкг. Йод находится в рябине черноплодной, до 40 мг %, груше обыкновенной до 40 мг %, фейхоа 2-10 мг % на 1 кг, молоке, овощах, мясе, яйцах, морской рыбе.

Литий (Li). Литий обнаружен в крови человека. Соли лития с остатками органических кислот применяются для лечения подагры. В основе подагры лежит нарушение пуринового обмена с недостаточным выделением мочекислых солей, вызывающее повышенное содержание мочевой кислоты в крови и отложение её солей в суставах и тканях организма. Развитию подагры способствует избыточное питание продуктами, богатыми пуриновыми основаниями (мясо, рыба и пр.), злоупотребление алкоголем, сидячий образ жизни. Карбонат лития применяется в гомеопатии при расстройствах окислительных процессов в организме с явлениями мочекислого диатеза и подагры.

Кремний (Si). Кремний находится в плазме крови, как и железо, он нужен для образования эритроцитов. Соединения кремния необходимы для нормального развития и функционирования соединительной и эпителиальной тканей. Он способствует биосинтезу коллагенов и образованию костной ткани (после перелома количество кремния в костной мозоли увеличивается почти в 50 раз). Полагают, что присутствие кремния в стенках сосудов препятствует проникновению в плазму крови липидов и их отложению в сосудистой стенке, что соединения кремния необходимы для нормального протекания процессов липидного обмена. Суточная потребность в диоксиде кремния составляет 20-30 мг. Кремний обнаружен в коже, волосах, щитовидной железе, гипофизе, надпочечниках, легких, меньше всего в мышцах и крови. Источником его является вода и растительные пищевые продукты. Наибольшее количество кремния содержится в корневых овощах, фруктах: абрикосах, бананах, вишнях, клубнике, землянике, овсе, огурцах, пророщенных зернах злаков, в цельном зерне пшеницы, просе, питьевой воде. Недостаток кремния приводит к ослаблению кожи и волос. Пыль кремнийсодержащих неорганических соединений может вызвать развитие заболевания легких - силикоз. Повышенное поступление кремния в организм может вызвать нарушение фосфорно-кальциевого обмена, образование мочевых камней.

Сера (S). В организме человека сера участвует в образовании кератина белка, находящегося в суставах, волосах и ногтях. Сера входит в состав почти всех белков и ферментов в организме, участвует в окислительно-восстановительных реакциях и других метаболических процессах, способствует секреции желчи в печени. Много серы содержится в волосах. Атомы серы входит в состав тиамина и биотина-витаминов группы В, а также в состав жизненно важных аминокислот - цистеина и метионина. Дефицит серы в организме человека встречается очень редко - при недостаточном употреблении продуктов, содержащих белок. Физиологическая потребность в сере не установлена.

Фториды (F-). Содержание в пищевом рационе 0,4-0,8 мг. Суточная потребность фторидов 2-3 мг. Преимущественно накапливается в костях и зубах. Фториды применяются от кариеса зубов, стимулируют кроветворение и иммунитет, участвуют в развитии скелета. Избыток фторидов дает крапчатость зубной эмали, вызывает заболевание флюороз, подавляет защитные силы организма. В организм фтор поступает с пищевыми продуктами, из которых наиболее богаты им овощи и молоко. В составе пищи человек получает около 0,8 мг фтора, остальное его количество должно поступать с питьевой водой.

Серебро (Аg). Серебро - микроэлемент, являющийся необходимой составной частью тканей любого живого организма. В суточном рационе человека должно содержаться в среднем около 80 мкг серебра. Исследования показали, что даже длительное употребление человеком питьевой воды, содержащей 50 мкг на литр серебра, не вызывает нарушений функции органов пищеварения и каких- либо патологических сдвигов в состоянии организма в целом. Такое явление, как дефицит серебра в организме, нигде не описано. Бактерицидные свойства серебра общеизвестны. В официальной медицине широко применяются препараты коллоидного серебра и нитрат серебра. В организме человека серебро обнаружено в мозге, железах внутренней секреции, печени, почках и костях скелета. В гомеопатии серебро применяется как в элементарном виде серебро металлическое, так и в виде нитрата серебра. Препараты серебра в гомеопатии обычно назначают при упорных и длительных заболеваниях, сильно истощающих нервную систему. Однако физиологическая роль серебра в организме человека и животных изучена недостаточно.

Вопрос 3. Каковы особенности пространственной организации молекулы воды, обусловливающие её биологическое значение?

Функции воды во многом определяются её химическими и физическими свойствами. Эти свойства связаны главным образом с малыми размерами молекул воды и их полярностью, а также способностью соединяться друг с другом водородными связями.

Одна часть молекулы воды несёт небольшой положительный заряд, а другая – отрицательный. Такую молекулу называют диполем. Положительно заряженные части одной молекулы воды притягивают к себе отрицательно заряженные части других молекул, молекулы воды как будто склеиваются. Эти взаимодействия, более слабые, чем ионные связи, называют водородными связями. Вода – превосходный растворитель для полярных веществ, участвующих в обменных процессах.

Вопрос 4. Какие минеральные соли входят в состав живых организмов?

Большая часть неорганических веществ клетки находится в виде солей – либо в состоянии ионов, либо в виде твёрдой нерастворимой соли. Среди первых большое значение имеют катионы К+, Na+, Ca2+, которые обеспечивают такое важнейшее свойство живых организмов, как раздражимость.

Концентрация катионов и анионов в клетке и в окружающей её среде резко различна. Внутри клетки превалируют ионы К+ и крупные органические ионы, в околоклеточных жидкостях всегда больше ионов Na+ и Cl-. Вследствие этого образуется разность зарядов внешней и внутренней поверхностей мембраны клетки, между ними возникает разность потенциалов, обуславливающая такие важные процессы как передача возбуждения по нерву или мышце.

Соединения азота, фосфора, кальция и другие неорганические вещества служат источником строительного материала для синтеза органических молекул (аминокислот, белков, нуклеиновых кислот и др.) и входят в состав ряда опорных структур клетки и организма.

Некоторые неорганические ионы (например, ионы кальция и магния) являются активаторами и компонентами многих ферментов, гормонов и витаминов. При недостатке этих ионов нарушаются жизненно важные процессы в клетке.

Вопрос 5. Какие вещества обусловливают буферные свойства клетки? От концентрации солей внутри клетки зависят буферные свойства клетки.

Буферностью называют способность клетки поддерживать слабощелочную реакцию своего содержимого на постоянном уровне. Внутри клетки буферность обеспечивается главным образом анионами H2PO4− и НРО42−. Во внеклеточной жидкости и в крови роль буфера играют Н2СО3 и HCO3−. Анионы слабых кислот и слабые щёлочи связывают ионы водорода и гидроксил-ионы (ОН−), благодаря чему реакция внутри клетки, т. е. величина рН, практически не меняется.

Вопрос 6. Согласны ли вы с утверждением, что вода - колыбель всего живого? Объясните, почему жизнь зародилась именно в водной среде.

Все экологические ниши, пригодные для жизни, заняты биосферой. Возникла биосфера одновременно с возникновением жизни на Земле, первоначально (около 4 млрд. лет тому назад) в виде примитивных биоценозов (протобиоценозов) в первичном Мировом океане.

Только благодаря очень медленному процессу эволюции отдельные виды, получившие название амфибий, смогли покинуть водную среду и частично приспособиться к жизни на суше. Дальнейшие адаптационные процессы позволили некоторым из этих земноводных навсегда покинуть водное пространство и сделать сушу постоянной средой своего обитания. Прямое доказательство того, что вода - первоначальная среда обитания живых организмов, было получено при изучении состава плазмы крови (ее жидкого компонента) и внеклеточной жидкости различных животных. Данные жидкости по своему составу близки к морской воде.

Вопрос 7. Предложите свою классификацию химических элементов, входящих в состав живых организмов.

Можно предложить следующую классификацию химических элементов, входящий в состав клетки:

1. Элементы 1 порядка (водород, кислород, углерод и азот)

2. Элементы 2 порядка (цинк, бор, медь, йод, железо, марганец)

Вопрос 8. Составьте и заполните таблицу «Химические элементы и их значение в живой природе».

краткое содержание других презентаций

«Особенности химического состава клетки» - Раствор. Ионы металлов. Химические элементы клетки. Кислород. Соотношение органических и неорганических веществ в клетке. Минеральные вещества в клетке. Клетки. Тезисы. Водородные связи. Углерод. Вода. Виды воды. Химические компоненты клетки. Записи в тетради. Группы химических элементов. Особенности химического состава клетки. Собаки. Вода в организме распределена неравномерно.

«Химический состав и строение клетки» - Нуклеиновые кислоты. Клетка. Науки. Химический состав клетки. Химические элементы. Жиры. Клеточный центр. Основной источник энергии. Митохондрии. Белки. Анатомия. Хранение наследственной информации. Мембрана. Рибосомы. Строение и химический состав клетки. Световой микроскоп. Строение клетки. Работа с тетрадью.

«Неорганические вещества клетки» - Элементы, входящие в состав клетки. Микроэлементы. Содержание химических соединений в клетке. Содержание в разных клетках. Биогенные элементы. Химический состав клетки. Ультрамикроэлементы. Кислород. Функции воды. 80 химических элементов. Магний. Макроэлементы.

«Биология «Химический состав клетки»» - Признаки реакции. Биогенные элементы. План урока. Различия живой и неживой природы. C -основа всех органических веществ. Cu -ферменты гемоцианины, синтез гемоглобина, фотосинтез. Кислород. Химический состав клетки. Микроэлементы. Ответить на вопросы. Макроэлементы. Ультрамикроэлементы. Цинк. Состав человеческого тела.

«Вещества клетки» - История открытия витаминов. Витамин. Вирусы и бактериофаги. АТФ и другие органические вещества клетки. Интересные факты. Функция АТФ. Жизнь вирусов. Витамины в жизнедеятельности клетки. Современная классификация витаминов. Жизненный цикл бактериофага. Микрофотографии вирусов. Как и где образуется АТФ. Витамины и витаминоподобные вещества. Значение вирусов. ВТМ имеет палочковидную форму. АТФ. Строение вирусов.

«Урок «Химический состав клетки»» - Ферменты. Свойства белковой молекулы. РН буферность. Липиды. РНК – одиночная цепочка. Неорганические вещества. Нуклеиновые кислоты. Углеводы. Принцип комплементарности. Молекулярный уровень. Нуклеотид. Белки. Виды РНК. ДНК – двойная спираль. Молекула водорода. Репликация. Химический состав клетки. Структура белка. Элементарный состав клетки.

Цитоплазма . - обязательная часть клетки, заключенная между плазической мембраной и ядром и представляющая собой вязкое бесцветное основное вещество цитоплазмы, органоиды - постоянные компоненты цитоплазмы и включения - временные компоненты цитоплазмы. Химический состав цитоплазмы разнообразен. Ее основу составляет вода (60-50% всей массы цитоплазмы). Цитоплазма богата белками, в состав цитоплазмы могут входить жиры и жироподобные вещества, различные органические и неорганические соединения.

Цитоплазма имеет щелочную реакцию. Одна из характерных особенностей цитоплазмы -постоянное движение (циклоз). Оно обнаруживается прежде всего по перемещению органелл клетки, например хлоропластов.Если движение цитоплазмы прекращается, клетка погибает, так как только находясь в постоянном движении она может выполнять свои функции.

Основное вещество цитоплазмы - гиалоплазма (цитозоль) - представляет собой бесцветный, слизистый, густой и прозрачный коллоидный раствор . Именно в нем протекают все процессы обмена веществ, она обеспечивает взаимосвязь ядра и всех органоидов. В зависимости от преобладания в гиалоилазме жидкой части или крупных молекул различают две формы гиалоплазмы: золь - более жидкая гиалоплазма и гель - более густая гиалоплазма. Между ними возможны взаимо переходы: гель легко превращается в золь и наоборот.

Функции гиалоплазмы:

Объединение всех компонентов клетки в единую среду

Среда для прохождения химических реакций

Среда для существования и функционирования органоидов.

Гиалоплазма и эргастоплазма.Ультраструктура и функциональное значение.

Гиалоплазма (от греч. hyalos - стекло и плазма), основная плазма, матрикс цитоплазмы, сложная бесцветная коллоидная система в клетке, способная к обратимым переходам из золя в гель. В состав Г. входят растворимые белки (ферменты гликолиза, активации аминокислот при биосинтезе белка, многие АТФ-азы и др.), растворимые РНК, полисахариды, липиды. Через Г. идёт транспорт аминокислот, жирных к-т, нуклеотидов, Сахаров, неорганич. ионов, перенос АТФ. Состав Г. определяет буферные и осмотич. свойства клетки.
Цитоплазма



Цитоплазма эукариотических клеток состоит из полужидкого содержимого и органелл. Основное полужидкое вещество цитоплазмы называют гиалоплазмой (от греч. hyalos - стекло) или матриксом. Гиалоилазма является важной частью клетки, ее внутренней средой.

Она представляет собой сложную коллоидную систему, которая образована белками, нуклеиновыми кислотами, углеводами, водой и другими веществами. В гиалоплазме в растворенном состоянии содержится большое количество аминокислот, нуклео-тидов и других строительных блоков биополимеров, множество промежуточных продуктов, возникающих при синтезе и распаде макромолекул, а также ионов неорганических соединений, таких как Na-, К-, Са2+ Mg2- , Сl-, НС03 , НР042 и др.

Несмотря на то что в электронном микроскопе гиалоплазма выглядит гомогенным веществом, она не является однородной. Гиалоплазма систоит из двух фаз - жидкой и твердой. Жидкая фаза представляет собой коллоидный раствор различных белков и других веществ. В жидкой фазе содержится система тонких (- 2 нм толщиной) белковых нитей - микротрабекул, пересекающих цитоплазму в различных направлениях; это так называемая микротрабекулярная система (рис. 1.7).

Микротрабекулярная система связывает все внутриклеточные структуры. В местах пересечения или соединения концов микротрабекул располагаются группы рибосом.

С микротрабекулярной системой связаны нитевидные, белковые комплексы, или филаменты (тонкие нити) - микротрубочки и микрофиламенты.

Микротрубочки, микрофиламенты и микротрабекулярная система образуют внутриклеточный цитоплазматический скелет (цитоскелет), который упорядочивает размещение всех структурных компонентов клетки

Функции гиалоплазмы следующие:

1)Является внутренней средой клетки, в которой происходят многие химические процессы.

2)Объединяет все клеточные структуры и обеспечивает химическое взаимодействие между ними.

3)Определяет местоположение органелл в клетке.

4)Обеспечивает внутриклеточный транспорт веществ и перемещение органелл (например, движение хлоропластов в растительных клетках).

5)Является основным вместилищем и зоной перемещения молекул АТФ. 6)Определяет форму клетки.

Эргастоплазма участки цитоплазмы клеток растений и животных участки, богатые рибонуклеиновой кислотой (например, глыбки Берга в клетках печени, тельца Ниссля в нейронах). В электронном микроскопе эти участки наблюдаются как упорядоченно расположенные элементы гранулярной эндоплазматической сети.
??????????????????????????????????????????????????????????чтодальше!?!?!

Плазматическая мембрана, её функции.Современные представления о плазматической мембране.

Кле́точная мембра́на (или цитолемма, или плазмалемма, или плазматическая мембрана) отделяет содержимое любой клетки от внешней среды, обеспечивая её целостность; регулируют обмен между клеткой и средой; внутриклеточные мембраны разделяют клетку на специализированные замкнутые отсеки - компартменты или органеллы, в которых поддерживаются определённые условия среды.

Функции

барьерная - обеспечивает регулируемый, избирательный, пассивный и активный обмен веществ с окружающей средой. Например, мембрана пероксисом защищает цитоплазму от опасных для клетки пероксидов. Избирательная проницаемость означает, что проницаемость мембраны для различных атомов или молекул зависит от их размеров, электрического заряда и химических свойств. Избирательная проницаемость обеспечивает отделение клетки и клеточных компартментов от окружающей среды и снабжение их необходимыми веществами.

транспортная - через мембрану происходит транспорт веществ в клетку и из клетки. Транспорт через мембраны обеспечивает: доставку питательных веществ, удаление конечных продуктов обмена, секрецию различных веществ, создание ионных градиентов, поддержание в клетке оптимального pH и концентрации ионов, которые нужны для работы клеточных ферментов.

Частицы, по какой-либо причине неспособные пересечь фосфолипидный бислой (например, из-за гидрофильных свойств, так как мембрана внутри гидрофобна и не пропускает гидрофильные вещества, или из-за крупных размеров), но необходимые для клетки, могут проникнуть сквозь мембрану через специальные белки-переносчики (транспортеры) и белки-каналы или путем эндоцитоза.

При пассивном транспорте вещества пересекают липидный бислой без затрат энергии по градиенту концентрации путем диффузии. Вариантом этого механизма является облегчённая диффузия, при которой веществу помогает пройти через мембрану какая-либо специфическая молекула. У этой молекулы может быть канал, пропускающий вещества только одного типа.

Активный транспорт требует затрат энергии, так как происходит против градиента концентрации. На мембране существуют специальные белки-насосы, в том числе АТФаза, которая активно вкачивает в клетку ионы калия (K+) и выкачивают из неё ионы натрия (Na+).

матричная - обеспечивает определенное взаиморасположение и ориентацию мембранных белков, их оптимальное взаимодействие.

механическая - обеспечивает автономность клетки, ее внутриклеточных структур, также соединение с другими клетками (в тканях). Большую роль в обеспечение механической функции имеют клеточные стенки, а у животных - межклеточное вещество.

энергетическая - при фотосинтезе в хлоропластах и клеточном дыхании в митохондриях в их мембранах действуют системы переноса энергии, в которых также участвуют белки;

рецепторная - некоторые белки, находящиеся в мембране, являются рецепторами (молекулами, при помощи которых клетка воспринимает те или иные сигналы).

Например, гормоны, циркулирующие в крови, действуют только на такие клетки-мишени, у которых есть соответствующие этим гормонам рецепторы. Нейромедиаторы (химические вещества, обеспечивающие проведение нервных импульсов) тоже связываются с особыми рецепторными белками клеток-мишеней.

ферментативная - мембранные белки нередко являются ферментами. Например, плазматические мембраны эпителиальных клеток кишечника содержат пищеварительные ферменты.

осуществление генерации и проведения биопотенциалов.

С помощью мембраны в клетке поддерживается постоянная концентрация ионов: концентрация иона К+ внутри клетки значительно выше, чем снаружи, а концентрация Na+ значительно ниже, что очень важно, так как это обеспечивает поддержание разности потенциалов на мембране и генерацию нервного импульса.

маркировка клетки - на мембране есть антигены, действующие как маркеры - «ярлыки», позволяющие опознать клетку. Это гликопротеины (то есть белки с присоединенными к ним разветвленными олигосахаридными боковыми цепями), играющие роль «антенн». Из-за бесчисленного множества конфигурации боковых цепей возможно сделать для каждого типа клеток свой особый маркер. С помощью маркеров клетки могут распознавать другие клетки и действовать согласованно с ними, например, при формировании органов и тканей. Это же позволяет иммунной системе распознавать чужеродные антигены.

Согласно современным представлениям центральный слой такой мембраны представляет собой текучий липидный бислой с включениями внутримембранных белков. Полагают, что ассоциированные с мембраной белки являются глобулярными. Некоторые из них расположены на полярной поверхности мембраны или частично погружены в ее монослой как с наружной, так и с внутренней стороны. Это так называемые периферические, функционально ассоциированные с мембраной белки, удерживаемые на ее поверхности при помощи нековалентных связей. Другие, интегральные, белки проходят через всю толщу мембраны, в том числе и через внутренние неполярные ее слои. В интегральных белках последовательность аминокислотных остатков распределена таким образом, что гидрофобные остатки аминокислот формируют структуры, которые пронизывают мембрану, а гидрофильные образуют функциональные домены на внутренней и/или наружной поверхности мембраны. Таким образом, функционально разные белки мембраны образуют в жидкокристаллическом бислое фосфолипидов своеобразную мозаичную структуру. Эта мозаика не является строго фиксированной, что позволяет разным классам ФЛ и минорным липидам мембраны при латеральной диффузии формировать определенные кластеры (участки поверхностного монослоя мембраны).

Плазматическая мембрана содержит много гликолипидов, полярные углеводные части которых (остатки моно- и олигосахаридов) расположены на ее поверхности, что позволяет им выполнять специфичные функции, такие как рецепция (клеточное узнавание) и иммунохимические реакции. Выступающие из бислоя гидрофильные олигосахаридные участки гликолипидов образуют у эукариотических клеток подобие наружной оболочки – гликокаликса.

Определенную роль в стабилизации липидного бислоя играет и слой воды, покрывающий снаружи монослой фосфолипидов и мембранных белков. Такие монослои воды удерживаются на поверхности мембраны за счет водородных связей между полярными «головками» ФЛ и молекулами воды . В бислое индивидуальные липидные молекулы могут перемещаться (латеральная диффузия), что обеспечивает мембране жидкостность и гибкость. Отдельные молекулы ФЛ в зависимости от длины их жирнокислотных цепей способны перемещаться между наружным и внутренним монослоем мембраны, используя механизм флип-флопа.

Все это указывает на то, что бислойная мембрана является единой динамичной и саморегулирующейся системой

Модели БМ.

1.4 Эволюция представлений о строении мембран

Наличие мембран вокруг живых клеток было установлено более ста лет назад в работах Негели К., который в 1855 г. обнаружил, что неповрежденные клетки могут изменять свой объем при изменении осмотического давления окружающей среды. Эти исследования были продолжены Овертоном Е., показавшим, что неполярные молекулы легче проходят через клеточную мембрану, чем полярные соединения.

На основе этих наблюдений он впервые высказал предположение, что клеточная мембрана имеет липидную природу. Развитие идей о структуре мембран существенно продвинулось благодаря работам Гортера Е. и Грендела Ф., проведенным в 1925 г. Эти авторы впервые выдвинули концепцию липидного бислоя. Идея возникла на основе простого эксперимента. Липиды эритроцитов экстрагировали ацетоном и затем получали из них тонкую пленку на поверхности воды.

С помощью поплавка сжимали слой липидных молекул на границе раздела вода–воздух до тех пор, пока этот слой не начинал оказывать сопротивление дальнейшему сжатию; это явление было объяснено образованием плотно упакованной мономолекулярной липидной пленки. Измерение площади, занимаемой липидами, и сравнение ее с площадью поверхности эритроцитов, из которых эти липиды были экстрагированы, дали соотношение 2:1. Отсюда был сделан вывод, что мембрана эритроцитов состоит из липидных молекул, расположенных в два слоя. По-видимому, этот вывод Гортера Е. и Грендела Ф. оказался правильным только благодаря взаимной компенсации ошибок (во-первых, экстракция ацетоном извлекает не все липиды, во-вторых, они дали заниженную оценку площади поверхности эритроцитов, использовав для ее определения высушенные клетки). Однако в историческом плане эта работа имела большое значение, поскольку концепция липидного бислоя как структурной основы биологических мембран на самом деле оказалась верной. Мысль о том, что с мембранами связаны белки, высказана десятью годами позже Даниелли Дж. в связи с необходимостью объяснить явное расхождение между поверхностным натяжением на границах раздела масло–вода и мембрана–вода. Была высказана гипотеза, что мембрана состоит из двойного липидного слоя, и предположено, что белок располагается на ее поверхности – модель Даниелли–Дэвисона, или модель «сэндвича» (рисунок 1.2).

1 – углеводородные гидрофобные цепочки; 2 – полярные

гидрофильные группы молекулы; 3 – полярные поры, по которым

вещества диффундируют в клетку

Рисунок 1.2 – Модель строения биологических мембран

Даниелли–Девисона

На рисунке 1.2 показан бимолекулярный липидный слой, окруженный с двух сторон монослоями белка. Это была очень удачная

модель, и в течение последующих 30 лет многочисленные экспериментальные данные, особенно полученные с помощью дифракции рентгеновских лучей и электронной микроскопии, полностью подтвердили

ее адекватность. Основными компонентами биологической мембраны являются липид и белок, вопрос о взаимном расположении этих

компонентов в мембране стал предметом многочисленных дискуссий, так как обнаружилось, что мембраны выполняют разнообразные функции.

В 1959 г. Робертсон Дж. Д. предположил, что все клеточные мембраны построены по единому принципу, и высказал концепцию унитарной (или единообразной) мембраны (рисунок 1.3).

Рисунок 1.3 – Унитарная схема асимметричного строения биомембраны Робертсона.

Предложенная модель во многом сходна с классической моделью Даниелли Дж.: основу мембраны составляет липидный бислой, а нелипидные компоненты (прежде всего белки) в полностью развернутой конформации лежат на поверхности бислоя, связываясь с липидами за счет электростатических и гидрофобных взаимодействий. В модели Робертсона нашла отражение еще одна важная структурная особенность мембраны – ее асимметрия.

Последующий прогресс в мембранологии, в результате которого сформировались современные представления о структуре биомембран, в значительной мере был достигнут благодаря успехам в изучении свойств мембранных белков. Электронно-микроскопические исследования с применением метода замораживания–скалывания показали, что в мембраны встроены глобулярные частицы, а биохимикам с помощью детергентов удалось диссоциировать мембраны до состояния функционально активных «частиц». Данные спектральных исследований указывали, что для мембранных белков характерно высокое содержание α-спиралей и что они, вероятно, образуют глобулы, а не распределены в виде монослоя на поверхности липидного бислоя. Неполярные свойства мембранных белков наводили на мысль о наличии гидрофобных контактов между белками и внутренней неполярной областью липидного бислоя. Тогда же были разработаны методы, позволившие выявить текучесть липидного бислоя. Сингер и Николсон свели воедино все эти идеи, предложив в 1972 г. новую модель молекулярной организации биомембран – жидкостно-мозаичную модель (рисунок 1.4).

1 – углеводные фрагменты гликопротеидов; 2 – липидный бислой;

3 – интегральный белок; 4 – «головки» фосфолипидов;

5 – периферический белок; 6 – холестерин;

7 – жирнокислотные «хвосты» фосфолипидов.

Рисунок 1.4 – Модель жидкостно-мозаичной мембраны

Сингера и Николсона

Согласно жидкостно-мозаичной модели:

1) Структурной основой биомембран является липидный бислой, в котором углеводородные цепи молекул фосфолипидов находятся в жидкокристаллическом состоянии.

2) В липидный бислой, имеющий вязкость растительного масла, погружены или встроены молекулы белков, способные передвигаться по мембране.

В противоположность прежним моделям, рассматривающим мембраны как системы из жестко фиксированных компонентов, жидкостно-мозаичная модель представляет мембрану, как «море» жидких липидов, в котором плавают «айсберги» белков. В зависимости от прочности связи с мембраной белки в рамках мозаичной модели подразделяются на два типа: периферические и интегральные.

К периферическим относятся белки, которые связаны с мембраной за счет полярных и ионных взаимодействий и относительно легко отделяются от нее в мягких условиях, например, при промывании буферными растворами с различными значениями рН или ионной силы либо растворами, содержащими комплексообразующие вещества типа ЭДТА.

Интегральные белки имеют на своей поверхности большие гидрофобные участки и располагаются внутри мембраны. Для выделения интегральных белков необходимо сначала разрушить липидный бислой.

Жидкостно-мозаичная модель строения биомембран в настоящее время является общепризнанной, однако следует помнить, что она все же представляет собой упрощенное и схематичное отражение такой сложной и разносторонней системы, как биологическая мембрана. Одним из постулатов этой модели является предположение о свободном движении молекул белков и липидов в двумерной фазе липидного бислоя. Однако вскоре выяснилось, что не все белки и липиды способны к свободному перемещению, в некоторых случаях их подвижность сильно ограничена. Во многих мембранах интегральные белки находятся в фиксированных положениях за счет высокой концентрации белка вследствие его агрегации, образования липидных доменов, а также взаимодействия белков с цитоскелетом, образуемым внутренними структурами клетки.

В некоторых мембранах значительные количества липидов могут находиться в сильно упорядоченном состоянии или, наоборот, в составе небислойных фаз. Это означает, что распределение липидов вдоль поверхности мембраны не является гомогенным, как следовало бы ожидать в случае их свободной диффузии согласно жидкостно-мозаичной модели, а в значительной мере гетерогенно .

Кроме того, жидкостно-мозаичная модель не объясняет высокую гетерогенность липидного состава биологических мембран. Необходимо отметить, что липиды биологических мембран различаются не только по структуре полярных групп, но и по степени ненасыщенности и длине углеводородных цепей, а также по способу их присоединения к глицериновому остатку (сложная эфирная, простая эфирная и винильно-эфирная связь). Липидный состав биологических мембран всегда чрезвычайно гетерогенен, и в его построении участвуют сотни химически индивидуальных липидных молекул. Данный факт не согласуется с представлениями о пассивной роли липидов в функционировании мембран в качестве структурной матрицы, в которой расположены мембранные белки . Несмотря на это в настоящее время по-прежнему пользуются жидкостно-мозаичной моделью строения мембраны, но в усложненной форме, в которой отражены новые, специфические, не известные ранее закономерности.