Есть ли действительно защита от ионизирующего излучения. Защита от радиации: виды и источники излучения

Вредное воздействие ионизирующих излучений на организм человека, воз­можное при рентгеновском или гамма-контроле качества сварных швов, при работе электронно-лучевых установок, а также при использовании торированных воль­фрамовых электродов, зависит от вида и интенсивности излучения, расстояния от его источника, времени воздействия и индивидуальных особенностей организма.

Энергия излучения, поглощенная единицей массы облучаемого вещества, на­зывается поглощенной дозой излучения Дпогл- Внесистемной единицей поглощен­ной дозы излучения служит рад (1 рад = 10-2 Дж/кг).

В связи с тем, что одинаковая поглощенная доза различных видов излучения вызывает в живой ткани различное биологическое действие, для оценки радиа­ционной опасности хронического облучения излучениями различных видов введе­ны понятия коэффициента качества (КК) и эквивалентной дозы Дьш. Последняя характеризует биологическое воздействие облучения с учетом как поглощенной энергии, так и характера излучения:

Дэкв ~Дпогл ■ КК ’ КР <

где КК - коэффициент качества, показывающий отношение биологической эффек­тивности данного вида излучения и рентгеновых лучей с энергией 250 кэВ нри одинаковой поглощенной дозе; КР - коэффициент распределения дозы, учиты­вающий влияние неоднородности распределения радиоактивных изотопов на их канцерогенную эффективность по отношению к радию-226.

Единицей измерения эквивалентной дозы служит биологический эквивалент рада - бэр. За 1 бэр принимается такая поглощенная доза любого вида излучения, которая при хроническом облучении вызывает такой же биологический эффект, что и 1 рад рентгеновского или гамма-излучения. Дозы, создаваемые различными видами излучения, выраженные одинаковым числом единиц бэр, при одинаковых условиях облучения будут эквивалентны по биологическому действию.

Действующими нормами установлены предельно допустимые дозы (ПДД) облучения людей. В качестве ПДД принят годовой уровень облучения персонала не вызывающий при равномерном накоплении дозы в течение 50 лет обнаруживав* мых современными методами неблагоприятных изменений в состоянии здоровья самого облучаемого и его потомства.

В соответствии с возможными последствиями воздействия ионизирующих излу­чений на организм установлены следующие категории облучаемых лиц: А - пер­сонал; Б - отдельные лица из населения; В - население в целом. ПДД внешнего и внутреннего облучения установлены для четырех групп критических органов и тканей.

Предельно допустимая доза (бэр) для лиц категории А в группе I (все тело) за ряд лет должна быть не более

где N - возраст в годах.

Во всех случаях доза, накопленная в возрасте 30 лет, не должна превышать 60 бэр.

Отдельные лица из персонала, за исключением женщин в возрасте до 30 лет, могут получить однократно в течение одного квартала дозу для всего организма, не превышающую 3 бэр. Для женщин в возрасте до 30 лет однократная доза в тече­ние одного квартала не должна превышать 1,3 бэр.

Для обеспечения безопасности работ необходимо строго соблюдать «Основные санитарные правила работы с радиоактивными веществами и другими источниками ионизирующих излучений» ОСП-72 .

Задача защиты от ионизирующих излучений, в конечном счете, сводится к уменьшению поглощенной дозы. Этого можно добиться удалением облучаемого персонала на безопасное расстояние от источника излучения или сокращением времени облучения.

При точечном источнике излучения экспозиционная доза (в рентгенах) на

рабочем месте, п….

Даксп~ ^2 = £>2 >

где a - активность источника, мКи; Ку - гамма-постоянная изотопа; М - гамма — эквивалент препарата, мг-экв Ra t - время облучения, ч; R - расстояние, см.

В тех случаях, когда «защиту расстоянием» или «защиту временем» обеспечить невозможно, прибегают к сооружению экранов или других ограждений из различ­ных материалов. Передвижные экраны для защиты от рентгеновского или гамма — излучения часто делают из свинца; при создании стационарной защиты удобно ис­пользовать бетон с добавлением в него барита или применением баритовой шту­катурки. Расчет толщины экранов и ограждений в зависимости от энергии излу­чения обычно производят по специальным таблицам или номограммам .

С целью проверки соблюдения норм радиационной безопасности и получения информации о дозе облучения персонала согласно действующим правилам должен быть организован радиационный контроль с использованием стационарных и переносных приборов, а также индивидуальных дозиметров.

Электронно-лучевые установки, работающие при напряжении от 10 до 100 кВ, относятся к группе источников рентгеновского излучения, не используемого для технологических целей.

Толщину защиты электронной пушки элекгронно-лучевых установок с фоку­сирующей и отклоняющей системами плавильной и сварочной камер рассчиты­вают в соответствии с рабочим напряжением установки и максимальной силой тока. Смотровые окна должны быть снабжены свинцовыми стеклами с толщиной, эквивалентной защите камеры, а для плавильных установок оборудованы периско­пическими устройствами.

Установки, предназначенные для сварки должны размещаться в отдельных помещениях на первом этаже. Подвальные помещения, над которыми размещены электронно-лучевые установки, использовать под служебные помещения с местами постоянного пребывания людей запрещается.

Расположение электронно-лучевых установок в отведенных для них помеще­ниях должно удовлетворять следующим основным требованиям:

а) свободная площадь, не занятая электронно-лучевыми установками, долж­на составлять не менее половины общей площади помещений;

б) расстояние от верха установок до потолка должно быть не менее 1 м;

в) пульт управления должен размещаться на расстоянии не более 1,5 м от установки; на сварочных установках допустимо иметь дублирующее управление на камере.

Дозиметрический контроль защиты должен проводиться не реже 1 раза в год, а также после монтажа или внесения изменений в конструкцию действующих уста­новок и выполняться ответственным лицом, выделенным администрацией пред­приятия .

Использование тарированных вольфрамовых электродов при сварке в среде защитных газов потенциально может быть связано с выделением в воздух произ­водственных помещений тория и продуктов его распада.

Порядок получения тарированных вольфрамовых электродов и перевозка их всеми видами транспорта регламентируется действующими санитарными пра­вилами ОСП-72 и правилами безопасной перевозки радиоактивных веществ. Большинство видов работ с тарированными вольфрамовыми электродами (из сплавов марок ВТ10, ВТ15 и др.) радиационной опасности не представляет. Условная радиационная опасность может возникать при транспортировке и хра­нении электродов общей массой более 5 кг, а также при заточке вольфрамовых электродов и при одновременной сварке более чем на пяти рабочих постах, рас­положенных в одном цехе. Однако условно опасная работа перестает быть радиа — циоино опасной при соблюдении санитарных правил и требований техники безо­пасности. На предприятиях и в учреждениях, использующих тарированные воль­фрамовые электроды, запас электродов не должен превышать годовой потребности в них. Этот запас следует хранить на центральном складе предприятия.

Электроды, необходимые для месячной работы, и квартальные запасы, если их общая масса не превышает 5 кг, разрешается хранить в подсобных складах цехов или участков, не отделяя их от остальных хранящихся материалов, за исклю­чением фоточувствительных. К хранению тарированных вольфрамовых электро­дов непосредственно на рабочих местах (до 1 кг) особых требований не предъяв­ляется. Операции по заточке тарированных вольфрамовых электродов следует производить на специально выделенном заточном станке, установленном в любом близлежащем к сварочным постам помещении, отвечающем санитарным и гигиени­ческим требованиям. Заточной станок должен быть оборудован механической вытяжкой. Пыль должна собираться и помещаться в сборник твердых радиоактив­ных отходов. Лица, производящие заточку электродов, дсяжны дополнительно обеспечиваться рукавицами. Сварку тарированными вольфрамовыми электродами (одновременно более чем на пяти рабочих постах в одном и том же помещении), а также заточку электродов и уборку пьт»іи от заточного станка следует произво­дить в респираторе. Дозиметрический контроль при работе с тарированными воль­фрамовыми электродами должен выполняться промышленными лабораториями предприятий и радиологическими группами санитарно-эпидемиологических стан­ций (СЭС) в виде текущего санитарного надзора.

Ионизирующим излучением называют потоки корпускул (элементарных частиц) и потоки фотонов (квантов электромагнитного поля), которые при движении через вещество ионизируют его атомы и молекулы.

Наиболее известны альфа-частицы (представляющие собой ядра гелия и состоящие из двух протонов и двух нейтронов), бета-частицы (представляющие из себя электрон) и гамма-излучение (представляющее кванты электромагнитного поля определенного диапазона частот). Дуализм «частица – волна» квантового мира позволяет говорить об альфа-излучении и бета-излучении. Ионизирующими являются также рентгеновское, тормозное и космическое излучения, потоки протонов, нейтронов и позитронов.

Природное ионизирующее излучение присутствует повсюду. Оно поступает из космоса в виде космических лучей. Оно есть в воздухе в виде излучений радиоактивного радона и его вторичных частиц. Радиоактивные изотопы естественного происхождения проникают с пищей и водой во все живые организмы и остаются в них. Ионизирующего излучения невозможно избежать. Естественный радиоактивный фон существовал на Земле всегда, и жизнь зародилась в поле его излучений, а затем – много-много позже – появился и человек. Эта природная (естественная) радиация сопровождает нас в течение всей жизни.

Физическое явление радиоактивности было открыто в 1896 г., и сегодня оно широко применяется во многих областях. Несмотря на радиофобию, атомные электростанции играют важную роль в энергетике многих странах. Рентгеновское излучение используется в медицине для диагностики внутренних повреждений и заболеваний. Ряд радиоактивных веществ используется в виде меченых атомов для исследования функционирования внутренних органов и изучения процессов обмена веществ. Для лечения рака методами лучевой терапии используются гамма-излучение и другие виды ионизирующих излучений. Радиоактивные вещества широко используются в различных приборах контроля, а ионизирующие излучения (в первую очередь рентгеновское) – для целей промышленной дефектоскопии. Знаки «выход» в зданиях и самолетах благодаря содержанию радиоактивного трития светятся в темноте в случае внезапного отключения электричества. Многие приборы пожарной сигнализации в жилых домах и общественных зданиях содержат радиоактивный америций.

Радиоактивные излучения разного типа с разным энергетическим спектром характеризуются разной проникающей и ионизирующей способностью. Эти свойства определяют характер их воздействия на живое вещество биологических объектов.

Биологическое действие ионизирующего излучения заключается в том, что поглощенная веществом энергия проходящего через него излучения расходуется на разрыв химических связей атомов и молекул, что нарушает нормальное функционирование клеток живой ткани.
Различают следующие эффекты воздействия ионизирующего излучения на организм человека: соматические – острая лучевая болезнь, хроническая лучевая болезнь, местные лучевые поражения; сомато-стохастические (злокачественные опухоли, нарушения развития плода, сокращение продолжительности жизни) и генетические (генные мутации, хромосомные аберрации).

Если источники радиоактивного излучения находятся вне организма человека и тем самым человек облучается снаружи, то говорят о внешнем облучении.

Если радиоактивные вещества, находящиеся в воздухе, пище, воде, попадают внутрь организма человека, то источники радиоактивного излучения оказываются внутри организма и свидетельствуют о внутреннем облучении.

Подчеркнем, что внешнее облучение происходит от непосредственного взаимодействия радиоактивных ионизирующих излучений внешних источников с атомами биологических субстратов организма. Защититься от внешнего излучения можно, поставив на пути движения излучений тот или иной защитный экран и/или применив средства индивидуальной защиты. В частности, специальная защитная одежда полностью защищает от альфа-излучения и частично – от бета-излучения, рентгеновского или гамма-излучения. Для этой цели служат антиконтаминационные костюмы, перчатки, капюшоны, сапоги, перчатки, очки, освинцованные фартуки.

Внутреннее облучение всегда связано с попаданием в организм человека радиоактивных веществ, разнообразие которых обусловливает разнообразие механизмов поглощения, усвоения и вывода этих веществ из организма, степень участия в метаболизме. В результате радиоактивные вещества могут задерживаться и даже накапливаться в организме. Распадаясь, они облучают расположенные вокруг них ткани.
Уменьшение внутреннего облучения достигается только средствами индивидуальной защиты органов дыхания, служащих для защиты дыхательных путей от радиоактивных веществ, находящихся в воздухе, и специальным рационом питания.

Обеспечение радиационной безопасности требует комплекса многообразных защитных мероприятий, зависящих от конкретных условий работы с источниками ионизирующих излучений, а также от типа источника.

Защита временем основана на сокращении времени работы с источником, что позволяет уменьшить дозы облучения персонала. Этот принцип особенно часто применяется при непосредственной работе персонала с малыми радиоактивностями.

Защита расстоянием – достаточно простой и надежный способ защиты. Это связано со способностью излучения терять свою энергию во взаимодействиях с веществом: чем больше расстояние от источника, тем больше процессов взаимодействия излучения с атомами и молекулами, что в конечном итоге приводит к снижению дозы облучения персонала.

Защита экранами – наиболее эффективный способ защиты от излучений. В зависимости от вида ионизирующих излучений для изготовления экранов применяют различные материалы, а их толщина определяется мощностью и излучением.

Электромагнитные излучения с различной длиной волны сильно отличаются друг от друга по интенсивности и степени поглощения их веществом. Наиболее интенсивное ионизирующее излучение - это гамма-излучение. Гамма-излучение имеет длину волны КГ 13 ...КГ 10 м, что соответствует частоте 3-10 2| ...3-10 18 Гц. Высокая проникающая и ионизирующая способность гамма-квантов объясняется их большой энергией, которая изменяется от 12,4 до 0,012 МэВ.

Обеспечение радиационной безопасности определяются следующими принципами:

  • 1) принципом нормирования - не превышение допустимых пределов индивидуальных доз облучения граждан от всех источников ионизирующего излучения;
  • 2) принципом обоснования - запрещение всех видов деятельности по использованию источников ионизирующего излучения, при которых полученная для человека и общества польза не превышает риск возможного вреда;
  • 3) принципом оптимизации - поддержание на возможно низком и достижимом уровне индивидуальных доз облучения и числа облученных лиц при использовании любого источника ионизирующего излучения.

Требования радиационной защиты установлены Федеральным законом «О радиационной безопасности населения», действующими санитарными нормами НРБ-99/2009 и санитарными правилами ОСПОРБ-2010.

Основные принципы радиационной безопасности реализуются путем:

  • - нормированием уровней ионизирующих излучений;
  • - уменьшения мощности источников излучения до минимальных величин (защита количеством );
  • - ограничения поступления радионуклидов в окружающую среду;
  • - сокращения времени работы с источниками радиации (защита временем)",
  • - увеличения расстояния от источника до работающих и населенных пунктов (защита расстоянием );
  • - экранирования источников излучения материалами, поглощающими ионизирующее излучение (защита экранированием).

Нормирование радиационного облучения. Нормирование ионизирующих излучений определяется характером воздействия ионизирующей радиации на организм человека.

Допустимые уровни воздействия антропогенных источников ионизирующих излучений (без учета доз, получаемых от естественного фонового облучения и медицинского обследования) на население и окружающую среду определены нормами радиационной безопасности НРБ-99/2009.

При внутреннем облучении: - это предел годового поступления (ПГП) радионуклида через органы дыхания и пищеварения, допустимая объемная концентрация (ДК) радионуклида в атмосферном воздухе и в воде.

При внешнем облучении: - это допустимая мощность дозы (ДМД), допустимая плотность потока частиц (ДПП), допустимое загрязнение поверхностей (ДЗ).

Воздействие фонового ионизирующего излучения от естественных источников, а также излучения при медицинских процедурах, от телевизоров и т. п. в НРБ-99/2009 не учтены и их следует рассматривать как дополнительные нагрузки.

При возникновении аварийных ситуаций однократное внешнее переоблучение человека при дозе свыше 5 ПДД (ПДД - предельно допустимая доза) или однократное поступление в организм радионуклидов свыше 5 ПДП (предел допустимого поступления) должно рассматриваться как потенциально опасное. После такого воздействия необходимо медицинское освидетельствование.

Относительную степень радиационной безопасности населения характеризуют следующие значения эффективных доз от природных источников излучения:

  • - менее 2 мЗв/год - облучение не превышает средних значений доз для населения страны от природных источников излучения:
  • - от 2 до 5 мЗв/год - повышенное облучение;
  • - более 5 мЗв/год - высокое облучение.

Методы защиты от ионизирующих излучений. Наиболее простые способы уменьшения вреда от воздействия радиации состоят либо в уменьшении времени облучения, либо в уменьшении мощности источника, либо же в удалении от него на расстояние, обеспечивающее безопасный уровень облучения (до предела или ниже эффективной дозы).

Защита от а - и р - частиц. Для защиты от а - излучения применяют экраны из стекла, оргстекла толщиной в несколько миллиметров или слой воздуха в несколько сантиметров.

В случае р - излучения используют материалы с малой атомной массой (например, алюминий), а чаще комбинированные (со стороны источника - материал с малой, а затем далее от источника - применяют материал с большей атомной массой).

Защита от у - излучения. Самый простой способ защиты от гамма-излучения - это удаление персонала от источника излучения на достаточно большое расстояние, т. к. интенсивность ионизации обратно пропорциональна квадрату расстояния 1 / г 2 . При использовании способа экранирования для у - квантов и нейтронов, проникающая способность которых значительно выше, необходима более массивная защита (рис. 10.16).

Рис. 10.16.

  • 1 - излучение, прошедшее защиту; 2 - однократно взаимодействующее излучение;
  • 3 - многократно взаимодействующее излучение; 4 - рассеянное излучение;
  • 5, 6- излучение, поглощенное в среде; 7,8- изменение траектории за защитной средой;
  • 9 - отраженное излучение

Механизм защиты экранированием заключается в том, что, проходя через вещество защиты, ионизирующее излучение ослабляется. Ослабление пучка у - квантов, проходящих защиту не рассеиваясь в ней (такой пучок называется узким), описывается экспоненциальным законом :

где N 0 и N - интенсивность излучения без защиты и за защитой толщиной 5; р - линейный коэффициент ослабления.

Коэффициент (кратность) ослабления излучения К определяется из соотношения:

где X - измеренная или рассчитанная мощность экспозиционной дозы в данной точке рабочего пространства; Х доп - допустимая мощность экспозиционной дозы.

Коэффициент радиационной защиты определяется в виде:

где D + и D~ - мощность поглощенной дозы при отсутствии и наличии защиты; р - линейный коэффициент ослабления, м" 1 ; 5 - толщина защитного экрана, м.

Эффективность радиационной защиты (дБ) в этом случае можно найти по формуле

Для защиты от у - излучений применяют материалы с большой атомной массой и высокой плотностью (свинец, вольфрам), а также более дешевые материалы и сплавы (сталь, чугун). Стационарные экраны выполняются из бетона,. Сравнение защитных свойств различных материалов экрана по кратности ослабления при защите от гамма-излучения показано на рис. 10.17.

Рис. 10.17.

1 - свинец; 2 - железо

Защита от нейтронов. Для защиты от нейтронного облучения применяют бериллий, графит и материалы, содержащие водород (парафин, вода). Для защиты от нейтронных потоков с малой энергией широко применяются бор и его соединения.

В качестве примера на рис. 10.18 показана защита активной зоны реактора.

Рис. 10.18.

Активная зона реактора окружена отражателем, снижающим утечку нейтронов наружу и позволяющим уменьшить величину критической массы. Материал отражателя - вещество с

малым атомным весом, которое служит для снижения первонач. энергии нейтронов деления (быстрых нейтронов) за счёт их упругого рассеяния.

Вокруг отражателя размещается радиационная биологическая защита, состоящая из бетона и других материалов, предназначенная для снижения интенсивности ядерного излучения снаружи до допустимого уровня. Радиоактивный первичный контур теплоносителя также размещается внутри бетонной защиты.

Защита населения от ионизирующих излучений. Основными мерами по защите населения от ионизирующих излучений является ограничение поступления в окружающую атмосферу, воду, почву отходов производства, содержащих радионуклиды. В случае необходимости создают санитарно-защитную зону и зону наблюдения.

Санитарно-защитная зона - территория вокруг учреждения или источника радиоактивных выбросов, на которой уровень облучения может превышать предел доз (ПД). В этой зоне устанавливается режим ограничений и проводится радиационный контроль.

Зона наблюдения - территория за пределами санитарно-защитной зоны, на которой возможно влияние радиоактивных выбросов, и облучение проживающего населения может достигать установленного предела доз (ПД). На территории зоны наблюдения, размеры которой в 3...4 раза больше размеров санитарно-защитной зоны, проводится радиационный контроль.

Все работы с источниками ионизирующих излучений санитарные правила подразделяют на два вида: на работу с закрытыми источниками излучений и устройствами, генерирующими ионизирующее излучение, и работу с открытыми источниками излучений (радиоактивными веществами).

Закрытый источник излучения - источник излучения, устройство которого исключает поступление содержащихся в нем радионуклидов в окружающую среду в условиях применения и износа, на которые он рассчитан.

Открытый источник излучения - источник излучения, при использовании которого возможно поступление содержащихся в нем радионуклидов в окружающую среду.

В связи с этим разработаны требования к безопасной работе с закрытыми и открытыми источниками ионизирующих излучений на производстве.

Главной опасностью закрытых источников ионизирующих излучений является внешнее облучение, определяемое видом излучения, активностью источника, плотностью потока излучения и создаваемой им дозой облучения и поглощенной дозой.

Защита от внешнего облучения предусматривает разработку таких методов, которые бы снижали дозу внешнего облучения до предельно допустимых значений.

Защита от внешнего облучения осуществляется нормированием расстояния от трудящихся до источников ионизирующих излучений, нормированием времени облучения, подбором радиоактивных изотопов с допустимой для данных условий работы активностью и экранированием.

Для определения безопасных условий работы с источниками g-излучений нужно исходить из следующей зависимости:

где D - доза облучения, Р; А - активность источника, мКи; Т - время облучения, час; R - расстояние от источника до рабочего места, см; К g -гамма-постоянная изотопа.

Из формулы следует, что доза облучения прямо пропорциональна активности источника и времени облучения и обратно пропорциональна квадрату расстояния от него.

Защита временем применяется в тех случаях, когда нельзя нормировать расстояние и применять экраны, как, например, при работе на обнажения радиоактивных руд или горных выработках. Сущность защиты заключается в том, что расчетом определяется время, в течение которого трудящиеся могут работать без опасности для здоровья вблизи данного источника излучения.

Расчет времени производится по приведенной формуле, которая в этом случае решается относительно Т , причём R и D берутся фактически в зависимости от характера работ и мощности источника излучения.

При проектировании защиты расстоянием определяется безопасное расстояние R без. При этом вместо D подставляется предельно допустимая доза облучения за время t , мЗв.

Для осуществления защиты расстоянием применяются различные приспособления: ручные захваты, манипуляторы и т.п. Промышленностью выпускается целый ряд таких инструментов (например, пружинные самодержащие захваты ЗПС, инструментарий дистанционный ИД, магнитный манипулятор ВНИИТБ и др.) длиной от 0,52 до 1,45 м. Поэтому необходимо лишь правильно определить и затем заказать нужные приспособления.


Условия безопасности можно обеспечить также, применяя источники излучения с меньшей активностью.

Таким образом, условия радиоактивной безопасности можно обеспечить, выбрав соответствующие значения R, Т и А. Для расчета этих параметров можно использовать значения мощности эффективной дозы гамма-излучения на рабочем месте, соответствующей при многократном воздействии пределам эффективных доз, указанных в табл. 9.3, например, пределам доз 50 мЗв/год и 5 мЗв/год при определённых условиях соответствуют мощности эффективных доз 25 мкЗв/ч и 2,5 мкЗв/ч. В этом случае используют соотношение:

где Р - мощность экспозиционной дозы, Р/ч; А - активность источника, кБк; R -расстояние от источника, см; К g -гамма-постоянная изотопа.

Гамма-постоянная изотопа - это мощность дозы излучения в рентгенах в час (Р/ч), создаваемая нефильтрованным гамма-излучением данного радиоактивного изотопа активность 1 мКи на расстоянии 1 см. Каждый источник гамма-излучения имеет свою характерную для него гамма-постоянную. Для радия К g = 8,4 Р×см 2 /г×мКи; для 60 СО и l 32 Cs соответственно 12,93 и 3,10 Р×см 2 /г×мКи.

Защита от ионизирующих излучений считается достаточной, если на рабочем месте мощность дозы Р или доза D излучения не превышает предельно допустимых величин, регламентированных НРБ-99.

Защита экранами - наиболее эффективный способ защиты от излучений. В зависимости от вида излучений для изготовления экранов применяют различные материалы, а их толщина определяется мощностью излучения.

По назначению защитные экраны условно разделяют на пять групп:

1) защитные экраны - контейнеры, в которые помещаются радиоактивные препараты. Они используются при транспортировке радиоактивных веществ и источников излучений;

2) защитные экраны для оборудования. В этом случае экранами полностью окружают все рабочее оборудование при положении радиоактивного препарата в рабочем положении или при включении высокого напряжения на источнике ионизирующего излучения;

3) передвижные защитные экраны. Этот тип защитных экранов применяется для защиты рабочего места на различных участках рабочей зоны;

4) защитные экраны, монтируемые как части строительных конструкций (стены, перекрытия полов и потолков, специальные двери и т.д.);

5) экраны индивидуальных средств защиты (щиток из оргстекла,просвинцовые перчатки и др.).

От облучения a -частицами полностью защищает спецодежда (халаты, перчатки и т.п).

Для предохранения работающих от облучения b -частицами операции с радиоактивными веществами следует вести за защитными экранами или в специальных защитных шкафах. В качестве защитных материалов используются, как правило, стекло, плексиглас или алюминий.

Защита от b -частиц стеклом и алюминием обеспечивается, если толщина этих материалов, выраженная в мм, больше удвоенного числа значения максимальной энергии b -излучения в МэВ.

g -излучение имеет значительно большую проникающую способность по сравнению с a - и b -излучением, вследствие чего обеспечить защиту от него гораздо сложнее. Для изготовления экранов чаще всего используется свинец и бетон. Расчет защиты представляет определенную сложность, поэтому на практике пользуются всевозможными таблицами и номограммами.

Проектирование защиты от нейтронов представляет ещё большую сложность. Наиболее эффективной оказывается многослойная защита, состоящая из материалов, замедляющих быстрые нейтроны (вода, парафин), поглощающих тепловые (бор, кадмий) и ослабляющих g -излучения (сталь, свинец). Для расчёта толщины слоев составлены номограммы.

Для защиты рабочих от внутреннего облучения должны проводиться строго обязательные мероприятия по борьбе с пылью; деятельное проветривание выработок и др. рабочих мест, снижение концентраций радиоактивных газообразных эманаций и радиоактивной пыли до санитарных норм. Если это практически недостижимо, то необходимо снабжать рабочих средствами индивидуальной защиты: изолирующими регенеративными дыхательными аппаратами, противопылевыми респираторами типа «Лепесток-1», защищающими дыхательные пути от радиоактивной пыли, пневмокостюмами - специальными защитными костюмами, изолирующими все тело и органы дыхания работающего от окружающей среды и т. п.

При использовании приборов с закрытыми источниками излучения и устройств, генерирующих ионизирующие излучения, вне помещений или в общих производственных помещениях должен быть исключен доступ посторонних лиц к источникам излучения и обеспечена сохранность источника.

В целях обеспечения радиационной безопасности персонала и населения следует:

Направлять излучение в сторону земли или туда, где отсутствуют люди;

Удалять источник излучения от обслуживающего персонала и других лиц на возможно большее расстояние;

Ограничивать время пребывания людей вблизи источников излучения;

Вывешивать знак радиационной опасности и предупредительные плакаты, которые должны быть видны с расстояния не менее 3 м.

Защита от открытых источников ионизирующих излучений предусматривает как защиту от внешнего облучения, так и защиту персонала от внутреннего облучения, связанного с возможным проникновением радиоактивных веществ в организм через органы дыхания, пищеварения или через кожу. Все виды работ с открытыми источниками излучений разделены на три класса. Класс работ устанавливается в зависимости от группы радиационной опасности радионуклида и его активности на рабочем месте. Способы защиты персонала при работе с открытыми источниками следующие:

1) использование принципов защиты, применяемых при работе с закрытыми источниками;

2) герметизация производственного оборудования с целью изоляции процессов, которые могут явиться источниками поступления радиоактивных веществ во внешнюю среду.

К мероприятиям, обеспечивающим безопасность персонала, относятся следующие.

- Мероприятия планировочного характера . Планировка помещений предполагает максимальную изоляцию работ с радиоактивными веществами от других помещений и участков, имеющих иное функциональное назначение. Помещения для работ I класса должны размещаться в отдельных зданиях или изолированной части зданий, имеющей отдельный вход. Помещения для работ IIкласса должны размещаться изолированно от других помещений; работы IIIкласса могут проводиться в отдельных помещениях, соответствующих требованиям, предъявляемым к химическим лабораториям.

Применение санитарно-гигиенических устройств и оборудования, использование специальных защитных мероприятий.

Использование средств индивидуальной защиты персонала.

При работах I класса и отдельных работах II класса работники обеспечиваются комбинезонами или костюмами, тапочками, спецбельем, носками, легкой обувью или ботинками, перчатками, бумажными полотенцами и носовыми платками разового пользования, а также средствами защиты органов дыхания; при работах II и III класса работники снабжаются халатами, тапочками, легкой обувью и при необходимости средствами защиты органов дыхания - фильтрующими респираторами.

При работе, когда возможно загрязнение воздуха помещений радиоактивными газами или парами (ликвидация аварий, ремонтные работы и т.п.) или когда применение фильтрующих средств не обеспечивает радиационной безопасности, необходимо применять изолирующие защитные средства - пневмокостюмы, пневмошлемы, в отдельных случаях - кислородные изолирующие приборы.

Выполнение правил личной гигиены. Эти правила предусматривают личностные требования к работающим с источниками ионизирующих излучений: запрещение курения в рабочей зоне, тщательная очистка (дезактивация) кожных покровов после окончания работы, проведение дозиметрического контроля загрязненной спецодежды, спецобуви и кожных покровов. Все эти меры предполагают исключение возможности проникновения радиоактивных веществ внутрь организма.

В связи с тем, что проникающее излучение оказывает вредное биологическое действие, первостепенное значение при работе с радиоактивными веществами приобретает правильная организация труда , обеспечивающая безопасность обслуживающего персонала. Правильно организовать работу с радиоактивными веществами значит создать условия, исключающие превышение пределов доз облучения и предупреждение проникновения радиоактивных веществ внутрь организма. Сюда входит целый комплекс мероприятий, обеспечивающих защиту от внешнего облучения, а также позволяющих предотвратить загрязненность радиоактивными источниками рабочих помещений, рук и тела работающих, осуществить контроль за уровнем радиоактивных излучений.

Условия безопасности при использовании радиоактивных изотопов требуют соблюдения мер защиты не только в отношении людей, непосредственно работающих с радиоактивными веществами или находящихся в смежных помещениях, но также и населения, проживающего недалеко от предприятия, которое может подвергаться радиоактивному облучению. Безопасность работающих с источниками ионизирующих излучений обеспечивается установлением предельно допустимых доз облучения, применением защиты временем и расстоянием, использованием технических и индивидуальных средств защиты.

Нормирование параметров и организационные меры защиты . Нормы радиационной безопасности установлены в СанПиН 2.6.1.2523-09 "Нормы радиационной безопасности (НРБ-99/2009)" . Нормы применяются для обеспечения безопасности человека во всех условиях воздействия на него ионизирующего излучения искусственного или природного происхождения. НРБ-99/2009 устанавливают следующие категории облучаемых лиц :

  • – персонал (группы А и Б);
  • – все население, включая лиц из персонала вне сферы и условий их производственной деятельности.

Группу А составляют лица, работающие с техногенными источниками излучения. В группу Б входят лица, работающие на радиационном объекте или на территории его санитарно-защитной зоны и находящиеся в сфере воздействия техногенных источников. Основные пределы доз и все остальные допустимые производные уровни для персонала группы Б не должны превышать одной четвертой значений для персонала группы А.

  • 1) основные пределы доз (ПД), которые приведены в табл. 5.4;
  • 2) допустимые уровни монофакторного воздействия (для одного радионуклида, пути поступления или одного вида внешнего облучения), являющиеся производными от основных пределов доз, – пределы годового поступления (ПГП), допустимые среднегодовые объемные активности (ДОА), среднегодовые удельные активности (ДУА) и др.

Для обеспечения условий, при которых радиационное воздействие будет ниже допустимого, с учетом достигнутого в организации уровня радиационной безопасности администрацией организации дополнительно устанавливаются контрольные уровни (дозы, уровни активности, плотности потоков и др.).

Основные пределы доз облучения не включают в себя дозы от природного и медицинского облучения, а также дозы вследствие радиационных аварий. На эти виды облучения устанавливаются специальные ограничения.

Эффективная доза для персонала не должна превышать за период трудовой деятельности (50 лет) – 1000 мЗв, для населения за период жизни (70 лет) – 70 мЗв. Началом периодов считается 1 января 2000 г. 1

Годовая эффективная доза облучения персонала за счет нормальной эксплуатации техногенных источников ионизирующего излучения не должна превышать пределов доз, установленных в табл. 5.4. Под годовой эффективной дозой понимается сумма эффективной дозы внешнего облучения, полученной за календарный год, и ожидаемой эффективной дозы внутреннего облучения, обусловленной поступлением в организм радионуклидов за этот же год.

Таблица 5.4

Основные пределы доз

При организации работ с источниками малой мощности распространенными способами являются защита временем и защита расстоянием. Защита временем предусматривает такой регламент работ, при котором доза, полученная за время проведения работ, не превысит предельно допустимую. Защита расстоянием означает, что все операции с источниками излучения следует проводить при помощи манипуляторов, а весь процесс работы – в возможно короткий срок, в течение которого доза, полученная работающим, будет наименьшей и не превысит пределов, установленных санитарными нормами и правилами.

При работе с источниками большой активности для защиты работающих необходимы специальные экраны , в десятки и сотни раз ослабляющие интенсивность излучения. Например, для защитных экранов, поглощающих гамма- излучение , используются материалы, содержащие элементы с высоким атомным номером и высокой плотностью (например, свинец); пригодны по своим защитным свойствам также вода, сталь, чугун, бетон, баритобетон. Определение необходимой толщины экрана может быть произведено расчетным путем по справочным данным и по номограммам, приведенным в специальной литературе.

Защита от нейтронов. Обладая огромной проникающей способностью, быстрые нейтроны слабо поглощаются веществом, поэтому задача защиты от нейтронов заключается в замедлении движения быстрых нейтронов с последующим поглощением замедленных нейтронов. Известно, что быстрый нейтрон теряет приблизительно две трети своей энергии при столкновении с атомом водорода, вследствие этого хорошим защитным материалом от нейтронов являются вода и водородосодержащие материалы (парафин). Большое сечение захвата медленных нейтронов имеет бериллий. Нейтроны малой энергии (тепловые) хорошо поглощаются бором и кадмием, поэтому бор в чистом виде или в виде соединений вводится в бетон, свинец и другие материалы, применяемые для защиты от нейтронов и гамма-излучения, которое сопровождает поглощение нейтронов такими материалами, как бериллий, бор и кадмий.

Технические меры защиты. К техническим мерам защиты от ионизирующих излучений относятся автоматизация и дистанционное управление, герметизация источников, защитное экранирование. При выборе технических средств защиты необходимо учитывать условия облучения (внешнее или внутреннее). При работе с радиоактивными веществами в открытом виде наряду с опасностью внешнего облучения имеется возможность поступления этих веществ внутрь организма. Для защиты персонала используется радиационно-защитное технологическое оборудование (камеры, боксы, вытяжные шкафы), а также сейфы, контейнеры и мешки для радиоактивных отходов. Герметичность вытяжных устройств – шкафов, боксов и камер обеспечивается созданием разрежения воздуха (100–200 Па).

Радиохимический шкаф более герметичен, чем обычный химический, рабочие отверстия закрыты перчатками, скорость воздуха в открывающихся проемах (в зависимости от класса работ) составляет 1–1,5 м/с. Боксы – герметичные укрытия, применяемые для проведения операций с радиоизотопами в открытом виде. Для проведения операций в заданных газовых средах (например, восстановления металлов в инертных средах) применяют боксы с замкнутой циркуляцией воздуха . Такие боксы имеют собственную вентиляционную систему, обеспечивающую очистку в индивидуальном фильтре бокса загрязненного радиоактивными аэрозолями воздуха (или другого газа) и подачу очищенного воздуха в бокс. В вытяжных шкафах и боксах используют манипуляторы копирующие, шпатовые и другой дистанционный инструмент, приспособления для вскрытия пеналов, запайки ампул и др. Кроме того, манипуляторные боксы снабжены контейнерами для твердых отходов, тележками для подачи контейнеров, блоком сварки пластиковых мешков. Для вакуумной плавки и литья радиоактивных металлов применяют дистанционно управляемую установку, которая размещается в герметичном боксе, оборудованном автоматическими транспортными коммуникациями.

Для работ с веществами высоких уровней активности используют камеры , полностью герметизированные, с дистанционным управлением рабочими операциями и наблюдением через защищенные отверстия. Работы с веществами большой активности выполняются на полностью автоматизированном оборудовании с дистанционным управлением.

Защита от внешнего облучения предусматривает создание таких ограждений (экранов) , которые снижали бы дозу внешнего облучения до предельно допустимой. Выбор типа ограждения или экрана прежде всего зависит от вида излучения, а также от активности и энергии источника излучения, условий его эксплуатации. Стационарными ограждениями служат защитные стены, перекрытия пола и потолка, смотровые окна; экранами – стенки контейнеров для перевозки радиоактивных изотопов, сейфов для их хранения, боксов и др.

При выборе материала экрана (ограждения) во внимание принимаются спектральный состав излучения, его интенсивность, а также расстояние от источника, на котором находится обслуживающий персонал, и время пребывания под действием излучений. Например, для защиты от альфа-излучения достаточен слой воздуха в 10 см от источника, так как пробег альфа-частиц в воздухе не превышает 8–9 см. Применяют также экраны из плексигласа или стекла толщиной в несколько миллиметров. Практически при работе с альфа-активными препаратами приходится защищаться не только от альфа-, но и от бета- или гамма- излучения.

Экраны для защиты от бета-излучения изготовляют из материалов с малой атомной массой (например, алюминия) или из плексигласа. Толщину экрана определяют с учетом максимального пробега бета-частиц (для алюминия при энергии бета-частиц Е = 0,1:0,6 МэВ пробег l = 0,07:1 мм). Но при прохождении бета-частиц через вещество не только ионизируются атомы, но и возникает тормозное излучение, поэтому для защиты от бета-излучений высоких энергий экран снаружи покрывают слоем тяжелого материала (например, свинца) для поглощения тормозного излучения. Возникающие в материале внутреннего слоя экрана кванты с малой энергией поглощаются внешним слоем материала с большой атомной массой. Толщину наружного слоя определяют по рассчитанному значению энергии тормозного излучения и создаваемой им дозе излучения.

Сложнее осуществить защиту от внешнего гамма- излучения , проникающая способность которого гораздо выше, чем у альфа- и бета-частиц. Обеспечить полную защиту от гамма-излучения не представляется возможным. Защитные устройства позволяют только снизить величину дозы этого излучения в любое число раз. Материалы защитных устройств – вещества с большой атомной массой и высокой плотностью: свинец, вольфрам и т.п. Часто используют более легкие материалы, но менее дефицитные и более дешевые: сталь, чугун, сплавы меди. Стационарные ограждения, являющиеся частью строительных конструкций, целесообразнее изготовлять из бетона и баритобетона. Смотровые системы изготовляют из специального стекла: свинцового с жидким наполнителем (бромидом и хлоридом цинка) и др. В качестве защищающего от гамма-лучей материала применяют и свинцовую резину.

Защиту от гамма-излучения можно осуществить также временем, расстоянием, количеством радиоактивного вещества. Для обеспечения условий безопасности доза облучения не должна превышать ПДД (5 бэр в год).

Сложность создания защиты от нейтронного излучения состоит в том, что нейтроны вследствие отсутствия заряда не взаимодействуют с электрическим полем и поэтому распространяются в веществе, пока не столкнутся с ядрами. Таким образом, поглощение веществом нейтронного излучения проходит в два этапа: вначале быстрые нейтроны в результате упругих столкновений с ядрами рассеиваются, энергия нейтронов уменьшается до тепловой, а затем тепловые нейтроны при неупругих взаимодействиях поглощаются средой. Максимальное рассеивание происходит при упругих столкновениях частиц равной массы – для нейтронов это ядра водорода.

Для защиты от нейтронного излучения применяют воду, парафин, а также графит, бериллий и др. Нейтроны малой энергии поглощаются бором и кадмием, поэтому в применяемый для защиты от нейтронов бетон добавляют соединения бора: буру, колеманит. При поглощении нейтронов происходит испускание гамма-квантов. Для комбинированной защиты от нейтронов и гамма-излучения используют смеси тяжелых материалов с водой или водородсодержащими материалами, а также комбинации слоев тяжелых и легких материалов: железо – вода, свинец – вода, свинец – полиэтилен и т.п. Толщина экрана определяется по таблицам, номограммам или расчетам.

Средства индивидуальной защиты предназначены для защиты от внутреннего облучения радиоактивными веществами, а также – при внешнем облучении – от альфа- и мягкого бета-излучений (от гамма- и нейтронного излучений они не защищают). Индивидуальные средства защиты включают спецодежду, средства защиты органов дыхания и зрения.

При работах I класса и отдельных работах II класса работники обеспечиваются комбинезонами или костюмами, шапочками, легкой пленочной обувью или специальными ботинками, перчатками, бумажными полотенцами или носовыми платками разового пользования, а также средствами защиты органов дыхания. При работах II и III классов работники снабжаются халатами, шапочками, легкой обувью, перчатками, а при необходимости – средствами защиты органов дыхания.

Для выполнения ремонтных работ, при которых загрязнения могут быть очень большими, разработаны пневмо-костюмы из пластических материалов с принудительной подачей воздуха под костюм. Пневмокостюм защищает основную спецодежду, органы дыхания и кожные покровы от радиоактивной пыли. Вследствие полной герметичности костюм можно дезактивировать на работающем после его выхода из загрязненной зоны.

Органы дыхания при работе с изотопами защищают посредством респираторов, пневмошлемов, противогазов. Наиболее надежен шланговый противогаз.

Для защиты глаз применяют очки закрытого типа со стеклами, содержащими свинец или фосфат вольфрама. При работах с источниками альфа- и бета-излучений для защиты лица и глаз используют защитные щитки из оргстекла.

Безопасность работы с радиоактивными веществами и источниками излучения можно обеспечить, организуя систематический дозиметрический контроль за уровнями внешнего и внутреннего облучения персонала, а также за уровнем радиации в окружающей среде (воздухе, воде и др.). Объем дозиметрического контроля зависит от характера работы с радиоактивными веществами. При работе с закрытыми источниками достаточно измерять дозы гамма-излучения на рабочих местах постоянного и временного пребывания персонала.

Осуществление работ с открытыми источниками требует кроме измерения уровней потоков излучения проведения контроля уровней загрязненности воздуха и рабочих поверхностей радиоактивными веществами, а также контроля уровней загрязненности рук и одежды работающих. Персонал, контактирующий с радиоактивными веществами, должен иметь индивидуальные дозиметры для контроля гамма-излучения.

  • Утверждены постановлением Главного государственного санитарного врача РФ от 7 июля 2009 г. № 47.