Закон Архимеда: история открытия и суть явления для чайников. Выталкивающая сила

Несмотря на явные различия свойств жидкостей и газов, во многих случаях их поведение определяется одними и теми же параметрами и уравнениями, что позволяет использовать единый подход к изучению свойств этих веществ.

В механике газы и жидкости рассматривают как сплошные среды. Предполагается, что молекулы вещества распределены непрерывно в занимаемой ими части пространства. При этом плотность газа значительно зависит от давления, в то время как для жидкости ситуация иная. Обычно при решении задач этим фактом пренебрегают, используя обобщенное понятие несжимаемой жидкости, плотность которой равномерна и постоянна.

Определение 1

Давление определяется как нормальная сила $F$, действующая со стороны жидкости на единицу площади $S$.

$ρ = \frac{\Delta P}{\Delta S}$.

Замечание 1

Давление измеряется в паскалях. Один Па равен силе в 1 Н, действующей на единицу площади 1 кв. м.

В состояние равновесия давление жидкости или газа описывается законом Паскаля, согласно которому давление на поверхность жидкости, производимое внешними силами, передается жидкостью одинаково во всех направлениях.

При механическом равновесии, давление жидкости по горизонтали всегда одинаково; следовательно, свободная поверхность статичной жидкости всегда горизонтальна (кроме случаев соприкосновения со стенками сосуда). Если принять во внимание условие несжимаемости жидкости, то плотность рассматриваемой среды не зависит от давления.

Представим некоторый объем жидкости, ограниченный вертикальным цилиндром. Поперечное сечение столба жидкости обозначим $S$, его высоту $h$, плотность жидкости $ρ$, вес $P=ρgSh$. Тогда справедливо следующее:

$p = \frac{P}{S} = \frac{ρgSh}{S} = ρgh$,

где $p$ - давление на дно сосуда.

Отсюда следует, что давление меняется линейно, в зависимости от высоты. При этом $ρgh$ - гидростатическое давление, изменением которого и объясняется возникновение силы Архимеда.

Формулировка закона Архимеда

Закон Архимеда, один из основных законов гидростатики и аэростатики, гласит: на тело, погруженное в жидкость или газ, действует выталкивающая или подъемная сила, равная весу объема жидкости или газа, вытесненного частью тела, погруженной в жидкость или газ.

Замечание 2

Возникновение Архимедовой силы связано с тем, что среда - жидкость или газ - стремится занять пространство, отнятое погруженным в нее телом; при этом тело выталкивается из среды.

Отсюда и второе название для этого явление – выталкивающая или гидростатическая подъемная сила.

Выталкивающая сила не зависит от формы тела, также как и от состава тела и прочих его характеристик.

Возникновение Архимедовой силы обусловлено разностью давления среды на разных глубинах. Например, давление на нижние слои воды всегда больше, чем на верхние слои.

Проявление силы Архимеда возможно лишь при наличии тяжести. Так, например, на Луне выталкивающая сила будет в шесть раз меньше, чем на Земле для тел равных объемов.

Возникновение Силы Архимеда

Представим себе любую жидкую среду, например, обычную воду. Мысленно выделим произвольный объем воды замкнутой поверхностью $S$. Поскольку вся жидкость по условию находится в механическом равновесии, выделенный нами объем также статичен. Это означает, что равнодействующая и момент внешних сил, воздействующих на этот ограниченный объем, принимают нулевые значения. Внешние силы в данном случае – вес ограниченного объема воды и давление окружающей жидкости на внешнюю поверхность $S$. При этом получается, что равнодействующая $F$ сил гидростатического давления, испытываемого поверхностью $S$, равна весу того объема жидкости, который был ограничен поверхностью $S$. Для того чтобы полный момент внешних сил обратился в нуль, равнодействующая $F$ должна быть направлена вверх и проходить через центр масс выделенного объема жидкости.

Теперь обозначим, что вместо этой условного ограниченной жидкости в среду было помещено любое твердое тело соответствующего объема. Если соблюдается условие механического равновесия, то со стороны окружающей среды никаких изменений не произойдет, в том числе останется прежним давление, действующее на поверхность $S$. Таким образом мы можем дать более точную формулировку закона Архимеда:

Замечание 3

Если тело, погруженное в жидкость, находится в механическом равновесии, то со стороны окружающей его среды на него действует выталкивающая сила гидростатического давления, численно равная весу среды в объеме, вытесненным телом.

Выталкивающая сила направлена вверх и проходит через центр масс тела. Итак, согласно закону Архимеда для выталкивающей силы выполняется:

$F_A = ρgV$, где:

  • $V_A$ - выталкивающая сила, H;
  • $ρ$ - плотность жидкости или газа, $кг/м^3$;
  • $V$ - объем тела, погруженного в среду, $м^3$;
  • $g$ - ускорение свободного падения, $м/с^2$.

Выталкивающая сила, действующая на тело, противоположна по направлению силе тяжести, поэтому поведение погруженного тела в среде зависит от соотношения модулей силы тяжести $F_T$ и Архимедовой силы $F_A$. Здесь возможны три случая:

  1. $F_T$ > $F_A$. Сила тяжести превышает выталкивающую силу, следовательно, тело тонет/падает;
  2. $F_T$ = $F_A$. Сила тяжести уравнивается с выталкивающей силой, поэтому тело «зависает» в жидкости;
  3. $F_T$

Класс: 7

УЧЕБНЫЕ ЦЕЛИ:

  1. Продолжить формирование знаний обучающихся о выталкивающей силе, выяснить, от каких величин зависит (не зависит) значение Архимедовой силы.
  2. Формировать умение проводить физический эксперимент, по его результатам делать выводы, обобщения.

РАЗВИВАЮЩИЕ ЦЕЛИ:

  1. Развивать мотивационные качества суворовцев, познавательный интерес к предмету.
  2. Развивать творческие способности.
  3. Развивать умения применять приобретенные знания в новой учебной ситуации, анализировать изученный материал.
  4. Развивать учебно-организационные, учебно-интеллектуальные, учебно-информационные, учебно-коммуникативные компетентности.

ВОСПИТАТЕЛЬНЫЕ ЦЕЛИ:

  1. Содействовать формированию научного мировоззрения.
  2. Показать практическую значимость изученной темы.
  3. Воспитывать умение работать в группах для решения совместной задачи.

ТИП УРОКА: урок формирования новых знаний и умений.

ВИД УРОКА: эвристическая беседа с элементами исследования.

МАТЕРИАЛЬНОЕ ОБЕСПЕЧЕНИЕ:

Приборы и оборудование: наборы тел, динамометры, различные виды жидкостей, равноплечий рычаг, емкости для жидкости, ведерко Архимеда, пластилин.

Интерактивная доска, презентация урока, раздаточный материал (тесты, рабочие листы для оформления результатов исследования, таблицы достижений).

УЧЕБНЫЕ ВОПРОСЫ:

  1. Архимедова сила.
  2. Проявление Архимедовой силы в природе, быту и технике.

Ход урока

Организационный момент

Создание положительной мотивации.

Прежде чем мы начнем наш урок, посмотрите на листы, которые лежат перед вами. Найдите “Рабочий лист”, на нем вы будете вести все записи на уроке, потом его вклеите в рабочую тетрадь. В “Лист достижений” вы будете заносить набранные баллы за работу на уроке, в конце урока все баллы суммируете и выставите себе оценку. От вашей работы зависит и ваш результат. Разноцветные сигнальные карточки отложите в сторону, они вам понадобятся только в конце урока.

Актуализация опорных знаний

Сегодня на уроке мы продолжим изучение темы “Действие жидкости и газа на погруженные в них тела”. Вспомните, какая сила действует на тело, погруженное в жидкость или газ? (Выталкивающая).

Как она направлена? (Вертикально вверх).

Какой простой опыт может подтвердить сказанное? (Опыт с теннисным шариком). Опыт демонстрирует суворовец.

Чему равна выталкивающая сила? (Сила, выталкивающая тело из жидкости или газа, равна весу жидкости, или газа в объеме погруженного тела или части его тела.)

Как на опыте можно определить значение выталкивающей силы? (Необходимо измерить вес тела в воздухе, затем вес тела в жидкости и из веса тела в воздухе вычесть вес тела в жидкости).

На каждое тело, погруженное в жидкость или газ, действует выталкивающая сила? (Да.)

Демонстрация опыта. (Постановка проблемного вопроса) На равноплечем рычаге уравновешивают 2 груза по 1н. Затем грузы опускают в сосуды, один с простой водой, другой соленой водой и наблюдают нарушение равновесия. Почему нарушилось равновесие уравновешенного в воздухе рычага с грузами одинакового веса при помещении их в жидкость? Суворовцы делают предположения, но ответить правильно на вопрос не могут. Сегодня на уроке вам предстоит ответить на этот вопрос. Первым изучил выталкивающую силу древний греческий ученый Архимед, поэтому эта сила так и называется Архимедова сила. Возьмите “Рабочий лист” и запишите тему урока: “Архимедова сила”.

Цель нашего урока: изучить Архимедову силу, т.е. выяснить, от каких величин зависит, а от каких не зависит данная сила, научиться определять ее и узнать, где эта сила нашла свое применение.

Кто же такой Архимед?

Формирование новых знаний

Архимед – выдающийся ученый Древний Греции, родился в 3-ем веке до нашей эры в городе Сиракузы на острове Сицилия. Архимед получил блестящее образование у своего отца, астронома и математика Фидия, родственника сиракузского тирана Гиерона. В юности он провел несколько лет в крупнейшем культурном центре Александрии, где он дружил с астрономом Кононом и математиком Эратосфеном. Это послужило толчком к развитию его выдающихся способностей. Он прославился многочисленными научными трудами, в области физики и геометрии. Его изобретением была машина для поливки полей “винт-улитка”, он разработал теорию рычага. Он был подлинным патриотом своего города. В то время шла 2-ая Пуническая война. Город осадило римское войско, обладавшее превосходным флотом. Архимед организовал инженерную оборону. Он построил множество удивительных машин, которые топили вражеские корабли. После Архимеда осталось много трудов. Одним из важнейших открытий стал закон, впоследствии названный законом Архимеда.

Сейчас вам как юным Архимедам предстоит исследовать выталкивающую силу. Сформулируйте цели исследования

  1. Обнаружить выталкивающее действие жидкости.
  2. Выяснить, от каких факторов зависит Архимедова сила.
  3. Выяснить, от каких факторов не зависит Архимедова сила.

Проблемный вопрос. Предложите, какие факторы будут влиять на значение выталкивающей силы.

Возможные предположения: (гипотезы)

  1. объем тела
  2. плотность тела
  3. форма тела
  4. плотность жидкости
  5. глубина погружения

Как мы можем проверить наши предположения? На опытах и с помощью теоретических выводов.

Давайте проверим ваши предположения. Сейчас вы разделитесь на 5 групп, получите оборудование и соответствующее задание. Оформите результат своей работы на рабочих листах, сделаете вывод и занесете свой результат в сводную таблицу на доске.

Задание 1 группе

Оборудование: сосуд с водой, динамометр, алюминиевый и стальной бруски на нити одинакового объема.

    F а 1 = F а2 =

  1. Сделайте вывод о зависимости (независимости) Архимедовой силы от плотности тела.

Задание 2 группе

Оборудование: сосуд с водой, динамометр, металлическое тело на нити.

  1. Определите Архимедову силу, действующую на 1/2 объема тела, погруженного в воду.
  2. Р в возд = Р в воде = F а1 =

  3. Определить Архимедову силу, действующую на целиком погруженное тело в жидкость.
  4. Сравните эти силы.
  5. F а 1 = F а2 =

  6. Сделайте вывод о зависимости (независимости) Архимедовой силы от объема погруженной части тела.

Задание 3 группе

Оборудование: динамометр, сосуды с чистой и соленой водой, стальной брусок на нити.

Задание 4 группе

Оборудование: тела из пластилина одинакового объема, но разной формы, сосуд с водой, динамометр.

  1. Определите Архимедову силу, действующую на тело шарообразной формы
  2. Р в возд = Р в воде = F а1 =

  3. Определите Архимедову силу, действующую на тело прямоугольной формы
  4. Р в возд = Р в воде = F а 2 =

  5. Сравните эти силы
  6. F а 1 = F а2 =

  7. Сделайте вывод о зависимости (независимости) Архимедовой силы от формы тела.

Задание 5 группе

Оборудование: сосуд с водой, динамометр, металлический цилиндр, измерительная линейка.

  1. Определите Архимедову силу, действующую на тело при погружении на глубину 5 см
  2. Р в возд = Р в воде = F а1 =

  3. Определите Архимедову силу, действующую на тело при погружении на глубину 10 см
  4. Р в возд = Р в воде = F а 2 =

  5. Сравните Архимедову силу, действующую на тело при погружении на глубину на 5 см и на 10 см
  6. F а 1 = F а2 =

  7. Сделайте вывод о зависимости (независимости) Архимедовой силы от глубины погружения тела.

В это время теоретик работает у доски по плану, данному преподавателем, он находит архимедову силу как вес вытесненной жидкости. Fa= ж g V

После получения результатов делается общий вывод. Вывод записывается суворовцами в тетрадь.

Сравнивая результат теоретического вывода и выводы экспериментаторов, видим, что они совпали.

Подытожим наши знания за два урока.

Способы нахождения Архимедовой силы

Сила, выталкивающая целиком, погруженное в жидкость тело, равна весу жидкости в объеме этого тела. Этот закон справедлив и для газов.

Существует легенда, что эта мысль посетила Архимеда, когда он принимал ванну. Давайте послушаем и посмотрим эту легенду. Сценка из поэмы Е.С. Ефимовского “История жизни, открытий, борьбы и гибель великого ученого древности Архимеда”.

Опыт с ведерком Архимеда. Демонстрирует суворовец, игравший Архимеда. К пружине подвешено ведерко и цилиндр. Объем цилиндра равен внутреннему объему ведерка. Растяжение пружины отмечено указателем. При погружении целиком цилиндра в отливной стакан с водой видим, что пружина сократилась, а вода вылилась в стакан. Объем вылившейся воды равен объему погруженного в воду тела. Выльем в ведерко воду из стакана и увидим, что указатель пружины возвратился к начальному положению. Значит, сила, которая вытолкнула воду, равна весу воды, вытесненной телом.

Где вы в жизни встречаетесь с Архимедовой силой? Демонстрация фотозадач

Фото №1. (Мертвое море) На территории Палестины и Израиля есть странное, на первый взгляд море. В море нельзя утонуть. Почему?

Фото №2. (Рыбы) Рыбы могут легко регулировать глубину своего погружения, меняя объем своего тела благодаря плавательному пузырю. Погружаться или всплывать будет рыба, при уменьшении объема плавательного пузыря? (Погружаться, т.к. при уменьшении объема тела, уменьшается и Архимедова сила).

Фото №3. (Кит) Кит, хотя и живет в воде, но дышит легкими. Однако, имея легкие, кит не проживет и часа, если окажется на суше. Почему? (Громадная сила тяжести прижмет животное к земле. Скелет кита не приспособлен к тому, чтобы выдержать эту тяжесть, даже дышать кит не сможет, т.к. для вдоха он должен расширить легкие, т.е. приподнять мышцы, окружающие грудную клетку, а в воздухе эти мышцы весят несколько десятков тысяч ньютонов).

Фото №4. (Корабли, подводные лодки, воздушные шары) Примеры применения Архимедовой силы.

Первичное закрепление

Подумай и ответь:

№1. Одинакового объема тела (стальное и стеклянное) опущены в воду. Одинаковые ли выталкивающие силы действуют на них?

№2. Первоклассник и семиклассник нырнули в воду. Кого вода выталкивает сильнее?

№3. Один раз мальчик нырнул на глубину 2м, а в другой – на 3м. В каком случае его вода выталкивает сильнее?

Резерв* Вариант№1. Определите выталкивающую силу, действующую на полностью погруженную в море батисферу объемом 4м 3 ? Плотность морской воды 1030кг/м 3 .(41200н)

Вариант№2. Железобетонная плита объемом 0,3м 3 наполовину погружена в воду. Какова архимедова сила, действующая на нее? Плотность воды 1000кг/м 3 .(1500н)

Закрепление изученного материала

Определяется задача по работе с тестами. Суворовцы слушают преподавателя, письменно и (на компьютерах) отвечают на вопросы теста и осуществляют самопроверку.

Проверь себя. Хорошо ли изучили силу Архимеда? Тест (см. приложение)

Подведение итогов урока и задание на самоподготовку

Наш урок подошел к концу пора подводить итоги. Сосчитайте все набранные вами баллы.

Рефлексия. Поднимите желтый треугольник, кто за урок получил оценку 3, зеленый квадрат кто получил – 4 и красную звездочку – 5 .

Задание на самоподготовку: Перышкин А.В. “Физика-7” § 49, упр.24 № 3,4

Творческое задание: написать сочинение на тему: “Если бы Архимедова сила исчезла…”.

Вопрос Варианты ответов Ответ
1 А) На первое
Б) На второе
В) На оба тела одинаковая
2 На какое тело действует меньшая выталкивающая сила? А) На третье
Б) На второе
В) На первое
3 На какое тело действует большая архимедова сила? А) На первое
Б) На второе
В) На третье
4 К коромыслу весов подвешены два алюминиевых цилиндра одинакового объема. Нарушится ли равновесие весов, если один цилиндр поместить в воду, а другой – в спирт? А)Перевесит цилиндр в спирте
Б)Перевесит цилиндр в воде
В) Не нарушится
5 Определите выталкивающую силу, действующую на погруженное в воду тело объемом 0,001м3 А) 10Н
Б) 100Н
В) 1000Н

РАБОЧИЙ ЛИСТ

АРХИМЕДОВА СИЛА
ЗАВИСИТ ОТ: 1.
2.
НЕ ЗАВИСИТ ОТ: 1.
2.
3.

СПОСОБЫ НАХОЖДЕНИЯ АРХИМЕДОВОЙ СИЛЫ

1.
2.
3.

Примеры проявления Архимедовой силы в быту, природе, технике

ЛИСТ ДОСТИЖЕНИЙ

ЗАДАНИЕ ДЛЯ “ТЕОРЕТИКА”

  1. Запишите формулу для выталкивающей силы, действующей на тело, погруженное в жидкость.
  2. Как найти вес жидкости?
  3. Как найти массу жидкости?
  4. Чему равен объем вытесненной жидкости
  5. Как найти выталкивающую (Архимедову силу)?
  6. Проанализируйте формулу. Сделайте вывод: от каких факторов зависит значение Архимедовой силы?

Зависимость давления в жидкости или газе от глубины погружения тела приводит к появлению выталкивающей силы / или иначе силы Архимеда /, действующей на любое тело, погруженное в жидкость или газ.

Архимедова сила направлена всегда противоположно силе тяжести, поэтому вес тела в жидкости или газе всегда меньше веса этого тела в вакууме.

Величина Архимедовой силы определяется по закону Архимеда.

Закон назван в честь древнегреческого ученого Архимеда, жившего в 3 веке до нашей эры.

Открытие основного закона гидростатики - крупнейшее завоевание античной науки. Скорее всего вы уже знаете легенду о том, как Архимед открыл свой закон: "Вызвал его однажды сиракузский царь Гиерон и говорит.... А что было дальше? ...

Закон Архимеда, впервые был упомянут им в трактате " О плавающих телах". Архимед писал: " тела более тяжелые, чем жидкость, опущенные в эту жидкость, будут опускаться пока не дойдут до самого низа, и в жидкости станут легче на величину веса жидкости в объеме, равном объему погруженного тела".

Еще одна формула для определения Архимедовой силы:

Интересно, что сила Архимеда равна нулю, когда погруженное в жидкость тело плотно, всем основанием прижато ко дну.

ВЕС ТЕЛА, ПОГРУЖЕННОГО В ЖИДКОСТЬ (ИЛИ ГАЗ)

Вес тела в вакууме Pо=mg .
Если тело погружено в жидкость или газ,
то P = Pо - Fа = Ро - Pж

Вес тела, погруженного в жидкость или газ, уменьшается на величину выталкивающей силы, действующей на тело.

Или иначе:

Тело, погруженное в жидкость или газ, теряет в своем весе столько, сколько весит вытесненная им жидкость.

КНИЖНАЯ ПОЛКА

ОКАЗЫВАЕТСЯ

Плотность оганизмов, живущих в воде почти не отличается от плотности воды, поэтому прочные скелеты им не нужны!

Рыбы регулируют глубину погружения, меняя среднюю плотность своего тела. Для этого им необходимо лишь изменить объем плавательного пузыря, сокращая или расслабляя мышцы.

У берегов Египта, водится удивительная рыба фагак. Приближение опасности заставляет фагака быстро заглатывать воду. При этом в пищеводе рыбы происходит бурное разложение продуктов питания с выделением значительного количества газов. Газы заполняют не только действующую полость пищевода, но и имеющийся при ней слепой вырост. В результате тело фагака сильно раздувается, и, в соответствии с законом Архимеда, он быстро всплывает на поверхность водоема. Здесь он плавает, повиснув вверх брюхом, пока выделившиеся в его организме газы не улетучатся. После этого сила тяжести опускает его на дно водоема, где он укрывается среди придонных водорослей.

Чилим (водяной орех) после цветения дает под водой тяжелые плоды. Эти плоды настолько тяжелы, что вполне могут увлечь на дно все растение. Однако в это время у чилима, растущего в глубокой воде, на черешках листьев возникают вздутия, придающие ему необходимую подъемную силу, и он не тонет.

Закон Архимеда формулируется следующим образом: на тело, погружённое в жидкость (или газ), действует выталкивающая сила, равная весу вытесненной этим телом жидкости (или газа) . Сила называется силой Архимеда :

где - плотностьжидкости (газа), - ускорение свободного падения, а - объём погружённого тела (или часть объёма тела, находящаяся ниже поверхности). Если тело плаваетна поверхности или равномерно движется вверх или вниз, то выталкивающая сила (называемая также архимедовой силой) равна по модулю (и противоположна по направлению) силе тяжести, действовавшей на вытесненный телом объём жидкости (газа), и приложена кцентру тяжестиэтого объёма.

Тело плавает, если сила Архимеда уравновешивает силу тяжести тела.

Следует заметить, что тело должно быть полностью окружено жидкостью (либо пересекаться с поверхностью жидкости). Так, например, закон Архимеда нельзя применить к кубику, который лежит на дне резервуара, герметично касаясь дна.

Что касается тела, которое находится в газе, например в воздухе, то для нахождения подъёмной силы нужно заменить плотность жидкости на плотность газа. Например, шарик с гелием летит вверх из-за того, что плотность гелия меньше, чем плотность воздуха.

Закон Архимеда можно объяснить при помощи разности гидростатических давленийна примере прямоугольного тела.

где P A , P B - давления в точках A и B , ρ - плотность жидкости, h - разница уровней между точками A и B , S - площадь горизонтального поперечного сечения тела, V - объём погружённой части тела.

18. Равновесие тела в покоящейся жидкости

Тело, погруженное (полностью или частично) в жидкость, испытывает со стороны жидкости суммарное давление, направленное снизу вверх и равное весу жидкости в объеме погруженной части тела. P выт = ρ ж gV погр

Для однородного тела плавающего на поверхности справедливо соотношение

где: V - объем плавающего тела; ρ m - плотность тела.

Существующая теория плавающего тела довольно обширна, поэтому мы ограничимся рассмотрением лишь гидравлической сущности этой теории.

Способность плавающего тела, выведенного из состояния равновесия, вновь возвращаться в это состояние называется остойчивостью . Вес жидкости, взятой в объеме погруженной части судна называют водоизмещением , а точку приложения равнодействующей давления (т.е. центр давления) - центром водоизмещения . При нормальном положении судна центр тяжести С и центр водоизмещения d лежат на одной вертикальной прямой O"-O" , представляющей ось симметрии судна и называемой осью плавания (рис.2.5).

Пусть под влиянием внешних сил судно наклонилось на некоторый угол α, часть судна KLM вышла из жидкости, а часть K"L"M" , наоборот, погрузилось в нее. При этом получили новое положении центра водоизмещения d" . Приложим к точке d" подъемную силу R и линию ее действия продолжим до пересечения с осью симметрии O"-O" . Полученная точка m называется метацентром , а отрезок mC = h называется метацентрической высотой . Будем считать h положительным, если точка m лежит выше точки C , и отрицательным - в противном случае.

Рис. 2.5. Поперечный профиль судна

Теперь рассмотрим условия равновесия судна:

1)если h > 0, то судно возвращается в первоначальное положение; 2)если h = 0, то это случай безразличного равновесия; 3) если h <0, то это случай неостойчивого равновесия, при котором продолжается дальнейшее опрокидывание судна.

Следовательно, чем ниже расположен центр тяжести и, чем больше метацентрическая высота, тем больше будет остойчивость судна.

МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

«СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА №1»

Исследовательская работа на тему:

«Архимедова сила.

Ее значение в жизни человека и окружающей среды.»

Подготовила ученица 8 класса «Б»

Кривова Дарья

Руководитель: учитель физики

Кудинова Марина Александровна

Алексин,2016г.

Содержание стр .

Вступление ………………………………………………………………..………………3

    Основная часть ……………………………………………………….………….…...6

    1. В царстве Архимеда …………………………………… …… .. ………. ………...6

    1. Теоретическая часть закона Архимеда ………….……..……………………….7

    Исследовательская часть ……………………………………………………………10

    1. Цель исследовательской работы ………………….……………………………10

    1. Первое исследование ………………………………………… ……………. …..10

    1. Второе исследование ……….……………………………………………..……13

    1. Третье исследование ……………………………………… ……………… …....14

    1. Опрос ……………………………………………………… ………………… …..15

    Интересные факты ……………………………………………………………………16

    1. Роль выталкивающей силы в жизни живых организмов ……………………...16

    1. Мертвое море……………………………………………… ……………… ……..18

    1. Воздухоплавание …………………………………………………………………19

Заключение …….………………………………………………………… ……………… ..24

Литература ………….……………………………………………… ……………… ……...25

Вступление

Актуальность архимедовой силы

Есть сила одна,- вот вам ответ,-

Эту силу обнаружил Архимед.

Когда он опустился в воду,

То «Эврика!» - воскликнул он народу.

От чего зависит сила эта?

Нельзя оставить без ответа:

Если тело в воду бросить

Или просто опустить,

Будет сила Архимеда

Снизу на него давить…

Если внимательно присмотреться к окружающему миру, то можно открыть для себя множество событий, происходящих вокруг. Кто видел такое зрелище, как айсберг или северное сияние? А с другими явлениями мы встречаемся ежедневно, например, кипение чайника, и в силу их привычности и обыденности не обращаем внимание на это. Но за всеми явлениями - и обыденными, и уникальными – человеческий ум разглядел действие удивительных законов природы. Люди, познавшие эти законы, конечно, не могут перехитрить природу, но использовать их в достижении своих целей обязаны.

Об одном из таких законов и пойдет речь в моей исследовательской работе. Это закон о силе Архимеда. Вспомним отрывок из повести Антона Павловича Чехова "Степь": "Егорушка разбежался и полетел с полутарасаженной вышки (в старину один сажень равнялся 2,134м, а полтора 3,191м). Описав в воздухе дугу, он упал в воду, глубоко погрузился, но дна не достал, какая-то сила холодная и приятная на ощупь, подхватила и понесла его обратно наверх".

Вопрос: Какая сила подняла Егорушку наверх? Ответ: Архимедова сила.

Таким образом, на использовании действия архимедовой силы в жидкостях основано плавание кораблей, подводных лодок по морям и океанам; в газах - положило развитию воздухоплавания - полеты дирижаблей, аэростатов.

Вообще, вода самое распространенное на Земле вещество. Ею заполнены океаны и моря, реки и озера, пары воды есть в воздухе. А в толще воды обитают жители подводного мира. Огромна роль выталкивающей силы в жизни этих организмов.

Моя исследовательская работа направлена на то, чтобы масштабнее охватить вопросы школьной программы, посвященные закону Архимеда, используя полученные знания и факты, с которыми мы сталкиваемся в современной жизни. Все науки связаны между собой. А общий объект изучения всех наук - это человек «плюс» природа.

Гипотеза

Я полагаю, что исследование действия архимедовой силы сегодня является актуальным. Меня волнуют вопросы: Почему человек и животные могут плавать на поверхности воды? Почему железный гвоздь тонет, а железный корабль плавает? В какой воде легче плавать? Почему летают самолеты, а люди не могут летать?

Цель работы:

- сконцентрировать внимание на основном законе гидростатики законе Архимеда и уметь анализировать поведение тела внутри жидкости; - применить полученные знания школьной программы в конкретной жизненной ситуации; - научиться проводить физический эксперимент, по результатам, которого сделать вывод.

Задачи:

Изучить учебную литературу по вопросу действия архимедовой силы; - провести опрос, проанализировать и обобщить полученные результаты по данной теме.

Основная часть

В «царстве» Архимеда

Архиме́д (Ἀρχιμήδης; - ) - древнегреческий , и из , греческой колонии на острове . Сведения о жизни Архимеда оставили нам , , , , и другие. Почти все они жили на много лет позже описываемых событий, и достоверность этих сведений оценить трудно.

Отцом Архимеда был и Фидий, состоявший, как утверждает Плутарх, в близком родстве с , тираном . Отец привил сыну любовь к , и . Для обучения Архимед отправился в Египетскую - научный и культурный центр. Большую часть своей жизни провёл в родном городе Сиракузы. Где и был убит при захвате города воинами Марцелла во время Второй Пунической войны.

Уже при жизни Архимеда вокруг его имени создавались , поводом для которых служили его поразительные изобретения. Известна легенда об Архимеде и золотой короне. Царь Гиерон (250 лет до н. э.) поручил ему проверить честность мастера, изготовившего золотую корону. Хотя корона весила столько, сколько было отпущено на неё золота, царь заподозрил, что она изготовлена из сплава золота с более дешёвыми металлами. Архимеду было поручено узнать есть ли в короне примесь. Много дней мучила Архимеда эта задача. И вот однажды, находясь в бане, он погрузился в наполненную водой ванну, и его внезапно осенила мысль, давшая решение задачи. Ликующий и возбуждённый своим открытием, Архимед воскликнул: «Эврика! Эврика!», что значит: «Нашёл! Нашёл!».

Архимед заказал два слитка - один из золота, другой из серебра, равные весу короны. Каждый слиток он погружал поочерёдно в сосуд, доверху наполненный водой. Архимед заметил, что при погружении слитка из серебра воды вытекает больше. Затем он погрузил в воду корону и обнаружил, что воды вылито больше, чем при погружении золотого слитка, а ведь он был равен весу короны. По объёму вытесненной жидкости Архимед определил, что корона была изготовлена не из чистого золота, а с примесью серебра. Тем самым мастер был изобличён в обмане.

Задача о золотой короне побудила Архимеда заняться вопросом о плавании тел. В результате появилось замечательное сочинение «О плавающих телах». В этом сочинении Архимедом сформулировано: Тела, которые тяжелее жидкости, будучи опущены в неё, погружаются всё глубже, пока не достигают дна, и, пребывая в жидкости, теряют в своём весе столько, сколько весит жидкость, взятая в объёме тел . В науку гидростатику это открытие вошло как закон Архимеда.

Теоретическая часть закона Архимеда

Это закон статики жидкостей и газов, согласно которому на тело, погруженное в жидкость (или газ), действует выталкивающая сила (сила Архимеда), равная весу вытесненной этим телом жидкости (или газа).

Архимедова сила направлена всегда противоположно силе тяжести . Она равна нулю, если погруженное в жидкость тело плотно, всем основанием прижато ко дну.
Следует помнить, что
в состоянии невесомости закон Архимеда не работает .

Условия плавания тел в жидкостях и газах.

Итак, на тело, находящееся а жидкости или газе, в обычных земных условиях действуют две противоположно направленные силы: сила тяжести и архимедова сила: F т - сила тяжести, F А - сила Архимеда.

Если сила тяжести по модулю больше архимедовой силы (F т > F А), то тело опускается вниз - тонет. Если модуль силы тяжести равен модулю архимедовой силы (F т = F А), то тело может находиться в равновесии на любой глубине (тело плавает в жидкости или газе ). Если архимедова сила больше силы тяжести (F т < F А) , то тело поднимается вверх – всплывает до тех пор, пока не начнет плавать .

Всплывающее тело частично выступает над поверхностью жидкости; объем погруженной части плавающего тела таков, что вес вытесненной жидкости равен весу плавающего тела.

Архимедова сила больше силы тяжести, если плотность жидкости больше плотности погруженного в жидкость тела: ρ t - плотность тела, ρ s - плотность среды, в которую погрузили тело. ρ t = ρ s - тело плавает в жидкости или газе,
ρ t > ρ s - тело тонет,
ρ t < ρ s - тело всплывает до тех пор, пока не начнет плавать.

Поэтому дерево всплывает в воде, а железный гвоздь тонет. Однако на воде держатся громадные речные и морские суда, изготовленные из стали, плотность которой почти в 8 раз больше плотности воды. Объясняется это тем, что из стали делают лишь сравнительно тонкий корпус судна, а большая часть его объема занята воздухом. Среднее значение плотности судна при этом оказывается значительно меньше плотности воды; поэтому оно не только не тонет, но и может принимать для перевозки большое количество грузов.

Исследовательская часть Цель исследовательской работы

Обнаружить наличие силы, выталкивающей тело из жидкости; установить, от каких факторов она зависит; установить формулу расчета архимедовой силы.

Получить ответ на поставленные вопросы из жизненного опыта, наблюдений за окружающей действительностью, из результатов собственных экспериментов, которые позволяют расширить знания по данной теме, готовить и самостоятельно демонстрировать опыты, объяснять их результаты.

Повысить интерес к изучению физики, развивать умение видеть изучаемые явления в природе, навыки проведения экспериментов, логическое мышление.

Первое исследование

Оборудование: Яйцо сырое, яйцо вареное, вода чистая, вода, насыщенная солью, подсолнечное масло.

Ход работы : 1.Опустим яйцо сырое сначала в воду чистую воду (плотность 1000 кг/куб.м), насыщенную солью (плотность 1030 кг/куб.м), потом в подсолнечное масло (плотность 926 кг/куб.м). Какова же в каждом случае архимедова сила?.

На первой фотографии я опустила сырое яйцо в стакан с чистой водой. Яйцо утонуло, другими словами «пошло ко дну». На второй фотографии в стакан с чистой водой добавлена столовая ложка поваренной соли. В результате сырое яйцо плавает. На третий фотографии стакан наполнен подсолнечным маслом. Сырое яйцо тоже опустилось на дно.

Объяснение: в первом случае плотность яйца больше плотности воды и поэтому яйцо утонуло. Во втором случае плотность солёной воды больше плотности яйца, поэтому яйцо плавает на поверхности. В третьем случае плотность яйца также больше плотности подсолнечного масла, поэтому яйцо утонуло.

2.Опустим яйцо вареное сначала в воду чистую, воду, насыщенную солью, потом в подсолнечное масло. Что нам показывает в каждом случае архимедова сила.

На первой фотографии я опустила вареное яйцо в стакан с чистой водой. Яйцо утонуло. На второй фотографии в стакан с чистой водой добавлена столовая ложка поваренной соли. В результате вареное яйцо также утонуло. На третий фотографии стакан наполнен подсолнечным маслом. Вареное яйцо утонуло.

Объяснение: Во всех случаях плотность вареного яйца больше плотности и чистой воды, и солёной воды, и подсолнечного масла, поэтому вареное яйцо утонуло.

Вывод : Архимедова сила зависит от объема тела и плотности жидкости, чем больше плотность жидкости, тем архимедова сила больше. Результирующая сила, которая определяет поведение тела в жидкости, зависит от массы, объёма тела и плотности жидкости.

Второе исследование

Оборудование: маленькое фарфоровое блюдце и большая емкость с водой.

Ход работы: Я опустила маленькое блюдце на воду дном. Блюдце не тонет в воде, оно плавает на поверхности.

Теперь я опустила блюдце на воду ребром. Блюдце тонет.


Объяснение: Фарфор обладает большей плотностью, чем вода, поэтому при опускании блюдца ребром оно тонет. При опускании блюдца дном на воду оно погружается в воду на такую глубину, при которой объем вытесненной воды по силе тяжести равен силе тяжести блюдца, что соответствует условию плавания тел на поверхности воды.

Вывод : Одно и то же исследуемое тело при соприкосновении с водой меньшей поверхностью – тонет. Когда поверхность соприкосновения с водой исследуемого тела больше, то данное тело плавает.

Третье исследование

Оборудование: виноградинки и стакан с сильногазированным напитком « Sprite ».

Ход работы: Я опустила две небольшие виноградинки в стакан с сильногазированным напитком. Виноградинки сначала утонули, а потом быстро поднялись и стали плавать на поверхности. Через пятнадцать минут они опять опустились на дно, а затем поднялись снова. Итак, всплывали и поднимались несколько раз. Прошло около часа и виноградинки снова опустились на дно стакана и больше не всплывали.

Объяснение: Виноградинки немного тяжелее воды, поэтому сначала они опустились на дно. Но на них сразу же будут образовываться пузырьки газа. Вскоре их станет так много, что виноградинки всплывают. На поверхности сильногазированного напитка пузырьки лопаются, и газ улетучивается. Отяжелевшие виноградинки вновь опускаются на дно. Здесь они снова покроются пузырьками газа и снова всплывут. Так будет продолжаться несколько раз, пока не закончиться весь газ в стакане с напитом.

Вывод : Некоторое время тело лежит на дне. За это время на нем начинают скапливаться пузырьки углекислого газа. Углекислый газ легче воды, пузырьки его всплывают вверх. И когда их к телу прикрепится достаточно много, подъемная сила пузырьков будет настолько сильна, что они смогут увлечь тело за собою вверх. И оно всплывет. Но когда тело достигает поверхности, некоторые пузырьки на нем начинают полопаться. И теперь их будет недостаточно, чтобы удерживать тело на плаву - оно снова станет тяжелым и опуститься на дно.

Опрос

Во время проведения исследований по Архимедовой силе мне стало интересно узнать мнение по данной теме у других людей. И тогда я решила провести опрос у взрослых, задавая им вопрос «Нужна ли архимедова сила в жизни?». Результаты оказались такими:

Вывод: Из 100 процентов опрошенных людей более 52 процентов считают, что Архимедова сила нужна, не знаю ответили – 20 процентов, нет ответили – 25 процентов, скорее всего это необразованные люди и только лишь 3 процентам – все равно.

Интересные факты Роль выталкивающей силы в жизни живых организмов

Плотность живых организмов, населяющих водную среду, очень мало отличается от плотности воды, поэтому их вес почти полностью уравновешивается архимедовой силой. Благодаря этому водные животные не нуждаются в столь массивных скелетах, как наземные. Но если эти животные попадают на сушу, то они погибают. Например: кит дышит лёгкими, и регулирует глубину своего погружения за счёт уменьшения и увеличения объёма лёгких, но, попадая случайно на сушу, не проживает и часу. Масса кита достигает 90-100 т. В воде эта масса частично уравновешивается выталкивающей силой. На суше у кита под действием столь огромной массы сжимаются кровеносные сосуды, прекращается дыхание, и он погибает.

Интересна роль плавательного пузыря у рыб. Это единственная часть тела рыбы, обладающая заметной сжимаемостью; сжимая пузырь усилиями грудных и брюшных мышц, рыба меняет объем своего тела и тем самым среднюю плотность, благодаря чему она может в определенных пределах регулировать глубину своего погружения.

Важным фактором в жизни водоплавающих птиц является наличие толстого слоя перьев и пуха, не пропускающего воды, в котором содержится значительное количество воздуха; благодаря этому своеобразному воздушному пузырю, окружающему все тело птицы, ее средняя плотность оказывается очень малой. Этим объясняется, тот факт, что утки и другие водоплавающие мало погружаются в воду при плавании.

Мертвое море

«Мертвое море» - между , и . Уровень воды в Мёртвом море на 430 м ниже и падает со скоростью примерно 1 м в год. Побережье озера является самым низким участком суши на . Мёртвое море - это один из самых на Земле, составляет 300-310 , в некоторые годы до 350 %. Длина моря 67 км, ширина 18 км в самом широком месте, максимальная глубина 306 м.

Впервые это море стали называть «мертвым» древние греки. Жители древней Иудеи звали его «соленым». Арабские авторы упоминали о нем как о «зловонном море».

Из Мертвого моря не вытекает ни единой реки, зато оно само вбирает в себя воды реки Иордан, впадающей в него с севера, и множество маленьких ручьев, стекающих со склонов окружающих холмов. Единственным способом, которым из моря удаляются излишки воды, является ее испарение. В результате этого в его водах создалась необычайно высокая концентрация минеральных солей: поваренная соль, углекислый калий (поташ), хлорид и бромид магния и другие. (соленость составляет - 300 %), озеро Медвежье в Курганской области (соленость составляет - 350-360%), озеро в (соленость составляет - 300 %) и другие.

Воздухоплавание

Воздушный шар чтобы поднялся выше наполняют газом, плотность которого меньше воздуха. Для того чтобы определить, какой груз может поднять воздушный шар, надо знать его подъемную силу. Подъемная сила воздушного шара равна разности между архимедовой силой и действующей на шар силой тяжести.

Fпод = Fа - (Fт оболочки + Fт газа внутри + Fт груза)

Плотность воздуха уменьшается с увеличением высоты над уровнем моря. Поэтому по мере поднятия воздушного шара действующая на него архимедова сила становится меньше. Летательные аппараты легче воздуха. Они поддерживаются в воздухе, благодаря подъемной силе заключенного в оболочке аэростата газа с плотностью, меньшей плотности воздуха (водород, гелий, светильный газ). Конструкция аэростата включает оболочку, содержащую легкий газ, гондолу для размещения экипажа и аппаратуры, и подвеску, крепящую гондолу к оболочке. Избыток подъемной силы уравновешивают балластом. Оболочка заполняется лишь частично, и это позволяет защитить ее от перенапряжения. При подъеме по мере уменьшения давления атмосферы легкий газ в оболочке расширяется, однако подъемная сила остается постоянной. Для спуска открывается газовый клапан в верхней части оболочки. Подъемная сила падает, и аэростат опускается. Поскольку давление атмосферы начинает расти, то оболочка снова теряет форму шара. При приземлении масса легкого газа всегда меньше его начальной массы. Чтобы предотвратить удар гондолы о землю из-за падения подъемной силы, необходимо перед посадкой уменьшить массу аэростата. Это достигается сбрасыванием остающегося балласта.

Пионер воздухоплавания - бразилец Бартоломмео Лоренцо. Это его подлинное имя, а в историю воздухоплавания он вошел как португальский священник Лоренцо Гузмао. В 1708 году, перебравшись в Португалию, он поступил в университет в Коимбре и зажегся идеей постройки летательного аппарата. В августе 1709 года модели летательных аппаратов были продемонстрированы высшей королевской знати.

Одна из них была успешной: тонкая яйцеобразная оболочка с подвешенной под ней маленькой жаровней, нагревающей воздух, оторвалась от земли почти на четыре метра. История не располагает сведениями об испытании придуманных моделей.

В Париже молодому французскому физику профессору Жаку Шарлю было предписано провести демонстрацию своего летательного аппарата. Газ для наполнения был выбран водород. Легкая оболочка, способную длительное время держать летучий газ, была изготовлена братьями Робей из легкой шелковой ткани, покрытой раствором каучука в скипидаре. 27 августа 1783 года на Марсовом поле в Париже стартовал летательный аппарат Шарля. На глазах 300 тысяч зрителей он устремился ввысь. Когда кто-то из присутствовавших воскликнул: "Какой же во всем этом смысл?!" - известный американский ученый и государственный деятель Бенджамин Франклин, находившийся среди зрителей, заметил: "А какой смысл в появлении на свет новорожденного?" Замечание оказалось пророческим.

Братья Монгольфье также решили продемонстрировать в Париже аэростат собственной конструкции. Его оболочка высотой более 20 метров имела бочкообразную форму, и была разукрашена снаружи вензелями и красочными орнаментами. Воздушный шар вызвал у представителей Академии наук восхищение. И уже в присутствии королевского двора демонстрация состоялась в Версале (под Парижем) 19 сентября 1783 года.

Правда, оболочка воздушного шара, размыло дождем, и он пришел в негодность. Однако, работая день и ночь, братья Монгольфье построили новый красивый шар. Они прицепили к нему клетку с бараном, уткой и петухом. Это были первые пассажиры воздухоплавания. Воздушный шар устремился ввысь, а через восемь минут, пролетев четыре километра, опустился на землю. Братья Монгольфье были удостоены наград, а все воздушные шары, в которых для создания подъемной силы использовался дымный воздух, стали с того дня именоваться монгольфьерами.

Цель братьев Монгольфье – это полет человека. Построенный ими новый шар был крупнее: высота 22,7 метра, диаметр 15 метров. В нижней его части крепилась кольцевая галерея, рассчитанная на двух человек. В середине галереи был подвешен очаг для сжигания крошеной соломы. Находясь под отверстием в оболочке, он излучал тепло, подогревавшее воздух внутри оболочки во время полета. Это позволяло сделать полет более длительным и в какой-то мере управляемым. В полете участвовал Пилатр де Розье, активный участник постройки монгольфьера. Другим "пилотом" стал поклонник воздухоплавания маркиз д"Арланд. И вот 21 ноября 1783 года человек наконец-то смог оторваться от земли и совершить воздушный полет. Монгольфьер продержался в воздухе 25 минут, пролетев около девяти километров.

Стремясь доказать, что будущее воздухоплавания принадлежит шарльерам (аэростаты с оболочками, наполненными водородом) профессор Шарль осуществил полет людей на нем. Сетка, обтягивала верхнюю полусферу оболочки аэростата, и имела стропы, с помощью которых подвешивалась гондола для людей. В оболочке была сделана отдушина для выхода водорода при падении наружного давления. Для управления высотой полета использовался клапан в оболочке и балласт, хранящийся в гондоле. Был предусмотрен и якорь для посадки на землю. 1 декабря 1783 года шарльер диаметром более девяти метров взял старт в парке Тюильри. На нем отправились профессор Шарль и один из братьев Робер, принимавших участие в работах по постройке. Пролетев 40 километров, они благополучно опустились возле небольшой деревеньки.

Жизнь французского механика Жана Пьера Бланшара является яркой иллюстрацией переломного момента в развитии воздухоплавания конца XVIII века. Бланшар начал с осуществления идеи машущего полета. В 1781 году он построил аппарат, крылья которого приводились в движение усилием рук и ног. Хотя первое путешествие Бланшара на аэростате с крыльчатыми веслами окончилось неудачно, он не оставил своих попыток. Бланшар начал выступать с публичными демонстрациями полетов. Тогда-то он и задумал перелететь на аэростате через Ла-Манш. Этот исторический перелет, в котором участвовали Бланшар и его друг американский доктор Джеффри, состоялся 7 января 1785 года.

Заключение

Проделанная работа позволяет не только лучше понять закон Архимеда, но и научиться, на опытах определять архимедову силу, проверять правильность закона Архимеда. В результате проделанных опытов был сделан вывод, что архимедова сила зависит только от плотности жидкости и объема тела, погруженного в эту жидкость. Мы поняли, что не всегда удовлетворяет то, что ответ на поставленный вопрос есть в учебнике. Появляется потребность получить этот ответ из жизненного опыта, наблюдений за окружающей действительностью, из результатов собственных экспериментов, которые позволяют расширить знания по данной теме, готовить и самостоятельно демонстрировать опыты, объяснять их результаты.

Также мы поняли, что многие задачи на закон Архимеда можно решить не только теоретически, но и практически.

Помимо проделанных экспериментов, была изучена дополнительная литература об Архимеде, о плавании тел, воздухоплавании.

Список литературы

    А.П. Перышкин. Физика. 7 класс. Москва «Дрофа», 2006 г.

    Л. Гальперштейн. «Забавная физика». Москва «Детская литература», 1993 г.

    И. Г. Антипин. Экспериментальные задачи по физике. Москва «Просвещение», 1994 г.

    А.А. Пинский, В.Г. Разумовский. Физика и астрономия. Москва «Просвещение», 1993 г.

    Л.П. Родина. Архимедова сила и киты. Журнал «Квант» №8, Москва 1982 г.

    О.Ф. Кабардин. Физика. Справочные материалы. Учебное пособие для учащихся. Москва «Просвещение», 1991 г.

    Интернет ресурсы.